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Abstract

Predicting the thermal performance of an enhanced geothermal system (EGS) requires a comprehensive characterization of the

underlying fracture flow patterns from practically available data such as tracer data. However, due to the inherent complexities

of subsurface fractures and the generally insufficient geological/geophysical data, interpreting tracer data for fracture flow

characterization and thermal prediction remains a challenging task. The present study aims to tackle the challenge by leveraging

a data assimilation method to maximize the utilization of information inherently contained in tracer data, and meanwhile

maintain the flexibility to handle various uncertainties. A tracer data interpretation framework was proposed with the following

three components integrated: 1) We use principal component analysis (PCA) to reduce the dimensionality of model parameter

space. 2) We use ES-MDA (ensemble smoother with multiple data assimilation) to invert for fracture aperture/flow fields and

obtain posterior model ensembles for uncertainty quantification. Various data types are assimilated jointly to improve the

predictive ability of the posterior ensemble. 3) The inverted fracture aperture fields are then incorporated into reservoir models

to predict thermal performance. We developed a field-scale EGS model to verify the ability of the framework to characterize

highly heterogeneous fracture aperture/flow fields and predicting thermal performance. We also applied the framework to a

meso-scale field experiment to demonstrate its potential application in real-world geothermal reservoirs. The results indicate

that the proposed framework can effectively retrieve fracture flow information from tracer data for thermal prediction and

uncertainty quantification, and thus provide informative guidance for EGS optimization and risk management.
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Abstract 19 

Predicting the thermal performance of an enhanced geothermal system (EGS) requires a 20 
comprehensive characterization of the underlying fracture flow patterns from practically 21 
available data such as tracer data. However, due to the inherent complexities of subsurface 22 
fractures and the generally insufficient geological/geophysical data, interpreting tracer data for 23 
fracture flow characterization and thermal prediction remains a challenging task. The present 24 
study aims to tackle the challenge by leveraging a data assimilation method to maximize the 25 
utilization of information inherently contained in tracer data, and meanwhile maintain the 26 
flexibility to handle various uncertainties. A tracer data interpretation framework was proposed 27 
with the following three components integrated: 1) We use principal component analysis (PCA) 28 
to reduce the dimensionality of model parameter space. 2) We use ES-MDA (ensemble smoother 29 
with multiple data assimilation) to invert for fracture aperture/flow fields and obtain posterior 30 
model ensembles for uncertainty quantification. Various data types are assimilated jointly to 31 
improve the predictive ability of the posterior ensemble. 3) The inverted fracture aperture fields 32 
are then incorporated into reservoir models to predict thermal performance. We developed a 33 
field-scale EGS model to verify the ability of the framework to characterize highly 34 
heterogeneous fracture aperture/flow fields and predicting thermal performance. We also applied 35 
the framework to a meso-scale field experiment to demonstrate its potential application in real-36 
world geothermal reservoirs. The results indicate that the proposed framework can effectively 37 
retrieve fracture flow information from tracer data for thermal prediction and uncertainty 38 
quantification, and thus provide informative guidance for EGS optimization and risk 39 
management. 40 

1 Introduction 41 

A wider deployment of geothermal energy, particularly enhanced geothermal systems 42 
(EGS), is considered an essential component of the global effort to combat climate change and 43 
environment pollution. The optimization and risk management of EGS require accurate 44 
predictions of long-term thermal performance under different stimulation and operation 45 
scenarios. As EGS relies on natural and/or artificial fractures for fluid circulation and heat 46 
extraction, its thermal performance highly depends on fracture flow characteristics (Fox et al., 47 
2015; Fu et al., 2016; Guo et al., 2016b; Chen and Zhao, 2020). Direct observations and 48 
measurements of fractures in an EGS setting that is generally several kilometers below the 49 
ground surface are extremely difficult. Remarkable effort has been devoted to investigating 50 
indirect hydraulic and geophysical testing methods, such as hydraulic and tracer testing, seismic 51 
and electrical methods, ground penetrating radar, etc. (Berkowitz, 2002; Neuman, 2005; 52 
Maxwell et al., 2010; Wu et al., 2019). Among these methods, tracer testing is a powerful and 53 
widely used approach for subsurface fracture characterization (Sanjuan et al., 2006; Brown et al., 54 
2012; Juliusson and Horne, 2013; Hawkins et al., 2018). By injecting tracer-carrying fluid into 55 
one or more target fractures and monitoring tracer concentrations at outlet wells, one can obtain 56 
tracer breakthrough curves which are expected to reflect fracture flow characteristics. 57 

Interpreting tracer data for fracture flow characterization and thermal performance 58 
prediction of an EGS is challenging. Some methods have been developed to directly predict 59 
hydrothermal systems’ thermal performance from tracer data, but those are inapplicable to EGS 60 
due to a significant difference between the two types of geothermal systems. For hydrothermal 61 
reservoirs, the porous medium serves as the reservoir for both the fluid mass (“hydro reservoir”) 62 
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and heat (“thermal reservoir”). For an EGS, the hydro reservoir is mainly the fracture apertures 63 
whereas the thermal reservoir is the rock body surrounding the fractures. This discrepancy makes 64 
directly connecting tracer data to thermal performance extremely challenging. Shook (2001) 65 
developed a transformation method to derive a thermal breakthrough curve from a tracer 66 
breakthrough curve by utilizing the analogies between governing equations for tracer and heat 67 
transport, but the method is only applicable to hydrothermal reservoirs. Guo et al. (2016a) 68 
attempted to correlate the metrics of tracer breakthrough curves, including peak concentration 69 
and mean residence time, to the life span of an EGS, but the obtained correlations were poor. 70 
Traditional temporal moment analysis on tracer breakthrough curves can estimate important 71 
fracture characteristics such as fracture volume swept by tracer (Shook, 2003; Wu et al., 2008; 72 
Ayling et al., 2016; Hawkins et al., 2017b; Tian et al., 2016; Kittilä et al., 2019). However, 73 
fracture volume alone is unable to predict EGS thermal performance because heat extraction 74 
from an EGS depends largely on the effective heat exchange area, which cannot be directly 75 
calculated through conventional tracer test analysis.  76 

A promising strategy is to use inversion-based tracer data interpretation to first 77 
characterize fracture aperture/flow fields and then predict EGS thermal performance based on the 78 
inversion results. A practical challenge for such inversion problems is that available geological 79 
and geophysical data are generally insufficient for constraining the many inherent complexities 80 
of subsurface fractures. Some previous studies assumed simplistic fracture models (e.g., 81 
homogeneous fracture aperture, fixed shape) to circumvent these complexities, and used 82 
analytical solutions to invert for key parameters such as aperture and heat exchange area (Radilla 83 
et al., 2012; Shook and Suzuki, 2017; Hawkins et al., 2018; Suzuki et al., 2019). Such simplified 84 
approaches, while efficient and easy to implement, may not be able to capture the complex 85 
fracture features necessary for thermal prediction, such as highly heterogeneous aperture 86 
distribution. An alternative is to develop a fracture model that properly accounts for the 87 
complexities and then use high-fidelity numerical simulations for tracer data inversion. The high-88 
dimensional parameter space of the complex fracture model inevitably leads to an ill-posed 89 
inversion problem. Inversion approaches that can handle the equifinality of such problems are 90 
therefore desired to find multiple viable realizations to quantify uncertainties in thermal 91 
prediction. Commonly used approaches include stochastic modeling (Vogt et al., 2012a; Wu et 92 
al., 2021), Markov Chain Monte Carlo (MCMC) (Irving and Singha, 2010; Cui et al., 2011; 93 
Vrugt, 2016; Zhang et al., 2018) and ensemble-based data assimilation (Evensen, 1994, 2018; 94 
van Leeuwen and Evensen, 1996; Chen and Oliver, 2012; Emerick and Reynolds, 2013; Tang et 95 
al., 2021). Compared with stochastic modeling and MCMC, ensemble-based data assimilation is 96 
computationally more efficient, and has gained increasing popularity in tracer data interpretation 97 
for subsurface characterization (Vogt et al., 2012b; Chen et al., 2013; Crestani et al., 98 
2013; Keller et al., 2018). The result of ensemble-based data assimilation is an ensemble of 99 
viable model realizations, each of which can reasonably fit tracer data. The variability among 100 
these model realizations represents uncertainties arising from different sources. 101 

While important progresses have been made regarding the inversion of 102 
aperture/permeability fields from tracer data (Vogt et al., 2012b; Wu et al., 2020; Hawkins et al., 103 
2020), the ability of the inversion results to predict thermal performance requires further 104 
investigation. Most of the abovementioned studies focused on aperture/permeability inversion, 105 
and only a few discussed the prediction of thermal performance. Vogt et al. (2012b) used an 106 
Ensemble Kalman Filter (EnKF) to assimilate conservative tracer data at the Soultz-sous-Forêts 107 
EGS reservoir and predicted the thermal performance of the reservoir for 50 years through the 108 
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inverted reservoir permeability. However, the predictions showed significant uncertainties. Wu 109 
et al. (2020) used a stochastic modeling approach to interpreting a conservative tracer test at the 110 
EGS Collab field experiment and inferred spatial aperture distribution in a major hydraulic 111 
fracture. Multiple satisfactory aperture distributions were obtained, and the predicted thermal 112 
responses from these aperture distributions showed considerable uncertainties. 113 

In the present study, we propose a tracer data interpretation framework to first invert for 114 
spatial distribution of fracture aperture, and then predict thermal performance based on the 115 
inversion results. Ensemble smoother with multiple data assimilation (ES-MDA) is employed for 116 
tracer data interpretation. We aim to 1) Investigate the efficacy of ensemble-based data 117 
assimilation in fracture aperture/permeability inversion from tracer data; 2) Examine the 118 
suitability of the inversion results for thermal performance prediction; 3) Explore methods (such 119 
as joint data assimilation) to improve prediction accuracy and constrain prediction uncertainties. 120 
The novelty of the framework includes the following: 1) While most previous studies only 121 
assimilate a single type of data (mainly conservative tracer data as abovementioned), the 122 
framework employed here jointly assimilates multiple data types, including conservative and 123 
sorptive tracer data, as well as practically available pressure and flow data. The effects of 124 
combining different data types are analyzed to provide practical guidance for fracture 125 
characterization. 3) The framework integrates fracture aperture inversion with reservoir 126 
simulation to allow further investigation of the use of inversion results in thermal performance 127 
prediction.  128 

The paper is organized as follows. Section 2 describes the main components of the 129 
proposed framework. In Section 3, we introduce a synthetic field-scale EGS model to verify the 130 
effectiveness of the framework in fracture aperture inversion and thermal performance 131 
prediction. Section 4 validates the proposed framework against a meso-scale field experiment at 132 
the Altona Field Laboratory (AFL) which involved various tracer tests and a water circulation 133 
test. Section 5 provides discussions regarding the capability and limitation of the framework. 134 

2 Tracer data interpretation framework 135 

There are three major components in the proposed framework (Fig. 1): 1) Model 136 
parameterization and dimensionality reduction; 2) ES-MDA to invert for fracture characteristics 137 
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from tracer data; and 3) Thermal performance prediction based on the inversion results from ES-138 
MDA. Sections 2.1 to 2.3 describe details of these three components, respectively. 139 

 140 
Fig. 1 Workflow of the tracer data interpretation framework. Aperture distribution within a 141 
single, discrete fracture is shown as 2D spatially correlated random fields. 142 

2.1 Model parameterization and dimensionality reduction 143 

Driven by data scarcity in subsurface characterization problems, we need to parameterize 144 
reservoir models with an appropriate level of complexity. The concerned parameter in the 145 
present study is the spatial distribution of aperture in a discrete rock fracture, which is usually 146 
described by 2D spatially correlated fields (Fig. 1). In real-world problems, fracture aperture is 147 
generally highly heterogeneous following Gaussian (Pyrak-Nolte and Morris, 2000; Guo et al., 148 
2016a; Wu et al., 2021) or non-Gaussian distributions (Power and Tullis, 1992). Cell-based 149 
parameterization of aperture fields results in a large parameter space, and the auto-correlation of 150 
aperture is not naturally honored. To address this issue, the proposed framework employs 151 
principal component analysis (PCA) to reduce the dimensionality of the parameter space.  152 

PCA is a widely used unsupervised technique to project high-dimensional data to a latent 153 
space defined by orthogonal principal components. These principal components can be obtained 154 
through either computing the eigenvectors and eigenvalues of the covariance matrix of the 155 
original high-dimensional data or directly performing singular value decomposition (SVD) on 156 
the original data. The principal components are then ordered in such a way that the higher-ranked 157 
principal components preserve greater variance in the original data. By truncating the vector of 158 
principal components, the original data can be represented by a low-dimensional latent space 159 
while preserving most of the variance or “energy” in the original data. PCA has been widely 160 
used to reduce the dimensionality of spatially correlated fields, such as permeability and aperture 161 
distribution, in history matching and inversion problems pertaining to subsurface 162 
aquifer/reservoir characterization (Sarma et al., 2008; Hawkins et al., 2020). Below we briefly 163 
introduce the major steps of PCA through SVD (Liu and Durlofsky, 2020). 164 

• Prior to PCA, we first generate an ensemble of aperture fields (cell-based values) 165 
according to our prior knowledge from geological/geophysical measurements, 166 
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such as core logs, wellbore images and outcrop analysis. The generated sample 167 
fields, denoted as M = [m1 m2 … 𝐦!!] ∈	ℝ

!"×!!, where Nc is the number of 168 
unknows (i.e., the number of discretized cells) in each sample field and Nr is the 169 
number of generated sample fields, are provided to PCA as training data. The Nr 170 
fields collectively represent the range of variations of the aperture field. 171 

• The sample fields are assembled into a matrix Mc as, 172 

𝐌# =	
$

%!!&$
'𝐦$ −𝐦)			𝐦' −𝐦) 	…	𝐦!! −𝐦)+                                            (1) 173 

where 𝐦)  denotes the mean of the Nr sample fields. 174 

• SVD is then performed on Mc to obtain singular values and matrices, 175 

𝐌# = 𝐔𝚺𝐕(                                                                                                (2) 176 
where U ∈ ℝ!"×!! and V ∈ ℝ!!×!!are the left and right singular matrices, 177 
respectively, and 𝚺 ∈ ℝ!!×!! is a diagonal matrix with each diagonal element as a 178 
singular value. 179 

• We then select sub-matrices Ul and 𝚺), where Ul ∈	ℝ!"×)  contains the first l (l ≪ 180 
Nc) columns in U and 𝚺) ∈	ℝ)×) is a diagonal matrix containing the first l singular 181 
values in 𝚺. An original sample field mi can be reconstructed from a latent 182 
parameter vector 𝐳* using the following equations, 183 

𝐳* = 𝚺)&$𝐔)((𝐦* −𝐦))                                                                                (3) 184 
𝐦3 * = 𝐦) + 𝐔)𝚺)𝐳*                                                                                       (4) 185 
where 𝐦3 * is the reconstructed sample field for mi. 186 

• New sample fields can also be generated from, 187 

𝐦(𝐳) = 𝐦) + 𝐔)𝚺)𝐳                                                                                     (5) 188 
where 𝒛 is a l-dimensional latent parameter vector with each element 189 
independently sampled from the standard normal distribution. 190 

After dimensionality reduction using PCA, the high-dimensional aperture field m can be 191 
represented by a low-dimensional latent space z. In section 3.3, we demonstrate the 192 
reconstruction of an original aperture field from latent space, and also analyze the effect of the 193 
dimensionality of z. 194 

2.2 ES-MDA for tracer data interpretation 195 

The second step in the proposed framework is to invert for latent parameters by 196 
assimilating tracer data using ES-MDA. ES-MDA, developed by Emerick and Reynolds (2013), 197 
uses an iterative scheme to assimilate historical data multiple times and update model parameters 198 
so that model responses match the historical data to a satisfactory level. Compared with other 199 
ensemble-based data assimilation methods such as EnKF and Ensemble Smoother (ES), ES-200 
MDA alleviates the computational burden of EnKF by assimilating all historical data 201 
simultaneously and addresses the unsatisfactory data matching quality in ES by assimilating the 202 
historical data multiple times. The detailed derivation of ES-MDA is described in Emerick and 203 
Reynolds (2013), and below we briefly introduce the main procedures of ES-MDA for tracer 204 
data interpretation (Fig. 1).  205 
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• First, a prior ensemble of parameter sets is generated according to the prior 206 
distribution of model parameters. In the proposed framework, the prior ensemble 207 
of latent parameters, denoted as Z0 = [𝐳$+ 𝐳'+ … 𝐳!#

+ ] ∈	ℝ)×!# where Ne is the 208 
number of parameter sets (ensemble size), can be generated by randomly 209 
sampling from the standard normal distribution. 210 

• With the prior ensemble, we can generate the corresponding aperture fields 211 
through equation (5), denoted as M0 = [𝐦(𝐳$+) 𝐦(𝐳'+) … 𝐦(𝐳!#

+ )] ∈	ℝ!"×!#. We 212 
then calculate model responses for each aperture field according to forward model 213 
𝐲*+ = 𝑓(𝐦(𝐳*+)) ∈	ℝ!$, where 0 in the superscript denotes the iteration number. i 214 
= 1, 2, … , Ne, and Nd is the number of measurements. f and y denote the forward 215 
model and the corresponding model response, respectively. For the analysis of 216 
tracer data, f is a tracer simulation model and y is tracer breakthrough data. 217 

• The following equation is then used to update the prior ensemble iteratively, 218 

𝐳*, = 𝐳*,&$ + 𝐂-.,&$(𝐂..,&$ + 𝛼,𝐂.,&$)&$(𝐲/01 + 𝛜* − 𝐲*,&$)                     (6) 219 
where n = 1, 2, …, Na, denoting the iteration of ES-MDA. Na is the user-defined 220 
data assimilation number. 𝐳*, is the updated parameter sets after the current 221 
iteration. CZY ∈ ℝ)×!$ is the cross-covariance matrix between the current 222 
parameter ensemble Zn-1 = [𝐳$,&$ 𝐳',&$ … 𝐳!#

,&$] ∈ ℝ)×!# and the corresponding 223 
model responses yn-1 = [𝐲$,&$ 𝐲',&$ … 𝐲!#

,&$] ∈ ℝ!$×!#. CYY ∈ ℝ!$×!$ is the 224 
auto-covariance matrix of model responses. CY ∈ ℝ!$×!$ is the covariance 225 
matrix of the measurement errors of the historical data being assimilated, i.e., yobs. 226 
ϵi is random Gaussian noise drawn from N(0, 𝛼,CY). αn is the user-defined 227 
inflation coefficient at the current iteration. According to Emerick and Reynolds 228 
(2013), the following condition should be satisfied, 229 

∑ $
2%
= 1!&

,3$                                                                                                (7) 230 

After Na updates, we can obtain the posterior ensemble of parameter sets 𝐙!& as well as 231 
the corresponding posterior aperture distributions. 232 

2.3 Thermal performance prediction 233 

Another major component of the proposed framework is a thermal performance 234 
prediction module using the obtained posterior ensemble of aperture distributions. We 235 
incorporate the posterior aperture distributions into 3D reservoir models and perform simulations 236 
to predict long-term thermal performance. The predictions from different aperture distributions 237 
in the posterior ensemble represent the prediction uncertainty.  238 

3 Demonstration using a field-scale single-fracture EGS model 239 

In this section, we develop a field-scale EGS model to generate synthetic data to evaluate 240 
the effectiveness of the proposed framework in predicting thermal performance. The EGS model 241 
involves a dominant horizontal fracture in a large body of low permeability crystalline rock. An 242 
injection well and two production wells are drilled into the rock formation and intersect the 243 
fracture (Fig. 2). The application of the proposed framework to EGS consisting of multiple or 244 
many fractures will be addressed in future work. We perform tracer and thermal simulations to 245 
obtain synthetic tracer, pressure, and flow rate data as well as thermal breakthrough curves at the 246 
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two production wells. The framework in Fig. 1 is then used to predict the thermal breakthrough 247 
curves from the tracer, pressure and flow rate data. 248 

3.1 Model setup 249 

The dimensions of the EGS model are 3000 ´ 3000 ´ 3000 m3 (Fig. 2). The horizontal 250 
fracture is located in the center of the model with a size of 800 ´ 800 m2. The square shape of the 251 
hypothetical fracture was for convenience. The somewhat unrealistic and idealized geometric 252 
shape still fulfills the needs for generating synthetic data and validate the workflow. A vertical 253 
temperature gradient of 40 °C/km is assumed in the model with an initial temperature of 140 °C 254 
at model top. The temperature at the fracture depth is therefore 200 °C. The fracture is 255 
represented by a thin layer of elements 5 ´ 5 ´ 0.004 m3 in size. The mesh resolution of the rock 256 
matrix is 5 ´ 5 ´ 2.5 m3 near the fracture and becomes progressively coarser in the far field. The 257 
resulting computational domain consists of approximately 2,800,000 elements. 258 

To demonstrate the efficacy of the proposed framework, we desire the fracture’s aperture 259 
to be highly heterogeneous (Fig. 2). We use the following procedure to generate the aperture 260 
distribution: 1) We first generate a random 160 ´ 160 gaussian field and then transform the 261 
gaussian field to a binary facies field: Voxel values smaller than a threshold are reassigned as 262 
zero and the others as one. 2) Each facies in the binary field is populated with an independently 263 
generated random gaussian fields following a log-normal distribution. The “background” facies, 264 
visible as the green-to-red area in Fig. 2 has a mean aperture of 3 mm, a standard deviation of 2 265 
mm, and a correlation length of 300 m. The “inclusion” facies, visible as the blue patches, has a 266 
mean aperture of 0.6 mm, a standard deviation of 0.4 mm and a correlation length of 500 m. 267 

 268 

Fig. 2 A field-scale EGS model with a horizontal fracture connecting an injection and two 269 
production wells. Left: Spatial relationship between the simulation domain, the fracture, and the 270 
three wells. Right: The spatial distribution of fracture aperture in a plan view. 271 

3.2 Tracer and thermal modeling 272 

We use GEOS, a massively parallel multi-physics simulation platform developed at the 273 
Lawrence Livermore National Laboratory (Settgast et al., 2017), for tracer and thermal modeling 274 
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in the present study. The tracer transport module in GEOS has been detailed in Guo et al. 275 
(2016a) and Wu et al. (2021), and readers are referred to Guo et al. (2016b) for the details of the 276 
thermal module in GEOS. 277 

For tracer modeling, we include both conservative and sorptive tracers. A hydrostatic 278 
initial pressure is assumed in the model with a pressure of 30 MPa at the fracture depth. The 279 
injection rate is 10 L/s and we keep constant downhole pressure (30 MPa) at the two production 280 
wells. Tracers are injected into the horizontal fracture for one hour and we simulate the tracer 281 
transport process for 40 hours to obtain tracer breakthrough curves at the two production wells. 282 
Because the fracture is represented by a thin layer of porous media, we calculate the equivalent 283 
porosity and permeability of the fracture layer through ϕ = w/H and k = w3/12H respectively 284 
(Guo et al., 2016a), where w is the aperture and H = 4 mm is the thickness of the fracture grid 285 
elements. Other parameters for tracer modeling are listed in Table 1. For sorptive tracer 286 
modeling, we assume an equilibrium sorption process with a partition coefficient of 0.3 mm. For 287 
a typical matrix diffusion coefficient of 1 × 10-9 m2/s, we found that the rock formation 288 
surrounding the fracture has little effect on the tracer transport process in the fracture. Therefore, 289 
we assume that tracer transport is confined to the target fracture and only the horizontal fracture 290 
is considered for tracer modeling. Fracture boundaries are assumed impermeable. 291 

The simulated tracer breakthrough curves at the two production wells are shown in Fig. 292 
3(a). Due to sorption, the breakthrough curves for the sorptive tracer have delayed peaks with 293 
smaller peak magnitudes compared with the counterparts for conservative tracer. The simulated 294 
pressure difference between the injection and production wells is 2.8 kPa, and the simulated 295 
production rates at production wells 1 and 2 are 2.84 and 7.16 L/s respectively. For both 296 
conservative and sorptive tracers, tracer breakthrough is earlier and peak magnitude is smaller at 297 
production well 1 than at production well 2. 298 

For thermal modeling, we circulate water among the injection and production wells with 299 
an injection rate of 20 L/s and an injection temperature of 50 °C for 50 years. Similar to tracer 300 
modeling, we keep the downhole pressure at 30 MPa at the two production wells. The upper, 301 
lower and lateral model boundaries are assumed impermeable to both fluid and heat. This is 302 
justified because 1) the rock matrix is largely impermeable, and 2) the cooling front at the end of 303 
50 years is still far from the boundary. Parameters for thermal modeling are also summarized in 304 
Table 1. We assume constant water viscosity independent of temperature. We do not consider 305 
thermo-mechanical coupling in the thermal modeling. As shown in Fig. 3(b), the temperature 306 
decrease at production well 1 is slower than that at production well 2 due to the relatively smaller 307 
production rate. 308 

The tracer breakthrough curves in Fig. 3(a) as well as the pressure and flow rate data are 309 
then used as synthetic “measurements” for subsequent ES-MDA to invert for the aperture 310 
distribution in the fracture. The goal is to predict the flow rate-averaged production temperature 311 
curve in Fig. 3(b) from the posterior aperture distributions obtained from ES-MDA. 312 

 313 

 314 

 315 

 316 
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 317 
Table 1 Parameters for tracer and thermal modeling of the field-scale EGS model. 318 

Parameter Value 

Porosity of rock matrix 0.01 

Permeability of rock matrix (m2) 1 × 10-16 

Density of rock matrix (kg/m3) 2500 

Specific heat capacity of rock matrix (J/kg/K) 790 

Thermal conductivity of rock matrix (W/m/K) 2.5 

Density of water (kg/m3) 887.2 

Dynamic viscosity of water (Pa·s) 1.42 × 10-4 

Compressibility of water (Pa-1) 5 × 10-10 

Specific heat capacity of water (J/kg/K) 4460 

Longitudinal dispersivity (m) 0.2 

Transverse dispersivity (m) 0.02  

Partition coefficient (mm) 0.3 

 319 

 320 

Fig. 3 Tracer and thermal modeling results for the synthetic field-scale EGS model. (a) Tracer 321 
breakthrough curves at the two production wells. The monitored tracer concentration is 322 
normalized by injection concentration C0. (b) Thermal breakthrough curves at the two production 323 
wells. The black curve is flow rate-averaged production temperature. 324 

3.3 Dimensionality reduction of the aperture field 325 

In real-world applications, fracture aperture distributions are not known a priori. To 326 
represent inevitable biases in aperture distribution characterization, we intentionally assume a 327 
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log-normal aperture distribution for subsequent ES-MDA in this case study. Note that the 328 
“ground truth” aperture field in Fig. 2 does not follow a log-normal distribution. 329 

We use sequential gaussian simulations to generate Nr = 5,000 spatially correlated 330 
aperture fields from a spherical variogram with a mean of 1 mm, a standard deviation of 0.83 331 
mm and a correlation length of 100 m. All of the generated aperture fields follow a log-normal 332 
distribution. Note that we ignore the anisotropy of the aperture field as seen in Fig. 2, another 333 
deliberate erroneous bias introduced to test the robustness of the method. We then perform PCA 334 
on these 5,000 sample aperture fields according to the procedures in Section 2.1 to obtain the 335 
principal components. The level of details retained (i.e. fidelity) by aperture fields reconstructed 336 
from equations (3) and (4) depends on the dimension of the latent space. If the hyper parameter l 337 
= 5,000, the original aperture field can be fully reconstructed. With decreasing l, the 338 
reconstructed aperture fields appear smoother (Fig. 4). Some fine features are missed in the 339 
reconstructed aperture fields, but the major patterns are preserved. 340 

In the following ES-MDA process, we select the first 200 principal components (l = 200) 341 
as the basis for new aperture field generation. The goal of ES-MDA is therefore to invert for the 342 
200 latent parameters. 343 

 344 

Fig. 4 Reconstruction of two aperture fields with varying numbers of principal components. 345 
Approximately 61%, 76% and 86% of the total variance or “energy” in the original aperture 346 
fields are preserved with l = 100, 200 and 500 respectively. 347 

3.4 ES-MDA on tracer, pressure and flow rate data 348 

In this section, we use the ES-MDA as laid out in Section 2.2 to assimilate the tracer, 349 
pressure and flow rate data in Section 3.2. Each tracer breakthrough curve in Fig. 3(a) contains 350 
105 data points. Together with the pressure difference and the two flow rates, we have 423 data 351 
points in total (Nd = 423). We add random gaussian noise to the data, using standard deviations 352 
as follows: 1) For the tracer data, the standard deviation is 3% of the peak magnitude in Fig. 3(a). 353 
2) For the pressure and flow rate data, the standard deviation is 1.5% of the observed values. 354 
These standard deviations are used to calculate the covariance matrix of the measurement errors 355 
CY in equation (6). The total data assimilation number is 12 (Na = 12). We set gradually 356 
decreasing inflation coefficients as suggested by Emerick and Reynolds (2013). After each 357 
iteration, we decrease the inflation coefficient by 10%. According to equation (7), the inflation 358 
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coefficients for the 12 iterations are 22.9, 20.6, 18.5, 16.7, 15.0, 13.5, 12.2, 10.9, 9.8, 8.8, 7.9, 359 
and 7.1 respectively. 360 

We first generate 800 latent parameter sets as the prior ensemble (Ne = 800) by randomly 361 
sampling from the standard normal distribution. For each latent parameter set in the prior 362 
ensemble, we generate a prior aperture field using the PCA results in Section 3.3 and perform 363 
tracer modeling to obtain the prior simulations of tracer, pressure and flow rate (Fig. 5). 364 
Afterward, we use equation (6) to update the latent parameter sets for 12 iterations. In each 365 
iteration, we repeat the aperture field generation and tracer modeling steps using the updated 366 
latent parameter sets. After the last iteration, we obtain posterior latent parameter sets and 367 
aperture fields. The tracer breakthrough curves simulated by the posterior aperture fields match 368 
the “true” tracer breakthrough curves much better than those predicted by the prior aperture 369 
fields (Fig. 5(a)). With the update of the latent parameter sets, the simulated pressure and flow 370 
rate also gradually approach to the “true” values (Fig. 5(b)). The differences in posterior 371 
simulations among the 800 realizations represent uncertainties from measurement errors 372 
(Gaussian noise in this case) and biases in the prior knowledge of the aperture fields. 373 

 374 

Fig. 5 Simulations of tracer, pressure and flow rate from prior and posterior realizations for the 375 
synthetic field-scale model. (a) Comparison between the predicted and “true” tracer 376 
breakthrough curves. The upper row shows the comparison for the prior ensemble, and the lower 377 
row is the comparison for the posterior ensemble. All the predicted tracer breakthrough curves 378 
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from the 800 realizations in the ensemble are shown (grey curves). The green shadings are the 379 
90% credible intervals for the predicted tracer breakthrough curves. (b) The evolution of the 380 
predicted pressure and flow rate with respect to ES-MDA iterations. For each iteration, the 381 
predicted pressure and flow rate from the 800 realizations are shown (grey circles). The “true” 382 
values are annotated by red circles situated along the final iteration. 383 

3.5 Analysis of aperture distribution and fracture flow characteristics 384 

With the posterior ensemble from ES-MDA, we can analyze the spatial distribution of 385 
aperture as well as flow characteristics in the fracture to compare with the synthetic “ground 386 
truth”. We first randomly select an aperture realization from the prior ensemble to compare with 387 
the true aperture field. The true flow field (first row in Fig. 6) has two major flow channels 388 
connecting the injection well and the two production wells respectively. However, the flow field 389 
from the randomly selected prior realization (second row in Fig. 6) exhibits distinct flow patterns 390 
with three flow channels connecting the injection and production wells. After 12 ES-MDA 391 
iterations, the corresponding posterior realization’s flow field (third row in Fig. 6) qualitatively 392 
resembles the true flow field. The two major flow channels in the true flow field are 393 
approximately resolved. 394 

 395 

Fig. 6 Comparison of aperture distribution, flow field and temperature (Temp.) evolution in the 396 
fracture among (a) the true model, (b) a prior realization randomly selected from the prior 397 
ensemble, and (c) the corresponding posterior realization from the posterior ensemble. The flow 398 
rate is the volume of water passing a unit-length cross section of the fracture per unit time. Note 399 
that we only show the temperature distribution on the fracture plane for clarity. 400 

The average aperture from all 800 realizations is shown in Fig. 7. For the prior ensemble, 401 
since each aperture realization is an independently generated random field, the average aperture 402 
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is almost uniform. The corresponding average flow field exhibits a relatively homogeneous 403 
pattern among the injection and production wells without any remarkable flow channel. The 404 
posterior aperture distributions, on the contrary, show significant common patterns among the 405 
800 realizations. The average aperture for the posterior ensemble is far more heterogeneous than 406 
that for the prior ensemble. Correspondingly, the average flow field for the posterior ensemble 407 
exhibits strong flow channels between the injection and production wells, which are similar to 408 
that in the true flow field in Fig. 6. 409 

It is important to note that the posterior ensemble’s average aperture field is still quite 410 
different from the “ground truth” aperture in Fig. 2. This is not surprising because the true 411 
aperture field follows a complex distribution that is not covered by the constructed parameter 412 
space for the ensemble. Matching the aperture field is not a goal of our approach. The success of 413 
the method is measured by its ability to predict the thermal performance as presented in the next 414 
sub-section. As thermal response of the system is directly determined by the flow distribution but 415 
only indirectly affected by the aperture distribution, the predicted thermal response could be 416 
accurate as long as the flow field is reasonably resolved, even if the underlying aperture field is 417 
very different from the ground truth. 418 

 419 

Fig. 7 Average and standard deviation of aperture distribution and flow rate calculated from prior 420 
(upper row) and posterior (lower row) ensembles. 421 

3.6 Thermal performance prediction 422 

To investigate the suitability of the posterior ensemble for predicting thermal 423 
performance, we perform thermal simulations on both the prior and posterior ensembles. Fig. 8 424 
shows the predicted flow rate-averaged thermal breakthrough curves from these realizations. 425 
Results for only 50 randomly selected realizations are shown to avoid over-crowding the 426 
visualization. Most of the prior realizations have a slower temperature decrease compared with 427 
the true temperature response, and there is a large uncertainty among the predictions from the 50 428 
prior realizations (Fig. 8(a)). This is expected because the prior ensemble was essentially non-429 
calibrated. On the other hand, the predictions from the posterior realizations show a much 430 
smaller uncertainty, and the true temperature response is reasonably predicted (Fig. 8(b)). By 431 
conditioning the aperture field on tracer, pressure and flow rate data through the proposed 432 
framework, we successfully resolve the major flow channels in the true flow field and the 433 
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obtained posterior aperture distributions are capable of predicting long-term thermal 434 
performance. 435 

 436 

Fig. 8 Prediction of thermal performance (flow rate-averaged thermal breakthrough curve) from 437 
the prior (a) and posterior (b) ensembles. The solid black line is the “true” thermal breakthrough 438 
curve. The dash blue line (left) and dash white line (right) are the results for the realization 439 
visualized in Fig. 6. The cyan (left) and red (right) lines are the results for 50 randomly selected 440 
aperture realizations from the prior and posterior ensembles, respectively. 441 

The thermal breakthrough curves corresponding to the prior and posterior realizations in 442 
Fig. 6 are also shown in Fig. 8 (dash lines). To understand the greatly improved thermal 443 
predictive ability of the posterior realization, the third to fifth columns in Fig. 6 further compare 444 
the simulated temperature evolutions in the fracture corresponding to the true aperture field as 445 
well as the prior and posterior aperture fields. The temperature distribution in the fracture highly 446 
depends on the underlying flow patterns. Because the posterior aperture reasonably resolves the 447 
true flow field, the temperature evolution predicted by the posterior aperture is quite accurate. 448 

3.7 Effect of incorporating different data types in data assimilation 449 

In the above analysis, we incorporate all the available data, including conservative and 450 
sorptive tracer data, pressure data and flow rate data, in ES-MDA for aperture inference. This 451 
section investigates the effects of incorporating different data types by separately assimilating 452 
these data with ES-MDA. Four extra ES-MDAs are performed: 1) Conservative tracer data only, 453 
2) conservative tracer data as well as pressure and flow rate data, 3) Sorptive tracer data only, 454 
and 4) both conservative and sorptive tracer data, without pressure or flow rates. For each ES-455 
MDA, we use the same procedure as that in Section 3.4 to generate a posterior ensemble, and 456 
perform thermal simulations to predict thermal performance (Fig. 9). Compared with the prior 457 
predictions in Fig. 8(a), all the posterior predictions in Fig. 9 show a reduced uncertainty. When 458 
only conservative tracer data are assimilated, the predicted temperature is systematically higher 459 
than the true temperature, indicating systematic biases in the obtained posterior aperture 460 
distributions. Note that the prior ensemble has the same bias, namely higher predicted 461 
temperature. The bias in the posterior predictions is likely due to the conservative tracer recovery 462 
being insensitive to this bias, instead of being introduced by the conservative tracer data itself. 463 
Adding pressure and flow rate data to ES-MDA somewhat improves the prediction accuracy, but 464 
the results are still poor. Compared with conservative tracer data, sorptive tracer data is more 465 
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effective in constraining the prediction of temperature response as demonstrated by the 466 
significantly better results in Fig. 9(c) than (a). This is because sorptive tracer data is more 467 
sensitive to the interaction area between fracture fluid and surrounding rock formations than 468 
conservative tracer, and therefore can better characterize fluid-rock interaction area which is 469 
critical for thermal prediction. When conservative and sorptive tracer data are assimilated 470 
simultaneously, the temperature response can be accurately predicted. Tracer data, especially 471 
sorptive tracer data, are critical for the proposed framework to correctly characterize fracture 472 
flow and predict thermal performance. 473 

 474 

Fig. 9 Prediction of thermal performance (flow rate-averaged thermal breakthrough curve) from 475 
posterior ensembles obtained by assimilating different data types. The assimilated data type is 476 
annotated in each plot: (a) Conservative tracer data. (b) Conservative tracer data, pressure and 477 
flow rate data. (c) Sorptive tracer data. (d) Conservative and sorptive tracer data. 478 

According to the predictions in Figs. 8 and 9, we can estimate the production life span of 479 
the field scale EGS model. We use a temperature threshold of 120 °C to determine the “useable” 480 
life of an EGS, i.e., the EGS terminates when the production temperature decreases to below 481 
120 °C. Fig. 10 compares the estimated production life spans from the prior ensemble as well as 482 
the five posterior ensembles obtained by assimilating different data types. The uncertainty of the 483 
production life span (difference between minimum and maximum predictions) is approximately 484 
22 years for the prior ensemble and decreases to less than 4 years for the two posterior ensembles 485 
with both conservative and sorptive tracer data assimilated. It is also worth mentioning that the 486 
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mean production life span estimated from the two posterior ensembles is very close to the true 487 
value. 488 

 489 

Fig. 10 Production life span estimated from temperature response predictions. The box plots 490 
show the minimum, maximum, mean, as well as the 25% (Q1) and 75% (Q3) percentiles. P and 491 
Q represent the pressure and flow rate data respectively. 492 

4 Validation based on a meso-scale field experiment 493 

In this section, we apply the proposed framework to a meso-scale field experiment to 494 
further validate its capability in real-world applications. The meso-scale field experiment was 495 
performed at the Altona Field Laboratory (AFL) located in the Altona Flat Rocks region in 496 
northern New York State, USA (Hawkins et al., 2017a, 2018, 2021). The testbed of the field 497 
experiment involves a sub-horizontal fracture approximately 7.6 m below the ground surface. A 498 
series of tests were conducted in the testbed to investigate heat and mass transfer processes 499 
relevant to geothermal applications, including conservative and sorptive tracer tests as well as a 500 
thermal test (Hawkins et al., 2017a, 2018). The obtained tracer and thermal data provide a unique 501 
opportunity to validate the proposed framework. 502 

The well configuration and geological condition of the testbed has been reported in the 503 
literature (Hawkins et al., 2017a, 2018, 2020) and therefore not repeated here. In what follows, 504 
we first briefly describe relevant field measurements, and then use the proposed framework to 505 
infer the aperture distribution in the sub-horizontal fracture and predict production temperature 506 
during the thermal test. 507 

4.1 Tracer and thermal data at the AFL testbed  508 

Both the tracer and thermal tests were performed through an injection well and a 509 
production well connected by the sub-horizontal fracture. The distance between the injection and 510 
production wells was approximately 14.1 m. To perform tracer tests, water was continuously 511 
circulated between the injection and production wells at a constant volumetric flow rate of 5.82 512 
L/min. A salt of Cesium-Iodide (CsI) was used as a combined sorptive/conservative tracer, with 513 
the cesium cation as a sorptive tracer and the iodine anion as a conservative tracer. The field 514 
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results of the multi-component tracer tests are shown in Fig. 11(a). The arrival times of peak 515 
concentration are almost identical for the iodine and cesium ions, but the normalized peak 516 
magnitude is smaller for cesium. As discussed in Hawkins et al. (2018), this apparent deviation 517 
from an equilibrium model results from rate-limited adsorption. The second peaks at 518 
approximately 40 min were mainly caused by the continuous reinjection of produced fluids 519 
during the tracer tests (Hawkins et al., 2020). To determine the adsorption reaction parameters of 520 
cesium ions, Hawkins et al. (2018) performed two batch reactor experiments in which cesium 521 
ions dissolved in water were adsorbed onto two rock samples collected at roughly 17 m below 522 
the testbed surface. The measured partition coefficients (Pf) are 7.8 and 16.6 cm, and the first-523 
order adsorption rates are 0.4 and 1.33 d-1. In addition to the tracer tests, a pressure test 524 
conducted in 2012 recorded a pressure loss of 433 Pa between the injection and production wells 525 
under an injection volumetric flow rate of 4.2 L/min. In subsequent ES-MDA analysis, we 526 
assume a linear relationship between injection rate and pressure loss, and therefore the pressure 527 
loss during the tracer test with a volumetric flow rate of 5.82 L/min can be calculated as 600 Pa. 528 

The thermal test was performed by continuously injecting heated water (74 °C) into the 529 
fracture at a constant volumetric flow rate of 5.7 L/min for six days. The measured temperature 530 
response at the production well indicated an extremely rapid thermal breakthrough (Fig. 11(b)). 531 
After six days, the production well fluid temperature increased approximately 17.7 °C from the 532 
initial value of 11.7 °C to a final value of 29.4 °C. 533 

 534 

Fig. 11 Results of the tracer and thermal tests at the Altona Field Laboratory testbed. (a) Tracer 535 
breakthrough curves at the production well for iodine and cesium ions. The monitored tracer 536 
concentration is normalized by injection concentration C0. (b) Thermal breakthrough curve at the 537 
production well during the thermal test. 538 

4.2 Numerical model for tracer and thermal simulation  539 

We develop a 200 ´ 200 ´ 20 m3 model to simulate the tracer and thermal processes in 540 
the AFL testbed (Fig. 12). A 32 ´ 32 m2 horizontal fracture is assumed 7.6 m below the top 541 
surface of the model. The fracture is represented by a 4 mm layer with an in-plane mesh 542 
resolution of 0.2 m ´ 0.2 m. The mesh resolution of the rock is 0.2 m ´ 0.2 m ´ 0.5 m near the 543 
fracture and gradually increases to 10 m ´ 10 m ´ 2 m in the far field. The total element number 544 
in the model is approximately 840,000. Based on prior knowledge from Ground Penetrating 545 
Radar (GPR) surveys (Hawkins et al., 2018), we assume an oriented aperture distribution from 546 
the injection well towards the production well (Fig. 12(b)). Similar to the field-scale EGS model 547 
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in Section 3, we generate 5,000 oriented 160 ´ 160 log-normal random fields and use PCA to 548 
represent the aperture field with a 200-dimensional latent space. The first 200 principal 549 
components can preserve approximately 62.7% of the total variance in original aperture fields. 550 

For tracer modeling, we only consider the 2D fracture as the porosity and permeability of 551 
the surrounding Potsdam Sandstone are negligible relative to the target fracture (Table 2). The 552 
fracture boundaries are assumed impermeable. The reinjection of produced fluid is accounted for 553 
by specifying tracer injection concentration according to the simulated tracer concentration at the 554 
production well. We consider rate-limited adsorption process for the tracer modeling of cesium 555 
ion, with the first-order adsorption rate and partition coefficient estimated from the 556 
measurements mentioned in Section 4.2 (Table 2). Note that we use a relatively large partition 557 
coefficient within the measured range (7.8 – 16.6 cm). For thermal modeling, we consider the 558 
whole computational domain in Fig. 12. The upper, lower and lateral model boundaries are 559 
assumed impermeable to both fluid and heat. Key parameters for tracer and thermal modeling are 560 
obtained from the literature (Hawkins et al., 2017a, 2020), as summarized in Table 2. 561 

 562 

Fig. 12 Three-dimensional model for the Altona Field Laboratory testbed. Note that the scales in 563 
the horizontal and vertical directions are different. 564 

 565 
Table 2 Parameters for tracer and thermal modeling in the AFL testbed. 566 

Parameter Value 

Porosity of rock 0.01 

Permeability of rock (m2) 1 × 10-16 

Density of rock (kg/m3) 2500 

Specific heat capacity of rock (J/kg/K) 1000 

Thermal conductivity of rock (W/m/K) 7.6 

Initial temperature in the testbed (°C) 11.7 

Density of water (kg/m3) 1000 

Dynamic viscosity of water (Pa·s) 0.001 

Compressibility of water (Pa-1) 5 × 10-10 

Specific heat capacity of water (J/kg/K) 4200 
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Longitudinal dispersivity (m) 0.1 

Transverse dispersivity (m) 0.01 

First-order adsorption rate of cesium ion (d-1) 0.865 

Partition coefficient of cesium ion (cm) 15.0 

4.3 Numerical model for tracer and thermal simulation  567 

The conservative tracer, sorptive tracer and pressure loss data are assimilated 568 
simultaneously using ES-MDA. The total number of data points is 66 (Nd = 66). The standard 569 
deviations are assumed to be 0.003, 0.0024 and 6.5 Pa for the conservative tracer, sorptive tracer 570 
and pressure data respectively. The total data assimilation number is 15 (Na = 15), and the 571 
ensemble size is 432 (Ne = 432). 572 

The measured tracer breakthrough curves for iodine and cesium ions are appropriately 573 
reproduced with the obtained posterior ensemble as shown in Fig. 13(a). The pressure loss 574 
between the injection and production wells simulated by the posterior ensemble is also consistent 575 
with the field measurements (Fig. 13(b)). 576 

 577 

Fig. 13 Simulation results of tracer breakthrough curve and pressure loss at the AFL testbed. (a) 578 
Comparison between the simulated (grey curves) and true tracer breakthrough curves (dots) from 579 
prior and posterior ensembles. (b) Change of the simulated pressure loss with ES-MDA 580 
iterations. Simulation results are shown by grey circles, and the true value is annotated by the red 581 
circle. 582 

4.4 Analysis of aperture distribution and fracture flow characteristics 583 

Fig. 14 compares the aperture distribution and flow field calculated from prior and 584 
posterior ensembles. Similar to the results of the previous field scale EGS model, the average 585 
fracture aperture distribution obtained from prior ensemble is quite uniform, and no remarkable 586 
flow channel is observed in the average flow field (Fig. 14(a)). After ES-MDA updates, the average 587 
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aperture and flow field from posterior ensemble reveal a narrow flow channel connecting the 588 
injection and production wells (Fig. 14(b)). This striking feature is essential for the fit of the tracer 589 
breakthrough curve of the sorptive cesium ion. For prior realizations, since the flow field between 590 
the injection and production wells is relatively uniform, the effective interaction area (i.e., the 591 
fracture-fluid interfacial surface area or “flow-wetted” surface area) between fluid and surrounding 592 
rocks is relatively large. As a result, a large portion of the injected cesium ions are adsorbed by the 593 
rock and the simulated tracer concentrations at the production well are smaller than the 594 
measurements (Fig. 13(a)). For posterior realizations, since most of the fluid is constrained in the 595 
narrow flow channel, the fluid-rock interaction area is dramatically reduced, and therefore the 596 
simulated tracer breakthrough curves of cesium ion can appropriately match the measurements. 597 
Such a narrow flow channel is also consistent with previous GPR surveys (Hawkins et al., 2018). 598 

 599 

Fig. 14 Average (Aver.) and standard deviation (Std. Dev.) of aperture distribution and flow rate 600 
calculated from prior and posterior ensembles. (a) Results for the prior ensemble. (b) Results for 601 
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the posterior ensemble of the baseline ESMDA which assimilates all measurements 602 
simultaneously and uses a relatively large partition coefficient (15.0 cm) for cesium ions. (c) 603 
Results for the posterior ensemble of the ESMDA which assimilates all measurements 604 
simultaneously and uses a relatively small partition coefficient (7.8 cm) for cesium ions. (d) 605 
Results for the posterior ensemble of the ESMDA which only assimilates iodine tracer and 606 
pressure loss data. 607 

We use a relatively large partition coefficient (15.0 cm) for cesium ions in the above ES-608 
MDA. However, as mentioned previously, the measured partition coefficients from two batch 609 
reactor experiments are 7.8 and 16.6 cm, indicating that there exists uncertainty in the 610 
appropriate value of the partition coefficient. To examine the impact of an uncertain partition 611 
coefficient, we perform a second ES-MDA using a relatively small partition coefficient (7.8 cm) 612 
for cesium ions. The obtained posterior ensemble can also match the tracer and pressure 613 
measurements, and Fig. 14(c) shows the corresponding average aperture distribution and flow 614 
rate in the fracture. The flow field is more diffuse than that in Fig. 14(b). Besides a major flow 615 
channel similar to that in Fig. 14(b), several minor flow channels connecting the injection and 616 
production wells appear. These minor flow channels enlarge the interaction area between fluid 617 
and rock so that the tracer measurements of cesium ion can be matched with a relatively small 618 
partition coefficient. We also perform a third ES-MDA that only assimilates the iodine tracer and 619 
pressure loss data. The calculated average flow field shows a further scattered flow pattern 620 
between the injection and production wells (Fig. 14(d)). The comparison in Fig. 14 indicates that 621 
the partition coefficient has significant impacts on fracture flow characterization. 622 

4.5 Analysis of temperature response at the production well 623 

With the obtained prior and posterior ensembles, we now simulate the water injection test 624 
and predict the temperature response at the production well. For each ensemble in Fig. 14, we 625 
randomly select 30 realizations to perform thermal modeling. The predicted temperature rise from 626 
the prior ensemble is much lower than the measured production temperature, and the results from 627 
different realizations show a significant uncertainty (Fig. 15(a)). This is because randomly 628 
generated aperture distributions in the prior ensemble result in diffuse flow patterns between the 629 
injection and production wells (Fig. 14(a)). Fluid-rock interaction area is relatively large, retarding 630 
the temperature increase at the production well. The predicted temperature increase at the end of 631 
the hot water injection test varies between 0.0 to 6.0 °C among the 30 realizations (Fig. 15(a)), 632 
which are much smaller than the measured temperature increase (17.7 °C) in the field. 633 

For the posterior ensemble in Fig. 14(b), the interaction area between fluid and rocks is 634 
largely constrained within the narrow flow channel, and therefore the predicted temperature at the 635 
production well increases rapidly and agrees well with the measurements (Fig. 15(b)). The 636 
predicted temperature increase after six days hot water injection (17.3 to 19.8 °C) is close to the 637 
measured temperature increase. For the posterior ensemble in Fig. 14(c), the fluid-rock interaction 638 
area is larger than that in Fig. 14(b) because of the minor flow channels. Therefore, the predicted 639 
production temperature is smaller than that predicted by the posterior ensemble in Fig. 14(b), and 640 
cannot match the measured production temperature (Fig. 15(c)). For the posterior ensemble in Fig. 641 
14(d), the fluid-rock interaction area is further enlarged, and the corresponding temperature 642 
increase at the production is further reduced (Fig. 15(d)). However, it is worth mentioning that 643 
although the temperature predictions in Fig. 15(c) and (d) fail to match the field measurements, 644 
they are still better than the predictions from the prior ensemble. Conservative tracer data and 645 



Manuscript submitted to Water Resources Research 

 23 

pressure data provide useful information for aperture inference and thermal prediction, but sorptive 646 
tracer data is indispensable to correctly predict temperature response. Hawkins et al. (2020) also 647 
analyzed the tracer and thermal tests in the AFL testbed. They employed a genetic algorithm (GA) 648 
to infer the aperture distribution using a conservative tracer (C-Dot) and pressure data, and then 649 
predicted the production temperature. Their results also revealed a narrow flow channel of roughly 650 
1.5 m width between the injection and production wells, but the predicted production temperatures 651 
were smaller than field measurements. Incorporating sorptive tracer data in GA might be able to 652 
improve the prediction of production temperature. 653 

 654 

Fig. 15 Predicted and measured temperature responses at the production well during the hot 655 
water injection test at the AFL testbed. Temperature increases at the end of the test are annotated. 656 
ΔTm denotes the measured temperate increase, and ΔTsU and ΔTsL are upper and lower bounds of 657 
the predicted temperature increase. Results predicted by different ensembles are shown: (a) Prior 658 
ensemble. (b) ~ (d) Posterior ensembles obtained by assimilating different data and using 659 
different partition coefficients (Pf). The four sub-figures are corresponding to the four rows in 660 
Fig. 14. 661 
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5 Discussions 662 

5.1 Gaussian and non-Gaussian parameter fields 663 

An important premise of the proposed framework is that model parameters follow a 664 
Gaussian or log-normal distribution. On the one hand, PCA is only applicable to random fields 665 
that can be fully characterized by two-point statistics (Liu and Durlofsky, 2020), such as the 666 
Gaussian fields used in the present study. On the other hand, ES-MDA requires a Gaussian 667 
parameter distribution, otherwise its performance could be severely degraded (Canchumuni et 668 
al., 2020; Zhang et al., 2020). As mentioned in Section 2.1, latent parameters from PCA follow 669 
the standard normal distribution, which perfectly meet the Gaussian requirement of ES-MDA. 670 

Although a Gaussian parameter field (aperture or permeability) is a reasonable 671 
assumption for many subsurface reservoirs, a non-Gaussian parameter field, such as a 672 
binary/ternary facies field, has been widely adopted to account for highly channelized reservoirs 673 
(Lochbühler et al., 2014; Hakim-Elahi and Jafarpour, 2017; Tang et al., 2020). Directly applying 674 
the proposed framework to invert for such multi-facies fields inevitably leads to inaccurate 675 
inversion results since the proposed framework always assumes a Gaussian (or log-normal) 676 
parameter field to enable the use of PCA for dimensionality reduction. 677 

However, an important finding from the present study is that a Gaussian field is able to 678 
reproduce highly channelized flow patterns from a non-Gaussian field, and thus provide accurate 679 
predictions of reservoir performance. Although the inferred aperture/permeability field might be 680 
inaccurate, the underlying flow patterns can be appropriately resolved by matching tracer 681 
measurements. For the example in Fig. 2, the “true” aperture field is highly channelized and does 682 
not follow a Gaussian or log-normal distribution. It is not even within the Gaussian parameter 683 
space that we construct for subsequent ES-MDA. Nevertheless, the flow fields simulated based 684 
on the inferred Gaussian aperture fields closely resemble the true flow field (Fig. 7). This is not 685 
surprising because tracer recovery is more directly affected by the flow field than by the aperture 686 
field. As a result, the thermal performance is accurately predicted (Figs. 6 and 8). 687 

Another solution to address the issue of non-Gaussian parameter field is developing 688 
effective parameterization methods that can map high-dimensional non-Gaussian fields to low-689 
dimensional latent parameters that follow Gaussian distributions. In fact, the parameterization of 690 
complex geological structures such as binary/ternary facies fields is currently an active research 691 
area. Various methods have been proposed, including optimization-based PCA (O-PCA) (Vo and 692 
Durlofsky, 2014), discrete cosine transform (Jafarpour and McLaughlin, 2007), and deep 693 
learning algorithms such as CNN-PCA (Liu and Durlofsky, 2020), variational autoencoder 694 
(VAE) (Laloy et al., 2017; Canchumuni et al., 2019; Mo et al., 2020), and generative adversarial 695 
network (GAN) (Laloy et al., 2018; Canchumuni et al., 2020). These parameterization methods 696 
have been successfully used for the inference of non-Gaussian permeability fields through 697 
ensemble-based data assimilation methods (Canchumuni et al., 2019, 2020; Bao et al., 2020). 698 

5.2 Discrete fracture network (DFN) 699 

Both the synthetic and field cases in the present study have a predominant fracture in the 700 
reservoir. However, for many naturally fractured reservoirs, fluid flow may involve multiple 701 
interconnected fractures that form a discrete fracture network (DFN). For such reservoirs, the 702 
fracture flow patterns depend not only on the aperture distributions of individual fractures but 703 
also the geometry of DFN. Extending the proposed framework from a single fracture to DFNs 704 
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requires an effective parameterization method that can represent salient information in DFNs 705 
relevant to fluid flow with appropriately compromised model complexities. 706 

Current approaches for DFN parameterization usually represent each single fracture by 707 
parameters describing its location, orientation, size and aperture to allow individual tuning of 708 
fractures (Dorn et al., 2013; Somogyvári et al., 2017; Ma et al., 2020). Such a parameterization 709 
induces an extremely high-dimensional parameter space. Moreover, since the number of 710 
fractures is not known a priori, the dimensionality may vary in the inversion process, making 711 
most inversion/data assimilation methods inapplicable, including the proposed framework. A 712 
possible solution to this difficulty is using advanced deep learning algorithms (such as VAE and 713 
GAN) to generate high-fidelity DFN models from low-dimensional latent spaces. The capability 714 
of GAN and VAE in reproducing complex data structures and preserving data statistics has been 715 
widely reported. Their application in parameterizing DFNs with highly discontinuous structures 716 
deserves further investigations. 717 

5.3 Implications for subsurface characterization and analysis 718 

Although tracer testing has been widely used for subsurface characterization, how to 719 
effectively interpret tracer data and whether the interpretation results (permeability or aperture 720 
distribution) can correctly predict long-term performance has not been adequately elucidated 721 
previously. The present study attempts to answer these questions and provides a new framework 722 
for the characterization and analysis of fractured reservoirs. The analyses of a synthetic EGS 723 
model and a field geothermal test indicate that tracer data contain essential information regarding 724 
subsurface flow characteristics. The proposed framework is able to retrieve necessary flow 725 
information to accurately predict thermal performance in the two examples considered here. 726 
Moreover, because the framework uses an ensemble-based data assimilation method, 727 
uncertainties arising from biased prior knowledge and measurement errors can be naturally 728 
tackled. We demonstrate how these uncertainties propagate to the inverted aperture distribution 729 
and fracture flow pattern, and further to the thermal prediction in the two cases. 730 

An important implication for real-world applications is that both conservative and 731 
sorptive tracer tests need to be conducted to sufficiently characterize subsurface fractures for 732 
thermal prediction. Both the synthetic and field cases in the present study indicate that 733 
conservative tracers alone are unable to constrain fracture aperture, leading to biased predictions 734 
with large uncertainties. In several previous attempts to predict thermal performance from tracer 735 
data (Vogt et al., 2012b; Hawkins et al., 2020; Wu et al., 2021), the predicted thermal 736 
performance either indicates significant uncertainty or cannot qualitatively match field 737 
measurements. A possible reason is that only conservative tracer data was used for 738 
aperture/permeability inversion in these attempts. In addition, when sorptive tracer data is 739 
available, the sorption parameters such as partition coefficient need to be carefully measured. 740 
The field case clearly shows the remarkable impact of partition coefficient on aperture inversion 741 
and thermal prediction (Figs. 14 and 15). 742 

7 Conclusions 743 

We proposed a tracer data interpretation framework to predict the long-term thermal 744 
performance of EGS from tracer tests. The framework first inverts for the spatial distribution of 745 
fracture aperture through an ensemble-based data assimilation method, and then uses the 746 
inversion results to predict thermal performance. A synthetic case with a field-scale EGS model 747 
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and a real-world case involving meso-scale tracers and thermal tests were analyzed to 748 
demonstrate the capability of the framework. For both cases, thermal performance was 749 
accurately predicted and the associated uncertainty was appropriately quantified through the 750 
obtained posterior model ensembles. By interpreting practically available tracer, pressure and 751 
flow data, the framework can provide informative guidance for reservoir optimization and long-752 
term risk management.  753 

The correct prediction of thermal performance requires the joint assimilation of 754 
conservative and sorptive tracer data. Sorptive tracer data is indispensable to properly 755 
characterize fracture flow patterns, especially the effective fluid-rock interaction area which is 756 
critical for thermal prediction. Analysis without of sorptive tracer data tends to overestimate 757 
fluid-rock interaction, leading to biased prediction of thermal performance with relatively large 758 
uncertainties. 759 

Besides tracer, pressure and flow data, other types of data such as deformation and 760 
seismic data can also be interpreted using the proposed framework. Since physical models for 761 
deformation and seismic modeling are different from that for tracer transport, we need to replace 762 
the forward simulation in the framework accordingly. Of course, the predictive ability of the 763 
interpretation results highly depends on the relationship between the data being interpreted and 764 
the quantity to be predicted. For the EGS examples in the present study, the strong connection 765 
between tracer transport and heat extraction processes is the basis for predicting thermal 766 
performance from tracer data. 767 
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