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Abstract

A method based on electron magnetohydrodynamics (EMHD) for the reconstruction of steady, two-dimensional plasma and

magnetic field structures from data taken by a single spacecraft, first developed by Sonnerup et al. (2016), is extended to

accommodate inhomogeneity of the electron density and temperature, electron inertia effects, and guide magnetic field in and

around the electron diffusion region (EDR), the central part of the magnetic reconnection region. The new method assumes

that the electron density and temperature are constant along, but may vary across, the magnetic field lines. We present two

models for the reconstruction of electron streamlines, one of which is not constrained by any specific formula for the electron

pressure tensor term in the generalized Ohm’s law that is responsible for electron unmagnetization in the EDR, and the other

is a modification of the original model to include the inertia and compressibility effects. Benchmark tests using data from fully

kinetic simulations show that our new method is applicable to both antiparallel and guide-field (component) reconnection, and

the electron velocity field can be better reconstructed by including the inertia effects. The new EMHD reconstruction technique

has been applied to an EDR of magnetotail reconnection encountered by the Magnetospheric Multiscale spacecraft on 11 July

2017, reported by Torbert et al. (2018) and reconstructed with the original inertia-less version by Hasegawa et al. (2019), which

demonstrates that the new method better performs in recovering the electric field and electron streamlines than the original

version.
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Key Points:

• Method to reconstruct two-dimensional plasma and field structures from
spacecraft data based on compressible electron magnetohydrodynamics

• The new method accommodates nonuniform density/temperature, finite
electron inertia, and guide magnetic field in the reconnection region

• The new method successfully benchmarked by use of fully kinetic simula-
tion results and applied to a magnetotail reconnection event

Abstract

A method based on electron magnetohydrodynamics (EMHD) for the recon-
struction of steady, two-dimensional plasma and magnetic field structures from
data taken by a single spacecraft, first developed by Sonnerup et al. (2016),
is extended to accommodate inhomogeneity of the electron density and tem-
perature, electron inertia effects, and guide magnetic field in and around the
electron diffusion region (EDR), the central part of the magnetic reconnection
region. The new method assumes that the electron density and temperature
are constant along, but may vary across, the magnetic field lines. We present
two models for the reconstruction of electron streamlines, one of which is not
constrained by any specific formula for the electron pressure tensor term in
the generalized Ohm’s law that is responsible for electron unmagnetization in
the EDR, and the other is a modification of the original model to include the
inertia and compressibility effects. Benchmark tests using data from fully ki-
netic simulations show that our new method is applicable to both antiparallel
and guide-field (component) reconnection, and the electron velocity field can
be better reconstructed by including the inertia effects. The new EMHD recon-
struction technique has been applied to an EDR of magnetotail reconnection
encountered by the Magnetospheric Multiscale spacecraft on 11 July 2017, re-
ported by Torbert et al. (2018) and reconstructed with the original inertia-less
version by Hasegawa et al. (2019), which demonstrates that the new method
better performs in recovering the electric field and electron streamlines than the
original version.

Plain Language Summary

Magnetic reconnection is a physical process that converts magnetic energy to
plasma energy by changing the topology of magnetic field lines. Reconnec-
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tion occurring at the outer boundary of planetary magnetospheres, called the
magnetopause, is key to the entry of solar wind mass and energy into plan-
etary magnetospheres, and reconnection occurring in the nightside portion of
the magnetospheres is to fast release of magnetic energy during substorms or
sudden auroral brightening. However, space plasma and magnetic field in those
reconnection regions are invisible to any remote sensing instruments currently
available, and should be measured in situ by spacecraft to understand details
of the reconnection process. In the present study, a method for analyzing data
from such in-situ measurements, which can visualize two-dimensional magnetic
field and electron streamline structures in the central part of the reconnection
region, has been improved. The newly developed method allows spatial vari-
ations of the electron density and temperature, effects of finite electron mass,
and not antiparallel magnetic field configurations in the reconnection region,
as commonly observed at the magnetopause, and thus has more applicability.
Tests of the method using numerical simulation results and application to actual
spacecraft observations demonstrate a better performance than earlier ones.

1 Introduction

A primary objective of the Magnetospheric Multiscale (MMS) mission (Burch et
al., 2016), launched in 2016, is to understand the microphysics of magnetic re-
connection in the collisionless regime by revealing the kinetic processes occurring
in and around the central part of the reconnection region, called the electron
diffusion region (EDR), that are responsible for energy conversion, turbulence
generation, and particle acceleration through reconnection. To this end, it is
necessary to elucidate the connection between the geometrical structure of the
EDR and spatiotemporal properties of the kinetic and energy-conversion pro-
cesses manifested in electron velocity distributions and waves. While in-depth
investigation of this connection can be made by simulation studies (e.g., Naka-
mura et al., 2021), it is not a trivial task to reveal such relations with in-situ
measurements. Efforts to obtain information on the geometrical properties have
been made by developing data analysis techniques that can reconstruct two- or
three-dimensional plasma and/or magnetic field structures from in situ measure-
ments (Sonnerup et al., 2016; Chen et al., 2019; Denton et al., 2020; Torbert et
al., 2020).

One type of such reconstruction techniques is based on some physical model,
such as electron magnetohydrodynamics (EMHD) (Sonnerup et al., 2016), and
is suited for structures that approximately satisfy the model assumptions. It
is assumed in the EMHD reconstruction that the structures are approximately
two-dimensional (2-D) and time-independent in a proper moving frame, and are
described by the incompressible, inertia-less form of the EMHD equations. The
original version of the EMHD reconstruction has been successfully applied to
MMS observations of a magnetotail reconnection event, reported by Torbert et
al. (2018), in which the reconnecting current sheet was symmetric and magnetic
fields were nearly antiparallel (Hasegawa et al., 2019), and a magnetopause re-
connection event, reported by Burch et al. (2016), in which the current sheet was
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weakly asymmetric and the fields were approximately antiparallel (Hasegawa et
al., 2017). A weak point of the original EMHD reconstruction is that it is appli-
cable neither to guide-field reconnection (or component merging) because the
dissipation term adopted to allow for energy conversion at the X point (Hesse
et al., 2011) is specifically for antiparallel reconnection, nor to highly asym-
metric reconnection because of the incompressibility (spatially uniform density)
assumption. This means that it cannot be applied to most of magnetopause
reconnection events in which both the guide magnetic field (field component
along the X-line direction) and density jump across the current sheet are often
significant (Burch & Phan, 2016).

Some of the above assumptions made in the original EMHD reconstruction have
been relaxed in a recent work by Korovinskiy et al. (2021), allowing for recon-
struction with electron inertia and guide-field effects taken into account, but
with an additional assumption on the electron velocity field. However, their
model still assumes electron incompressibility (uniform electron density, i.e.,
𝑛𝑒 = const.), and we find their assumption on the velocity field, or equivalently,
on the magnetic field component 𝐵𝑧 along the direction of negligible gradient
( 𝜕

𝜕𝑧 ≈ 0) to be not well satisfied in and around the EDR (Appendix). In the
present study, we present a novel model in the EMHD framework for the re-
construction of the EDR with electron compressibility, inertia, and guide-field
effects all incorporated. Our model was inspired by a recent study by Korovin-
skiy et al. (2020), showing that in 2-D antiparallel reconnection, the electron
density and temperature are both roughly preserved along the magnetic field in
the reconnection plane (see their Figures 3 and 4).

The paper is organized as follows. Section 2 presents theory developed for the
new version of the EMHD reconstruction. Section 3 describes the actual numer-
ical procedures taken in the reconstruction. Section 4 provides benchmark tests
of the new EMHD reconstruction by use of data from fully kinetic simulations
of both antiparallel and guide-field magnetic reconnection. Section 5 presents
first results of the new reconstruction applied to the EDR of magnetotail recon-
nection observed by MMS on 11 July 2017, previously analyzed by Torbert et
al. (2018) and Hasegawa et al. (2019). Summary and discussion are given in
section 6, and Appendix provides some discussions on the assumptions made in
the present study and in Korovinskiy et al. (2021), along with key differences
between the two studies.

2 Theory

We follow the same steps as taken by Sonnerup et al. (2016) (hereafter referred
to as S16) but for compressible electrons with finite inertia. Some parts are
repeated, because those would be helpful to better understand the improvements
made in the present study.

2.1 Description of Fields and Flows

We assume a steady ( 𝜕
𝜕𝑡 = 0), 2-D ( 𝜕

𝜕𝑧 = 0) geometry in and close to the EDR
where ion dynamics can be neglected. The electron number density and velocity
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are defined as 𝑛𝑒 ≡ 𝑛 and v𝑒 ≡ v, respectively. The time-independnet form of
the continuity equation ∇ • (𝑛v) = 0 for electrons allows for the use of the
compressible stream function 𝜓 (Sonnerup et al., 2006). The electron number
flux as well as the magnetic field can then be defined as

𝑛v = ∇𝜓 × ̂z + 𝑛(𝑥, 𝑦)𝑣𝑧(𝑥, 𝑦) ̂z, (1)

B = B⊥ + 𝐵𝑧 ̂z = ∇𝐴 × ̂z + 𝐵𝑧(𝑥, 𝑦) ̂z, (2)

𝜇0j = ∇𝐵𝑧 × ̂z − ̂z∇2𝐴 = −𝜇0nev, (3)

where the partial magnetic vector potential is 𝐴𝑧 ≡ 𝐴, and j is the electron
current density. From (1) and (3), it follows that the axial component of the
magnetic field is equivalent to the compressible stream function via 𝐵𝑧 = −𝜇0e�.

2.2 Ohm’s Law

The time-independent form of the electron momentum equation (i.e., the gener-
alized Ohm’s law) is

𝑛𝑚𝑒v•∇v = −∇•P − 𝑛𝑒(E + v × B). (4)

In this expression, we can write v =v⊥ + 𝑣𝑧 ̂z = −(∇𝐵𝑧×ẑ)
(𝜇0𝑛𝑒) + 𝑣𝑧 ̂z, and

E = −∇𝜙(𝑥, 𝑦) + 𝐸𝑧0 ̂z, where the axial component of the electric field 𝐸𝑧0
should be constant for steady structures when seen in the frame comov-
ing with the structure. The reconnection electric field may be defined as
𝐸0 = 𝑉∞𝐵∞ = 𝐸𝑧0𝑗𝑧

|𝑗𝑧| , where 𝑉∞ is the upstream electron flow velocity toward
the current sheet and 𝐵∞ is the upstream in-plane field intensity (see Figure 1
of S16). After some vector algebra, the inertia term in (4) becomes

𝑛𝑚𝑒v•∇v =𝑛𝑚𝑒 [ ∇𝑣2
⊥

2 − v⊥ × (∇ × v⊥) + ̂zv⊥•∇𝑣𝑧]

=𝑛𝑚𝑒 [ ∇𝑣2
⊥

2 − ( 1
(𝜇0𝑛𝑒)2 ) {∇2𝐵𝑧 − ∇𝑙𝑛(𝑛)•∇𝐵𝑧} ∇𝐵𝑧 + ̂z (v⊥•∇) 𝑣𝑧],

(5)

where ∇×v⊥ = ( 1
(𝜇0𝑛𝑒) ) [∇2𝐵𝑧 − ∇𝑙𝑛(𝑛)•∇𝐵𝑧] ̂z is used to reach the final form.

As in S16, we assume that the electron pressure tensor can be written in the
form

∇•P =∇ ̃𝑝(𝑥, 𝑦) + ̂z𝑓(𝑥, 𝑦). (6)

We also note that the Lorentz force term can be written as

−𝑛𝑒 (v × B) = j × B= ( 1
𝜇0

) [− ∇𝐵2
𝑧

2 + ̂zB⊥•∇𝐵𝑧 − (∇2𝐴) ∇𝐴], (7)

where the axial component of the electron convection electric field is defined by
Korovinskiy et al. (2020) as

𝜀∗ = − (v⊥ × B⊥)𝑧 = ( 1
(𝜇0𝑛𝑒) ) B⊥•∇𝐵𝑧. (8)

Then Ohm’s law can be rearranged to become
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𝐸𝑧0 ̂z − ∇𝜙 = ( 1
(𝜇0ne)) [−∇𝐵2

𝑧
2 + ̂zB⊥•∇𝐵𝑧 − (∇2𝐴) ∇𝐴] − (∇ ̃𝑝 + ̂z𝑓(𝑥, 𝑦))

(ne)

+ ( 𝑚𝑒
𝑒 ) [− ∇𝑣2

⊥
2 − ̂z (v⊥•∇) 𝑣𝑧 + ( 1

(𝜇0ne)2 ) {∇2𝐵𝑧 − ∇ ln(𝑛)•∇𝐵𝑧} ∇𝐵𝑧]. (9)

The in-plane components of Ohm’s law give

−∇𝜙 = ( 1
(𝜇0ne)) [−∇𝐵2

𝑧
2 − (∇2𝐴) ∇𝐴] − ∇ ̃𝑝

(ne)

+ ( 𝑚𝑒
𝑒 ) [− ∇𝑣2

⊥
2 + ( 1

(𝜇0ne)2 ) {∇2𝐵𝑧 − ∇ ln(𝑛)•∇𝐵𝑧} ∇𝐵𝑧]. (10)

Multiplying (10) by the density, we arrive at

∇ [−𝑛𝜙 + ̃𝑝
𝑒 + ( 1

(𝜇0𝑒)) 𝐵2
𝑧

2 + (nm𝑒
𝑒 ) 𝑣2

⊥
2 ] = [−𝜙 + (𝑚𝑒

𝑒 ) 𝑣2
⊥
2 ] ∇𝑛

− ( 1
(𝜇0𝑒) ) (∇2𝐴) ∇𝐴 + ( 1

(𝜇0𝑒)2 ) ( 𝑚𝑒
(ne) ) [∇2𝐵𝑧 − ∇ ln(𝑛)•∇𝐵𝑧] ∇𝐵𝑧.

(11)

The three terms on the right-hand side that do not have the appearance
of perfect gradients must together form a perfect gradient of some function
𝐺 (𝐴, 𝐵𝑧, 𝑛):

∇𝐺 = [−𝜙 + (𝑚𝑒
𝑒 ) 𝑣2

⊥
2 ] ∇𝑛 − ( 1

(𝜇0𝑒)) (∇2𝐴) ∇𝐴

+ ( 1
(𝜇0𝑒)2 ) ( 𝑚𝑒

(ne) ) [∇2𝐵𝑧 − ∇ ln(𝑛)•∇𝐵𝑧] ∇𝐵𝑧. (12)

We then find from (11) that

𝐾 = 𝑛𝜙 − �̃�
𝑒 − ( 1

(2𝜇0𝑒) ) 𝐵2
𝑧 − ( nm𝑒

(2𝑒) ) 𝑣2
⊥ + 𝐺 (13)

is a global constant, and we can take 𝐾 = 0 to compute 𝐺 along the spacecraft
path and at each integration step.

Here we assume that the electron density and pressure are functions of 𝐴 alone,
𝑛(𝑥, 𝑦) = 𝑛(𝐴), and ̃𝑝(𝑥, 𝑦) = ̃𝑝(𝐴), which are approximately satisfied in the
vicinity of the EDR (Korovinskiy et al., 2020). By use of ∇𝑛 = ( 𝑑𝑛(𝐴)

dA ) ∇𝐴, we
can expand (12) in the form ∇𝐺 (𝐴, 𝐵𝑧) = ( 𝜕𝐺

𝜕𝐴 ) ∇𝐴 + ( 𝜕𝐺
𝜕𝐵𝑧

) ∇𝐵𝑧, so that

𝜕𝐺
𝜕𝐴 = [−𝜙 + ( 𝑚𝑒

𝑒 ) 𝑣2
⊥
2 ] ( 𝑑𝑛(𝐴)

dA ) − 𝑛𝑣𝑧, (14)

𝜕𝐺
𝜕𝐵𝑧

= ( 1
(𝜇0𝑒)2 ) ( 𝑚𝑒

(ne) ) [∇2𝐵𝑧 − ∇ ln(𝑛)•∇𝐵𝑧], (15)
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where a Grad-Shafranov (GS) equation ∇2𝐴 = 𝜇0ne𝑣𝑧 (axial component of (3))
is used to reach (14).

We now turn to the axial component of Ohm’s law (9)
𝑓(𝑥,𝑦)
(ne) = −𝐸𝑧0 + ( 1

(𝜇0ne) ) B⊥•∇𝐵𝑧 − ( 𝑚𝑒
𝑒 ) (v⊥•∇) 𝑣𝑧. (16)

With (8), noting that (v⊥•∇) = − (v⊥ × B⊥)𝑧
𝜕

𝜕𝐴 = 𝜀∗ 𝜕
𝜕𝐴 (see Eq. (21) of

Korovinskiy et al. (2020)), it follows that
𝑓(𝑥,𝑦)
(ne) = −𝐸𝑧0 + 𝜀∗ [1 − ( 𝑚𝑒

𝑒 ) 𝜕𝑣𝑧
𝜕𝐴 ]. (17)

It is seen from (17) that the electron inertia contribution to the reconnection
electric field 𝐸0 can be assessed by the term −𝜀∗ ( 𝑚𝑒

𝑒 ) 𝜕𝑣𝑧
𝜕𝐴 ; whether it positively

or negatively contributes to 𝐸0 depends on the sign of 𝜕𝑣𝑧
𝜕𝐴 , given that 𝜀∗ =

− (v⊥ × B⊥)𝑧 has the same sign as 𝐸𝑧0 everywhere around the reconnection
site. In the case when 𝐸𝑧0 is negative, as in Figure 1 of S16, so that 𝜀∗ is
also negative, 𝐴 has a larger value in the inflow than in the outflow region.
As electrons in the inflow region are advected across the transverse magnetic
field B⊥ toward the EDR, moving to a smaller 𝐴 region, they are accelerated
along the direction opposite to the reconnection electric field (along + ̂z) and
thus 𝑣𝑧 increases, making 𝜕𝑣𝑧

𝜕𝐴 negative. In such regions, the above inertia term
makes a positive contribution to 𝐸0. On the other hand, in the outflow region
𝑣𝑧 (electron current intensity) generally decreases with distance from the X
point in the outflow direction, so that 𝜕𝑣𝑧

𝜕𝐴 is positive. The inertia term then
makes a negative contribution to 𝐸0. This picture is consistent with 2-D kinetic
simulations of magnetic reconnection (Divin et al., 2012; Egedal et al., 2019).

3 Reconstruction Procedure

Our new reconstruction method requires as input magnetic field, electric field,
and electron moment data taken by a single spacecraft during a properly selected
interval, while electric field data are not necessarily required in the original
EMHD method (S16). The coordinate system (the invariant axis orientation ̂z,
and velocity of the frame in which the structure is seen to be time-stationary) for
the reconstruction can be estimated by single- or multi-spacecraft methods, as
reviewed by Shi et al. (2019), with successful applications to MMS observations
of both magnetopause and magnetotail current sheets (Denton et al., 2016, 2018,
2021).

The magnetic vector potential 𝐴, stream function 𝜓, and electrostatic poten-
tial 𝜙 on the 𝑥 axis, defined as the projection of the spacecraft path onto
the plane perpendicular to ̂z, can be obtained by 𝐴(𝑥, 0) = ∫ ( 𝜕𝐴

𝜕𝑥 ) 𝑑𝑥 =
− ∫ 𝐵𝑦(𝑥, 0)𝑑𝑥, 𝜓(𝑥, 0) = ∫ ( 𝜕𝜓

𝜕𝑥 ) 𝑑𝑥 = − ∫ 𝑛(𝑥, 0)𝑣𝑦(𝑥, 0)𝑑𝑥, and 𝜙(𝑥, 0) =
∫ ( 𝜕𝜙

𝜕𝑥 ) 𝑑𝑥 = − ∫ 𝐸𝑥(𝑥, 0)𝑑𝑥, respectively. Since magnetic field data are gener-
ally more reliable than electron moment data, we use measured 𝐵𝑧 to set the
initial condition for 𝜓 via 𝐵𝑧 = −𝜇0e�, rather than the 𝑦 component of the
electron flux integrated in the 𝑥 direction. In the following three subsections,
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we describe how the actual reconstruction, namely, integration along 𝑦 of 𝐴, 𝐵𝑧
(equivalent to 𝜓), and 𝜙 is conducted.

3.1 Reconstruction of the Transverse Magnetic Field

We assume that the 𝑧 component of the current density is a function of 𝐴 only
so that the GS equation is

∇2𝐴 = −𝜇0𝑗𝑧(𝐴) = 𝜇0𝑒𝑛(𝐴)𝑣𝑧(𝐴), (18)

because this assumption is roughly satisfied in the reconnection region (Fig-
ure A1 in Appendix), and allows for a sufficiently good reconstruction of the
transverse magnetic field (Sonnerup et al., 2016; Hasegawa et al., 2017, 2019; Ko-
rovinskiy et al., 2020, 2021). The functional forms of 𝑛(𝐴) and 𝑣𝑧(𝐴) (and also
̃𝑝(𝐴)) can be determined by polynomial or exponential fitting to the data taken

during an analysis interval. The reconstruction of 𝐴 is done in a similar way to
the classical GS reconstruction (Hau & Sonnerup, 1999), i.e., 𝐴(𝑥, 𝑦 ± Δ𝑦) =
𝐴(𝑥, 𝑦) ± Δ𝑦𝐵𝑥(𝑥, 𝑦) + ( (∆𝑦)2

2 ) 𝜕2𝐴
𝜕𝑦2 , in which 𝜕2𝐴

𝜕𝑦2 is computed from (18). Like-
wise, the reconstruction of 𝐵𝑥 can be done by use of 𝜕𝐵𝑥

𝜕𝑦 = 𝜕2𝐴
𝜕𝑦2 . Once the 2-D

map of 𝐴 is obtained, those for 𝑛, 𝑣𝑧, and ̃𝑝 can also be constructed from the
corresponding functions of 𝐴.

3.2 Reconstruction of the Axial Magnetic Field Component

The reconstruction of the 𝑧 component of the magnetic field 𝐵𝑧, equivalent to
that of the compressible stream function 𝜓, requires 𝜕2𝐵𝑧

𝜕𝑦2 to be obtained at each
step of integration along 𝑦. It also involves the reconstruction of 𝑣𝑥 by use of
𝜕𝑣𝑥
𝜕𝑦 = 𝜕

𝜕𝑦 [− 1
𝜇0en

𝜕𝐵𝑧
𝜕𝑦 ] = − 1

𝜇0en
𝜕2𝐵𝑧
𝜕𝑦2 − 𝑣𝑥

𝜕 ln(𝑛)
𝜕𝑦 . (19)

We discuss two possibilities to perform this integration.

3.2.1 Case 1: General case with no requirement for 𝑓(𝑥, 𝑦)
We make use of the following relation

𝜕𝐺 (𝐴, 𝐵𝑧)
𝜕𝑥 = (𝜕𝐺

𝜕𝐴) 𝜕𝐴
𝜕𝑥 + ( 𝜕𝐺

𝜕𝐵𝑧
) 𝜕𝐵𝑧

𝜕𝑥
= ( 𝜕𝐺

𝜕𝐴 ) (−𝐵𝑦) + ( 𝜕𝐺
𝜕𝐵𝑧

) (𝜇0en𝑣𝑦) (20)

Substituting (15) into (20), it follows that

∇2𝐵𝑧 = ∇ ln(𝑛)•∇𝐵𝑧 + ( 𝜇0𝑒2

𝑚𝑒
) 1

𝑣𝑦
( 𝜕𝐺

𝜕𝑥 + 𝐵𝑦
𝜕𝐺
𝜕𝐴 ) (21)

where 𝜕𝐺
𝜕𝐴 can be computed from (14), 𝜕𝑛

𝜕𝑦 = ( 𝑑𝑛(𝐴)
dA ) ( 𝜕𝐴

𝜕𝑦 ) = ( 𝑑𝑛(𝐴)
dA ) 𝐵𝑥, and

𝜕𝐵𝑧
𝜕𝑦 = −𝜇0en𝑣𝑥. Note that the 𝐵𝑧 reconstruction using (21) does not require

any specific expression for the axial component of the electron pressure tensor
term 𝑓(𝑥, 𝑦). The 𝐵𝑧 reconstruction can be performed by use of 𝐵𝑧(𝑥, 𝑦) ±
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Δ𝑦 𝜕𝐵𝑧
𝜕𝑦 + ( (∆𝑦)2

2 ) 𝜕2𝐵𝑧
𝜕𝑦2 , in which (21) is used to compute 𝜕2𝐵𝑧

𝜕𝑦2 . However, the
second term on the right-hand side of (21) has 𝑣𝑦 in the denominator, so that
the 𝐵𝑧 integration may encounter numerical problems in the region where ∣𝑣𝑦∣
is small. In such regions or for specific boundary conditions, the following
expression for 𝑓(𝑥, 𝑦) may be used.

3.2.2 Case 2: Hesse-Kuznetsova dissipation term

For near antiparallel reconnection, Hesse et al. (2011) shows that the part of the
electron pressure tensor term due to nongyrotropic electrons can be modeled as
follows,

𝑓(𝐿, 𝑁) = 𝑛 𝜕𝑣𝐿
𝜕𝐿 √2𝑚𝑒𝑘𝑇𝑒, (22)

where the LMN coordinate system is used, so that the 𝐿 axis is directed along
the local tangent to the current sheet, with 𝜕

𝜕𝑀 = − 𝜕
𝜕𝑧 = 0. Following the

same approach as taken by Sonnerup et al. (2016) (Eqs. (19-23) in S16), but
including the compressibility effect, we arrive at

𝑓(𝑥, 𝑦) = − √2𝑚𝑒𝑘𝑇𝑒
𝜇0𝑒 [(𝑐𝑜𝑠2𝜃) 𝜕2𝐵𝑧

𝜕𝑥𝜕𝑦 + 1
2 (𝑠𝑖𝑛2𝜃) { 𝜕2𝐵𝑧

𝜕𝑦2 − 𝜕2𝐵𝑧
𝜕𝑥2 + 𝜇0𝑒 ( 𝜕𝑛

𝜕𝑥 𝑣𝑦 + 𝜕𝑛
𝜕𝑦 𝑣𝑥)} + 𝜇0𝑒 (cos2 𝜃 𝜕𝑛

𝜕𝑥 𝑣𝑥 + sin2 𝜃 𝜕𝑛
𝜕𝑦 𝑣𝑦)],

(23)

where the 𝐿 axis is rotated counterclockwise about the 𝑧 axis by an angle 𝜃 (see
Figure 1 of S16). Thus (17) becomes

√2𝑚𝑒𝑘𝑇𝑒
𝜇0𝑛𝑒2 [(𝑐𝑜𝑠2𝜃) 𝜕2𝐵𝑧

𝜕𝑥𝜕𝑦 + 1
2 (𝑠𝑖𝑛2𝜃) { 𝜕2𝐵𝑧

𝜕𝑦2 − 𝜕2𝐵𝑧
𝜕𝑥2 + 𝜇0𝑒 ( 𝜕𝑛

𝜕𝑥 𝑣𝑦 + 𝜕𝑛
𝜕𝑦 𝑣𝑥)} + 𝜇0𝑒 (cos2 𝜃 𝜕𝑛

𝜕𝑥 𝑣𝑥 + sin2 𝜃 𝜕𝑛
𝜕𝑦 𝑣𝑦)] =

𝐸𝑧0 − 𝜀∗ [1 − 𝑚𝑒
𝑒

𝜕𝑣𝑧
𝜕𝐴 ], (24)

where 𝜕2𝐵𝑧
𝜕𝑥𝜕𝑦 = 𝜕(−𝜇0en𝑣𝑥)

𝜕𝑥 = −𝜇0en [𝑣𝑥
𝜕 ln(𝑛)

𝜕𝑥 + 𝜕𝑣𝑥
𝜕𝑥 ]. Provided that 𝐸𝑧0, which

is assumed constant, is known, 𝜕2𝐵𝑧
𝜕𝑦2 can be computed from (24) at each inte-

gration step, from which we can get ∇2𝐵𝑧 as well. The average of the axial
component of the measured electric field in the structure frame can be used
as 𝐸𝑧0. Alternatively, when multi-spacecraft information is available, the 𝐸𝑧0
value may be optimized as a free parameter in such a way that the correlation
coefficient is maximized between the field and electron velocity components mea-
sured by spacecraft not used in the reconstruction and those predicted from the
field maps along the paths of the spacecraft, as implemented by Hasegawa et al.
(2017).

3.3 Reconstruction of 𝐺 and the electrostatic potential 𝜙
We make use of the following relation

𝜕𝐺 (𝐴, 𝐵𝑧)
𝜕𝑦 = (𝜕𝐺

𝜕𝐴) 𝜕𝐴
𝜕𝑦 + ( 𝜕𝐺

𝜕𝐵𝑧
) 𝜕𝐵𝑧

𝜕𝑦
= ( 𝜕𝐺

𝜕𝐴 ) 𝐵𝑥 + ( 𝜕𝐺
𝜕𝐵𝑧

) (−𝜇0en𝑣𝑥) (25)
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Since 𝜕𝐺
𝜕𝐴 and 𝜕𝐺

𝜕𝐵𝑧
can be computed by (14) and (15), respectively, (25) can be

used to integrate 𝐺 in the 𝑦 direction. The electrostatic potential 𝜙 can then
be computed by use of (13). In Case 1 with no electron pressure tensor model,
𝜕𝐺
𝜕𝐵𝑧

can be directly computed from substituting (14) into (20).

4 Test with Simulation Data

4.1 Reconstruction of Antiparallel Reconnection

We apply our new EMHD reconstruction code with electron compressibility and
inertia effects to synthetic data from a 2-D fully kinetic simulation of symmet-
ric, antiparallel reconnection, as used by S16. See Nakamura et al. (2016) for
details of the settings of the particle-in-cell (PIC) simulation, and S16 for the
path in the simulation box of a synthetic spacecraft making virtual observations
and how physical quantities are normalized. Note that the data used to initi-
ate the reconstruction were taken from a simulation phase in which the field
configuration appeared approximately steady. See Text S1 in the Supporting
Information for the normalized forms of the equations used in the new EMHD
reconstruction.

Figure 1 shows the quantities (𝑣𝑧, 𝑛, and ̃𝑝) from the virtual observations, which
are assumed in the reconstruction to be functions of 𝐴 only, plotted against the
vector potential 𝐴 computed along the spacecraft path. The path is similar to
the one in Figure 5 of S16 with the angle between the 𝑥 axis and the current
sheet plane set at 𝜃 ∼ 20∘, except that the X point is now set to be located
at (𝑥, 𝑦) = (12, −2)𝜆𝑒0 in the reconstruction coordinate system (see Figure 2).
Here the electron inertial length 𝜆𝑒0 = ( 𝑚𝑒

(𝜇0𝑛0𝑒2) )
1
2 , where the density at the

center of the initial Harris-type current sheet is 𝑛0 + 𝑛∞, with the density
outside the current sheet 𝑛∞ and 𝑛0

𝑛∞
= 5. Overall, all the quantities increase

toward the center of the reconnecting current sheet, as expected (larger 𝐴 values
correspond to the inflow regions, and smaller values to the current sheet center).
It is seen that those quantities can be roughly expressed by single exponentials
(thick curves). We have also tested fitting by polynomial functions, but find
that reconstruction errors, as discussed in the following paragraphs, are larger
in this particular case.
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Figure 1. (a) Axial component of the electron velocity 𝑣𝑧, (b) electron den-
sity, and (c) electron pressure (average of the three diagonal components of the
electron pressure tensor), plotted as a function of partial vector potential 𝐴
based on virtual spacecraft observations in a fully kinetic simulation of symmet-
ric, antiparallel reconnection (S16). Circles and crosses are data from the path
toward (inbound) and away from (outbound) the center of the current sheet,
respectively. Thick curves are exponential fits to the data.

Figure 2 shows a comparison of the field maps reconstructed from the new
EMHD code with the simulation results. A combination of Case 1 and Case 2
(Hesse-Kuznetsova dissipation term) is used to reconstruct 𝐵𝑧, in which Case
1 is used in the part of the reconstruction domain where ∣𝑣𝑦∣ > 0.01 (this
parameter should be adjusted by trial and error for each event application)
while Case 2 is used in the other parts (see section 3.2 for details). Since our
analysis of the simulation results shows that ∇2𝐵𝑧 is significant only in the
region near the center of the current sheet, ∇2𝐵𝑧 = 0 is imposed in the part of
the reconstruction domain where the intensity of the transverse magnetic field
𝐵⊥ exceeds a threshold value (see Appendix for details). The comparison shows
that 𝐴, 𝐵𝑧, and 𝜙 are all well reconstructed, with large errors only around some
of the four corners of the reconstruction domain (Figures 2c, 2f, and 2i). Figure
2e, in particular, shows that the inflow and outflow pattern of the electron
flows is well recovered, with a stagnation point close to the expected location
(𝑥, 𝑦) = (12, −2)𝜆𝑒0. The bottom two sets of panels shows that the tendency
that the density and pressure are both high near the current sheet center is
recovered, although small-scale features are not very well recovered because of
the model assumptions (𝑛 and ̃𝑝 preserved along the transverse field lines).

Figure 3 shows a comparison of errors for 𝐴, 𝐵𝑧, and 𝜙 from a few variants of the
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EMHD reconstruction as a function of 𝑦, in which the same initial conditions are
used. See Figures S1-S3 for reconstruction results and corresponding error maps
from the three incompressible versions (“S16”, “in,Case-2 only”, and “in,Case-
1&2”) in which the density and pressure are set at constant values. Since even
at an equal 𝑦 location the errors have different values at different 𝑥 locations,
the first quartile, median, and third quartile of the errors are shown in the left,
middle, and right panels, respectively. As expected, the errors generally increase
with distances from the spacecraft path (𝑦 = 0) where the initial conditions are
set. The error in the electrostatic potential 𝜙 for S16 is not zero even at 𝑦 = 0,
because electric field data are not used to reconstruct 𝜙 in S16 (𝜙 is computed
from Eq. (25) in S16).

Figure 2. Results from the compressible EMHD reconstruction with electron
inertia, compared with the PIC simulation results. The left panels show simula-
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tion values in the reconstruction domain: (a) magnetic vector potential 𝐴, (d)
axial magnetic field component 𝐵𝑧, equivalent to the electron stream function
𝜓, (g) electrostatic potential 𝜙, (j) electron density 𝑛, and (m) electron pressure
̃𝑝. The middle column shows the corresponding reconstructed solutions, with

the path of the virtual spacecraft along 𝑦 = 0. Errors in the right panels are
in % of the maximum magnitude of the simulated values in the reconstruction
domain.

Figure 3. Comparison of errors as a function of 𝑦 among four versions of the
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EMHD reconstruction. “S16” stands for the incompressible inertia-less version,
originally developed by S16, “in” for the incompressible version with finite iner-
tia, and “com” for the compressible version with finite inertia. See section 3.2
for how 𝐵𝑧 is reconstructed in Case-1 and Case-2. The errors for the results in
Figure 2 are shown by blue curves.

The top panels of Figure 3 show that the 𝐴 errors are comparable between the
incompressible and compressible versions. All the three incompressible versions
have the same solution and thus the same errors for 𝐴. We also note that the
𝐴 errors in the present S16 case are smaller than those from the original S16
code because we find that the errors can be reduced by using the 𝜕2𝐴

𝜕𝑦2 value
at the previous integration step in 𝑦 if the 𝜕2𝐴

𝜕𝑦2 magnitude exceeds a threshold

(~0.5 in the normalized unit), i.e., by avoiding very large values of ∣ 𝜕2𝐴
𝜕𝑦2 ∣. On the

other hand, the middle and bottom panels show that both 𝐵𝑧 and 𝜙 errors are
significantly smaller for the new versions incorporating electron inertia effects
than the inertia-less (S16) version. Since the constraint of ∇2𝐵𝑧 = 0 in the
regions away from the current sheet (see Appendix) is used in the present S16
as well as new versions (while it was not used in the results reported by S16), the
improvement in the 𝐵𝑧 and 𝜙 reconstructions is exclusively due to incorporating
the inertia terms. While the 𝐵𝑧 errors are comparable among the three finite-
inertia versions (Figures 3d-3f), the 𝜙 errors for the compressible version are
smaller in the negative 𝑦 region and appear more symmetric with respect to
𝑦 = 0 than for the incompressible versions. In summary, one may conclude that
although no particular version is better than all the others in reconstructing
all quantities, the most general version with both compressibility and inertia
effects, as shown in Figure 2, performs best as a whole.

4.2 Reconstruction of Guide-field Reconnection

We now apply our new EMHD reconstruction code to data from a PIC simu-
lation of symmetric, guide-field reconnection. The simulation settings are the
same as for antiparallel reconnection, as shown in Figures 1-3, except that the
guide field is set equal to the reconnecting field component. The path of the
synthetic spacecraft observations is the same as in the antiparallel reconnection
case, as shown in Figure 4a, with the X point at (𝑥, 𝑦) = (12, −2)𝜆𝑒0 in the
reconstruction plane. Figures 4c-4f show input values of the magnetic and elec-
tric fields and electron velocity, density, and pressure taken from the virtual
observations. Since the spacecraft did not encounter the inflow region on the
negative-𝑁 side of the current sheet (Figure 4a), 𝐴 continuously decreases along
the path from zero to a minimum in the outflow region (Figure 4b), with a 𝑣𝑧
peak near the X point (Figures 4b and 4e). See Pritchett & Coroniti (2004)
and Le et al. (2010) for general properties of guide-field reconnection in PIC
simulations.
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Figure 4. Data used to initiate the reconstruction of guide-field reconnection.
(a) Magnetic field geometry from the PIC simulation, with the 𝐿 component
of the electron velocity 𝑣𝑥 in color and spacecraft path indicated by the white
arrow. (b) Axial component of the electron velocity 𝑣𝑧 versus magnetic vector
potential 𝐴 based on the virtual spacecraft observations. The thick curve is
a 5th-order polynomial fit to the data, used in the 𝐴 and 𝑣𝑧 reconstructions.
(c) Three components in the reconstruction coordinate system of the magnetic
field, (d) electric field, (e) electron velocity, and (f) electron density and pressure
taken along the path.

Figure 5 shows the reconstruction results from the incompressible, finite-inertia
version compared with the simulation results. The top and middle panels show
that the transverse field lines and electron streamlines, respectively, are well
reconstructed, although the 𝐴 errors are large around the two upper corners of
the reconstruction domain and the reconstructed electron flow pattern is not
as asymmetric as seen in the simulation. The bottom panels show that the
𝜙 errors are substantial around the two upper corners but small at small |𝑦|
regions. Importantly, a quadrupolar electrostatic potential pattern seen in the
simulation result (Figure 5g) is roughly recovered in the reconstructed 𝜙(𝑥, 𝑦).
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Figure 5. Results from the incompressible finite-inertia version “in,Case-2”,
applied to data from PIC simulation of guide-field reconnection. The format
is the same as in Figure 2, but only for 𝐴, 𝐵𝑧, and 𝜙. The 𝐵𝑧 error here
is defined to be (𝐵𝑧,𝑟𝑐𝑠𝑡𝑟−𝐵𝑧,𝑠𝑖𝑚)

(𝐵𝑧,𝑠𝑖𝑚,𝑚𝑎𝑥−𝐵𝑧,𝑠𝑖𝑚,𝑚𝑖𝑛) , where subscripts “rcstr”, “sim”, “max”,
and “min” represent the reconstructed, simulation, maximum, and minimum
values, respectively.

It should be pointed out that the reconstructed 𝐵𝑧(𝑥, 𝑦) (Figure 5e) is good
enough, despite the fact that only Case 2 (Hesse-Kuznetsova dissipation term
for antiparallel reconnection) is used in the 𝐵𝑧 integration. The results from
the combined Cases 1 and 2 version “in,Case-1&2” and from the compressible
version are similar to those shown in Figure 5, but have slightly larger errors on
average (see Figure S4 for the plots of errors from the variants of the EMHD code
in the guide-field reconnection case, corresponding to Figure 3 in the antipar-
allel reconnection case). The larger errors for the compressible case is possibly
because in the presence of significant guide field, the electron density is not even
approximately preserved along the transverse field lines (Pritchett & Coroniti,
2004; Le et al., 2010), violating the present model assumption 𝑛 = 𝑛(𝐴). We
also note that Hesse et al. (2011) give an expression for 𝑓(𝐿, 𝑁) in the case of
guide-field reconnection as well, but we could not incorporate it into our recon-
struction code because of numerical difficulties. In summary, the test results
demonstrate that our newly developed EMHD code can reconstruct general
properties of the magnetic field, electron velocity, and electrostatic potential in
and around the EDR of guide-field as well as antiparallel reconnection.

5 Application to MMS Data
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As a demonstration that the new EMHD code works for actual observations, the
incompressible, finite-inertia version with Case 2 only has been applied to MMS
observations of a magnetotail EDR on 11 July 2017, 2234:01.7 0.1–2234:03.1 UT.
This EDR is of nearly antiparallel, symmetric reconnection, and was previously
studied by Torbert et al. (2018) and reconstructed with the original EMHD code
by Hasegawa et al. (2019), hereafter referred to as H19. In this event, the MMS3
spacecraft was located at (–21.6, 4.2, 3.6) RE in the geocentric solar ecliptic
(GSE) coordinate system. Magnetic field and electron moment data used to
set the initial conditions are from the fluxgate magnetometers (FGM) (Russell
et al., 2016) and Fast Plasma Investigation (FPI) instruments (Pollock et al.,
2016), respectively. The coordinate axes, structure velocity, function 𝑣𝑧(𝐴), and
reconnection electric field 𝐸𝑧0 used in the reconstruction are exactly the same
as optimized and used by H19 (see Table S1 of their paper). The only difference
in the initial conditions is that the 𝑥 component of the electron convection
electric field 𝐸𝑐𝑥 = − (v × B)𝑥 in the structure frame is used to compute the
electrostatic potential 𝜙(𝑥, 0) along the spacecraft path in the present study,
while in H19 it is not used but 𝜙 is computed from (25) in S16.

Figure 6 shows the maps of the magnetic field, electron velocity, and electrostatic
potential 𝜙 reconstructed by the incompressible, finite-inertia version of our new
EMHD code from the data taken by MMS3 that approached closest to the X
point (the field maps from the other three spacecraft are included as Figures S5-
S7 in the Supporting Information). The results were not improved by use of the
compressible version, probably because the electron density and temperature
were both approximately constant in the present event (Figure 2 of H19), well
satisfying the incompressibility assumption. The reconstructed transverse field
lines are very similar to those from the S16 version (see Figure 4a of H19),
while the electron streamlines are more or less symmetric with respect to the
electron stagnation point located at (𝑥, 𝑦) ∼ (230, −10) km, in stark contrast
with the unrealistic skewed pattern of the streamlines reconstructed by H19
(their Figure 4b). Consistent with the earlier result (H19), the stagnation point
is displaced ~90 km, about three times the electron inertial length (𝜆𝑒 ∼ 27
km), in the earthward direction from the reconstructed X point. In the normal
direction, on the other hand, one may conclude that the stagnation point is
near the center of the current sheet, on the assumption that the position error
is at most 𝜆𝑒 when the reconstructed stagnation point is located within ~2𝜆𝑒 of
the spacecraft path 𝑦 = 0 (Figure 5; Sonnerup et al., 2016). The out-of-plane
field component 𝐵𝑧 at the stagnation point is nearly zero, consistent with near
antiparallel reconnection with no or only a weak guide field component. The
𝜙 map is also consistent with the previous study (Figure 4c of H19), with a
potential minimum at the central portion of the reconnecting current sheet.

Figure 7 shows scatter plots of the three GSE components of the magnetic field,
electron velocity, and electric field (in the structure frame) predicted from the
MMS3 maps (Figure 6) at points along the paths of the other three spacecraft
(MMS1, MMS2, and MMS4) and those actually measured by MMS. Here, the
measured electric field data are from the double-probe instruments (Lindqvist
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et al., 2016; Ergun et al., 2016), not of the electron convection. The bootstrap
method (e.g., Kawano & Higuchi, 1995) is used to estimate the confidence inter-
vals of the correlation coefficients corresponding to ±1 sigma. The correlation
coefficient (0.9945) for the magnetic field is nearly equal to that (0.9942) ob-
tained by H19, indicating a sufficient accuracy of the reconstructed magnetic
field. The correlation coefficient (0.9646) for the electron velocity (Figure 7b)
is slightly higher than that obtained by H19 (0.9632). This is an improvement
from including the inertia term (the last term on the right-hand side of (17)),
because by disabling this term the correlation coefficient becomes lower. In this
particular event, the electron beta 𝛽𝑒 = 𝑛0𝑘𝑇𝑒0

( 𝐵2
0

(2𝜇0) )
was high (~2), where 𝑛0 and

𝑇𝑒0 are the mean electron density and temperature, respectively, and 𝐵0 is the
magnitude of the reconnecting field component, so that on average the inertia
term contribution must have been smaller than that of the electron pressure
tensor term. Note, however, that the exact contribution of each term in the
Generalized Ohm’s law to the reconnection electric field 𝐸0 depends on the lo-
cation in the reconnection region (e.g., Figure 2 of Divin et al., 2012; Figure 4
of Egedal et al., 2019).
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Figure 6. Results from the incompressible, finite-inertia version “in,Case-2
only” of the EMHD reconstruction, applied to MMS3 observations of the mag-
netotail EDR on 11 July 2017 (Torbert et al., 2018). The figure is equivalent
to Figure 4 of Hasegawa et al. (2019), except for different color coding (the ma-
genta arrows are the projections onto the reconstruction plane of the measured
components of (a) the magnetic field, (b) electron velocity, and (c) electric field
in the structure frame. The measured electric field data were obtained by the
double-probe instruments (Lindqvist et al., 2016; Ergun et al., 2016). The blue,
green, and red bars the projections of the unit vectors of the GSE x, y, and z
axes (the green bar is barely visible). GSE components of the reconstruction
axes are: x̂ = (0.9950, –0.0979, 0.0178), ŷ = (0.0143, 0.3174, 0.9482), and ̂z =
(–0.0985, –0.9432, 0.3172).

Figure 7. Scatter plots of the predicted and observed values of the GSE com-
ponents of (a) the magnetic field, (b) electron velocity, and (c) electric field,
corresponding to Figures 5j-5l of H19. The black, red, and blue points are the
data from MMS1, MMS2, and MMS3, respectively.

The correlation coefficient for the electric field (cc𝐸 = 0.7832) is slightly higher
than that (0.7816) obtained by H19. In summary, the magnetic field, electric
field, and electron velocity field are all better reconstructed by the new EMHD
code than the inertia-less version (S16). Table S1 gives a summary of recon-
struction results from each of the four MMS spacecraft, which demonstrates
that the performance of the new EMHD code is comparable or better than the
S16 code in recovering the magnetic field, electric field, and electron velocity
structures. The table also includes cc𝐸 in the case when 𝜙(𝑥, 0) is computed
from 𝐸𝑥 measured by the double-probe instruments, which are comparable to
cc𝐸 based on the use of 𝐸𝑐𝑥 = − (v × B)𝑥.

6 Summary and Discussion

We have extended a method based on electron magnetohydrodynamics (EMHD)
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to reconstruct 2-D plasma and magnetic field structures in and around the EDR
from data taken by a single spacecraft, originally developed by Sonnerup et al.
(2016). Contrary to the original method, the new method accommodates nonuni-
form density and temperature (compressibility), finite electron inertia, and guide
magnetic field in the reconnection region, and thus has more applicability. It
has been successfully benchmarked by use of results from fully kinetic simula-
tions of both antiparallel and guide-field reconnection, with generally smaller
errors than from the original one. It has further been applied to an EDR of mag-
netotail reconnection observed by the MMS spacecraft on 11 July 2017 (Torbert
et al., 2018; Hasegawa et al., 2019), and a better performance in reconstructing
the electric field and electron velocity structure has been demonstrated.

One significant advantage of our new method is that Case 1 for the streamline
(𝐵𝑧) reconstruction does not require any model for the off-diagonal terms of the
electron pressure tensor in the EDR (section 3.2.1), so that it is applicable to
guide-field as well as antiparallel reconnection. While it was confirmed in section
4.2 that the Hesse-Kuznetsova dissipation term for antiparallel reconnection
(Case 2) is sufficiently good in the case of the guide field intensity comparable to
that of the reconnecting field, the use of Case 1 may be needed for reconnection
with a very intense guide field, as observed in the turbulent magnetosheath
(Phan et al., 2018). Even in such cases, Case 2 will have to be used in the part
of the reconstruction domain where ∣𝑣𝑦∣ in the reconstruction coordinate system
is very small.

One issue that needs to be addressed in applications to guide-field reconnec-
tion is that in the presence of strong guide field, the electron density cannot
be a function of 𝐴 only (Pritchett and Coroniti, 2004; Le et al., 2010), i.e.,
the density is lower around the separatrices with larger 𝐵𝑧 (Hall plus guide
field) magnitude than around the other separatrices (Figure 5d), so that the
density varies substantially along the transverse field lines around the separa-
trices. In such situations, 𝑛(𝐴) (and probably 𝑝(𝐴) also) should be modeled to
have double branches, one for two of the four Hall-field quadrants with positive
𝐵𝑧 perturbations and one for the other two quadrants with negative 𝐵𝑧 pertur-
bations. The double-branch fitting would require observations in which single
or multiple spacecraft traverse both quadrants with positive and negative 𝐵𝑧
perturbations, and reconstruction using double branches will be attempted in
the future.

The newly developed compressible EMHD code could be applicable to highly
asymmetric reconnection, as observed at the magnetopause (Burch and Phan,
2016), as well as to approximately symmetric reconnection to which the in-
compressible S16 code has been applied (Hasegawa et al., 2017, 2019). Since
magnetopause current layers have a higher density and lower temperature on
the magnetosheath side than on the magnetospheric side (Burch and Phan,
2016), different functional behaviors of both 𝑛(𝐴) and 𝑝(𝐴) are expected for
the magnetosheath and magnetospheric sides, even in the absence of the guide
field. Note that the magnetosheath and magnetospheric regions on the inflow
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side of the separatrix magnetic flux surfaces are on different field lines, but
can have an equal 𝐴 value. In such situations, the functional forms should be
determined separately for the magnetosheath and magnetospheric sides, by sep-
arating the input data by the polarity of 𝐵𝐿 (𝐵𝐿 < 0 on the magnetosheath side
and 𝐵𝐿 > 0 on the magnetospheric side). This type of double-branch fitting
technique was first developed by Hu and Sonnerup (2003) in applications of the
magnetohydrostatic GS reconstruction to magnetopause crossings.

It may be helpful to discuss how the reconstruction of one quantity is coupled
to or decoupled from that of others. By use of (18), the reconstruction of the
transverse magnetic field (𝐴) is independent of that of the in-plane velocity
field (𝐵𝑧) and electrostatic potential (𝜙). This explains why 𝐴 is recovered so
accurately that the 𝐴 error is much smaller than those of 𝐵𝑧 and 𝜙 (Figure
3). On the other hand, it is seen from (21) that the 𝐵𝑧 reconstruction in
Case 1 depends on how accurately both 𝐴 and 𝜙 (or 𝐺) are reconstructed,
while from (24) the 𝐵𝑧 reconstruction in Case 2 is coupled to that of 𝐴, but
is decoupled from that of 𝜙 (or 𝐺). As for the 𝜙 (or 𝐺) reconstruction, it is
seen from (25) that it is coupled to both the 𝐴 and 𝐵𝑧 reconstructions. Thus,
the lower correlation coefficient for the electric field in the application to the
MMS event (Figure 7c) may be a combined effect of not completely accurate
reconstruction of 𝐴 and 𝐵𝑧 and less accurate measurements of the electric field
by the double-probe instruments or through the use of the convection electric
field (as compared to the magnetic field measurements) that can lead to larger
error in the 𝜙 reconstruction.

While electron beta 𝛽𝑒 was relatively high (~2) in the magnetotail EDR event on
11 July 2017, magnetotail reconnection can occur under lower beta conditions,
especially during intense substorms (Nagai et al., 1998). For lower beta cases
the inertia terms (terms with 𝑚𝑒 in (10) and (17)) make a larger contribution
to the electron momentum equation, and a larger difference is expected in the
streamlines reconstructed with the inertia-less (S16) and finite-inertia EMHD
codes. However, low beta events should be analyzed with care, because when
𝛽𝑒 is low the density is often low, so that electron moment data may become
less reliable because of lower counting statistics. A comparison of the EDR
structure and energy conversion process between higher and lower beta cases is
an interesting topic that needs to be addressed in a future study of more events
from the MMS mission.

Appendix: Assumptions on �2A and �2Bz

In the present reconstruction, it is assumed that ∇2𝐴, or equivalently 𝑛𝑣𝑧 under
negligible ion and displacement currents, can be expressed as a function of 𝐴
only. We assess whether this assumption is a good approximation in a 2-D fully
kinetic simulation of antiparallel magnetic reconnection (Nakamura et al., 2016).
Figure A1 shows that although 𝑛𝑣𝑧 is not strictly preserved along the transverse
field lines and that on a selected field line is larger at locations closer to the X
point, 𝑛𝑣𝑧 may be approximated as a function of 𝐴 only. On the other hand,
∇2𝐵𝑧 can be a function of neither 𝐴 nor 𝐵𝑧 only, contrary to the assumption
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made by Korovinskiy et al. (2021) in their Model 2 or 1, respectively.

Figure A1. (a) 𝑛𝑣𝑧, (b) ∇2𝐵𝑧 (c) 𝐴 and (d) 𝐵𝑧 in the xy plane from the
2-D fully kinetic simulation of symmetric, antiparallel magnetic reconnection
(Nakamura et al., 2016). The coordinates are normalized to the electron inertial
length 𝜆𝑒0.

Another interesting feature seen in the simulation is that the magnitude of ∇2𝐵𝑧
is significantly large only in the regions close to the center of the current sheet
(Figure A1b). Taking advantage of this feature, our reconstruction imposes
∇2𝐵𝑧 = 0 in the part of the reconstruction domain where the magnitude of
the transverse magnetic field 𝐵⊥ is larger than a threshold value (~0.5 in the
normalized unit) and the magnitude of 𝜕2𝐵𝑧

𝜕𝑦2 based on (21) when Case 1 is used
or (24) when Case 2 is used exceeds a threshold value (~0.1 in the normalized
unit), so that 𝜕2𝐵𝑧

𝜕𝑦2 = − 𝜕2𝐵𝑧
𝜕𝑥2 is used in such a domain.

Finally, we summarize the key differences between our new EMHD method and
reconstruction models developed by Korovinskiy et al. (2021). In their Model
1 ∇2𝐵𝑧 is taken to be a function of 𝐵𝑧 only (their Eq. (18)), while in their
Model 2 ∇2𝐵𝑧 is a function of 𝐴 only (their Eq. (22)). On the other hand,
such a strong constraint is not imposed in our EMHD method by use of (21)
where 𝐺 is a function of both 𝐴 and 𝐵𝑧 (see (14) and (15)). Their Model
3 is somewhat similar to our Case 2 (section 3.2.2), but their model assumes
incompressible electrons (𝑛 = const. and 𝑇𝑒 = const.) and negligible electron
inertia, while our Case 2 includes the effects of both finite electron inertia and
spatial inhomogeneity of the electron density and temperature (see (24)).
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