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Abstract

Various bias correction methods have recently been proposed using machine learning techniques. Generally, machine learning

methods are fairly complicated, and it is extremely difficult to explain how machine learning corrects model biases. Accordingly,

researchers perpetually seek to apply machine learning methods to diverse cases and to determine whether these methods are

reliable. Here, we developed a machine learning method using simple input data by assuming a relation between observed

and simulated precipitation corresponding to weather conditions. This simple method can find the optimal relation without

employing dimension reduction and can facilitate the comprehension of precipitation characteristics. According to a validation

experiment, this simple method can correct the precipitation frequency corresponding to the orography and estimate the local

precipitation distribution characteristics, resulting in values similar to the observed data even when data are forecasted more

than 24 hours from the initial time.
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Key Points:

• To developed a simple bias correction method for precipitation by assum-
ing the relation between observed and simulated precipitation.

• The method corrects the precipitation frequency corresponding to the
orography and estimate the precipitation distribution characteristics.

• Forecast data could also be corrected by recognizing the characteristics of
precipitation system in an area spanning approximately 100 km2.

Abstract

Various bias correction methods have recently been proposed using machine
learning techniques. Generally, machine learning methods are fairly compli-
cated, and it is extremely difficult to explain how machine learning corrects
model biases. Accordingly, researchers perpetually seek to apply machine learn-
ing methods to diverse cases and to determine whether these methods are reli-
able. Here, we developed a machine learning method using simple input data by
assuming a relation between observed and simulated precipitation correspond-
ing to weather conditions. This simple method can find the optimal relation
without employing dimension reduction and can facilitate the comprehension of
precipitation characteristics. According to a validation experiment, this simple
method can correct the precipitation frequency corresponding to the orography
and estimate the local precipitation distribution characteristics, resulting in val-
ues similar to the observed data even when data are forecasted more than 24
hours from the initial time.

Plain Language Summary

Supervised machine learning methods require appropriate training data. If the
training data are inappropriate, machine learning cannot correctly estimate the
distribution. In general, appropriate objective (observed) and explanatory (sim-
ulated) training data values are necessary to reduce the model bias. However,
it is difficult to find the relation between observed and simulated data because
we cannot determine how well a numerical model can represent real phenom-
ena; the method may be useful in a specific case but inapplicable otherwise.
Moreover, if we do not understand the relation sufficiently, the reliability de-
creases considerably. Therefore, a simple, interpretable relation is required to
resolve the issue and improve the method. Here, we developed a bias correction
method using machine learning by assuming a simple relation between observed
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and simulated precipitation. We confirmed that this method can modify the
precipitation frequency to produce values similar to the observed precipitation
data. By applying a hypothesis-verification approach, we expect to estimate the
behavior of the machine learning method more simply and improve its reliabil-
ity.

1 Introduction

Various bias correction methods using machine learning (ML) technique have
been rapidly developed in recent years. However, ML approaches are generally
quite complicated, and their outputs can be extremely difficult to understand
(Castelvecchi, 2016; Rudin, 2019). In ML, both objective and explanatory vari-
ables (feature vectors) are necessary to correct the bias. However, it is quite
difficult to determine the relation between the observations and simulated out-
puts (Michelangeli et al., 2009). Therefore, to obtain optimal inputs before ap-
plying ML methods, some studies have utilized dimension-reduction techniques,
of which there are several kinds, such as filter and wrapper methods that use
statistical analyses (Hall et al., 1999). In addition, deep learning has recently
been used to automatically select optimal feature vectors (LeCun et al., 2015).

In any case, because the relations between observations and simulated outputs
are extremely complicated, explaining why certain feature vectors are selected
remains quite difficult. The selected feature vectors that adapt well to one case
might not be generalizable to other cases. Consequently, solving the above-
mentioned problems and improving bias correction methods are considerably
difficult, and simple ML methods without complicated dimension reductions
are required to reasonably understand the relations between observations and
simulated outputs.

Local precipitation is caused by the complicated interactions among large-scale
atmospheric fields; local factors, such as complex orography; and mesoscale
convective systems. Generally, it is difficult to accurately simulate local precip-
itation due to the incompleteness of numerical models and parameterizations.
Therefore, the frequencies of simulated precipitation are largely different from
those of observed precipitation. Consequently, long-term simulated precipita-
tion distributions contain large errors, and bias correction is required to correct
the simulated frequencies and amounts of local precipitation.

Nevertheless, the mesoscale model of the Japan Meteorological Agency (JMA)
can effectively represent the temporal variations in precipitation in a large area
caused by cold and warm fronts (Saito et al., 2006). Therefore, some relations
between the observed and simulated precipitation are assumed through large-
scale weather conditions. ML can estimate the characteristics of precipitation
by reducing the model bias if the linkage between the observed and simulated
precipitation can be recognized. Here, we estimate local precipitation by identi-
fying linkages with ML based on an assumed linkage between the distributions of
the observed precipitation and the simulated precipitation. On the other hand,
the characteristics of precipitation simulated far from the initial time might be
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considerably different from the characteristics of precipitation simulated imme-
diately after the data assimilation. Therefore, we verify the effectiveness of
this method to improve the precipitation-estimation performance as well as its
applicability for forecasting precipitation data.

2 Methods

2.1 Bias correction of precipitation using machine learning

The target area for the method validation is shown in Figure 1. The water re-
sources in this area are necessary for numerous extensive urban areas in Japan,
such as Tokyo. Moreover, this area has suffered from many water disasters.
Therefore, it is important to accurately estimate the precipitation distribution
in this region. The observed and simulated precipitation values were obtained
from the Radar-Automated Meteorological Data Acquisition System (AMeDAS)
(Makihara et al., 1996) and the mesoscale-model grid point values (MSM-GPV)
dataset (Ishikawa and Koizumi 2002; JMA, 2019; Saito et al. 2006), respectively.
The observed data were modified to a resolution of 0.06 degrees to correspond
to the grid size of the simulated precipitation. The simulated precipitation
distribution characteristics are substantially different from the observed precip-
itation distribution characteristics due to topographic differences. Moreover, as
shown in Figure S1, the MSM-GPV data can represent the characteristics of
the temporal variations in the area-averaged precipitation intensity over a wide
area corresponding to large-scale weather patterns. Therefore, the distribution
patterns of the simulated precipitation over a wide area are assumed to be con-
nected with the observed precipitation distribution through weather patterns.
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Figure 1. The target domain of this study. a. The area surrounding the target
domain. b. The required area for the input data and the evaluation area of the
target domain. c. Twelve-year average monthly mean observed and simulated
precipitation in January; the simulated precipitation (explanatory variables)
obtained in the required area were employed as the input data.

Based on the above assumption, we used the simulated precipitation over the 21
× 21 grid cells (almost 113 km × 113 km) covering the area shown in Figure 1
as the explanatory variable (feature vector). The observed precipitation, which
was measured at the center of the area of the explanatory variable, was used as
the objective variable. Therefore, the area required to establish the explanatory
variable was larger than the evaluation area (Figure 1b). The ML method pro-
duces a classifier using a pair of simulated precipitation (explanatory variable)
and observed precipitation (objective variable) at each grid point. In the train-
ing data, the observed precipitation corresponds to the simulated precipitation
from the initial time of data assimilation, which was conducted every 3 hours,
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to one hour following the assimilation. We used the observed and simulated
precipitation values over 11 years (from 2007 to 2018, excluding the target year)
as the training dataset and evaluated the estimated local precipitation in the
area. We confirmed the generalizability of the method by conducting a cross-
validation using the estimated precipitation from 2007 to 2018. An overview of
the method used to estimate local precipitation is shown in Figure S2.

We used a support vector machine regression model (SVM-SVR) (Smola &
Schölkopf, 2004) as the method in this study. A SVM is a supervised learning
method based on part of a dataset in which predictions are obtained with a
support vector. A SVM attempts to obtain the optimal results by finding the
maximum-margin hyperplane, which is determined by maximizing the distance
between the support vectors. Previous studies have indicated the advantages
and disadvantages of SVMs relative to other ML methods, such as neural net-
works and random forests (Al-Anazi, & Gates 2012; Cherkassky et al., 2004;
Liu et al., 2017; Sivapragasam et al., 2001). For example, SVR has been shown
to perform well with small sample sizes (Al-Anazi, & Gates 2012). Thus, this
method would also be useful for recognizing rare precipitation events with small
sample sizes. SVMs have been employed in various fields, such as meteorology,
hydrology, disasters, and water resources (Chen et al., 2019; Fan et al. 2018;
Sachindra et al., 2018). The support vector machine library in the scikit-learn
system (Epsilon-Support Vector Regression in scikit-learn 0.24.2) (Pedregosa et
al., 2011) was used in this study.

2.2 Determination of hyperparameters

The SVR method requires the gamma, C, and epsilon hyperparameters to be
configured. Gamma is a kernel function parameter that specifies the width of
the Gaussian radial basis function (RBF) kernel, whereas C is the penalizing con-
straint error and epsilon is the width of the insensitive zone (Smets et al., 2007).
Determining these hyperparameters is very important for improving the gener-
alizability of the precipitation estimations. However, substantial computational
resources are necessary to determine the optimal parameters (Anguita et al.,
2010; Cherkassky & Ma, 2004). Therefore, it is necessary to obtain the optimal
hyperparameters effectively. The hyperparameters could be configured at each
point in the method; however, this approach is extremely inefficient because
considerable computational resources are required to determine the optimal val-
ues in the entire domain. Therefore, we applied the specified hyperparameter
values to all grid cells in the domain according to the following procedure. We
first estimated the optimal hyperparameter values based on a random search
(Bergstra & Bengio, 2012) on some grid points in the domain. The optimal
values of gamma, C, and epsilon were found to be approximately 5×10-6, 10,
and 0.001, respectively. After investigating the optimal hyperparameters, we
assumed that the same parameters were applicable to all grid cells because they
did not vary extensively among the grid points. Next, the precipitation estima-
tion performance was investigated based on the correlation coefficients of 35 grid
cells, and the coefficients were averaged over every 10 grids, as shown in Figure

5



S3. First, the optimal gamma value was estimated using temporary values of C
(10) and epsilon (0.001). Second, the optimal C value was obtained using the
optimal gamma value and a temporary epsilon value. Third, the optimal epsilon
value was obtained using both the optimal gamma and C values. Finally, the
optimal gamma was obtained using both the optimal C and epsilon values. The
parameters were considered to be optimally determined if they corresponded to
the first estimates or if the correlation coefficients did not change considerably.
The optimal values of gamma, C, and epsilon were approximately 5×10-6, 10,
and 0.001, respectively. Thus, we obtained the optimal hyperparameter values
and configured them for all grid cells.

2.3 Definition of the size and resolution of the explanatory variable

Figure S4 shows plots of the correlation coefficients obtained under different
explanatory variable area sizes. The performance tended to improve as the
area size increased. Small area sizes of explanatory variables are believed to be
insufficient for estimating precipitation with high accuracy because of the lack of
information. In other words, few explanatory variables might be insufficient to
explain the objective variable. Considering the performance and computational
cost, we set the size of the explanatory variable to 21 by 21 grid cells in this
study.

2.4 Estimation of heavy precipitation using quantile mapping

We utilized quantile mapping (Lafon et al., 2013) after applying the ML method
to modify the amount of precipitation. Quantile mapping was applied by using
the observed and simulated cumulative density functions of hourly precipitation.
The corrected intensity of the simulated precipitation for a given quantile was
determined by resampling from the observed precipitation intensity distribution
with the same quantile value. Here, we performed quantile mapping using hourly
observed precipitation data and ML-estimated data in January, April, July, and
October for 11 years from 2007 to 2018, excluding the estimated year (Figure
S2).

2.5 Prediction of local precipitation using 39-h forecasted precipitation simula-
tions

We investigated the local precipitation-estimation performance based on the
ML approach using the 39-h forecasted precipitation data from the MSM-GPV
dataset, which started at 0 UTC each day in January, April, July, and October
for five years (from 2014 to 2018, as 39-h forecasted data were not provided by
the JMA until 2014). For this purpose, we applied the classifiers and cumulative
density functions produced by the ML method in advance.

2.6 Fractions skill score

We investigated the local precipitation estimation performance using the frac-
tion skill score (FSS) (Roberts & Lean, 2008), which is used to make spatial
comparisons. The FSS indicates how the skill varies with the spatial scale. We
estimated the FSS using the “verification” package in R software (Gilleland,
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2015). We used the grid values in the evaluation area shown in Figure 1b to
estimate the FSS by varying the box radius from 0 to 20. The FSSs were
calculated by applying the observed area-averaged values of the frequency of
95th-percentile, the monthly mean, and the 95th-percentile, respectively, as the
threshold for convenience.

3 Results

3.1 Validation of the bias correction method for precipitation

Model bias is clearly found in the long-term precipitation simulations. Figure
2 shows the frequency distributions of the 95th-percentile values obtained from
four data sets, namely, the observed precipitation (OBS), simulated precipita-
tion (SIM), precipitation estimated by the ML method with quantile mapping
(MLQM), and precipitation estimated by quantile mapping (QM) datasets, in
January and July from 2007 to 2018. Figure 2 also presents histograms of the
correlation coefficient and root mean square error (RMSE) values in the evalu-
ation area in January, April, July, and October. The frequency characteristics
are estimated well by MLQM, while the QM frequencies are almost the same
as those in the SIM dataset and cannot improve the biases. In addition, the
frequency distributions shown in the MLQM dataset are the same as those in
the ML dataset, the experiment performed before the QM method was applied.
Therefore, the ML method can improve the precipitation frequency at each grid
point and then modify the amount of precipitation by applying QM. The cor-
relation coefficient and RMSE values of the frequencies in the studied region
are shown in Figure 2i and 2j, respectively. The correlation coefficients in the
MLQM dataset exceed 0.98, and the RMSEs are reduced significantly, while
the correlation coefficient and RMSE values in the QM dataset are almost the
same as those in the SIM dataset.
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Figure 2. Frequency distributions of the 95th percentile obtained from four
data sets, namely, the observed precipitation (OBS), precipitation estimated by
the ML method with quantile mapping (MLQM), simulated precipitation (SIM),
and precipitation estimated by quantile mapping (QM) datasets, in January and
July from 2007 to 2018. The histograms show the correlation coefficient and
root mean square error (RMSE) values in the evaluation area in January (JAN),
April (APR), July (JUL), and October (OCT).

Figure 3 shows the distributions of the 12-year average monthly means and
95th-percentile precipitation values in January and July. QM is able to improve
the monthly mean precipitation distribution characteristics to some extent, al-
though the performance of QM is less optimal than that of MLQM. The QM
method does not work sufficiently if the differences in frequency between the
OBS and SIM values are significantly large because the monthly mean precipita-
tion amount is also greatly influenced by the frequency. Unsurprisingly, QM can
improve the 95th-percentile values due to the characteristics of the QM method
(Maraun et al., 2017). The same features are found in the precipitation distribu-
tion characteristics in April and October (Figures S5 and S6). Figure S7 shows
histograms of the correlation coefficients and RMSEs of the monthly mean and
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95th-percentile values. The correlation coefficients of the monthly means in the
MLQM method exceed 0.97, and the RMSEs are reduced significantly using
this method, while the correlation coefficients of the monthly means in the QM
method are inferior to those in the MLQM method (Figure S7a, S7b).

Figure 3. Distributions of the 12-year average monthly mean and 95th-
percentile values in the OBS dataset and precipitation estimated by the
MLQM, SIM, and QM methods in January and July.

Figure S8 shows the FSSs of the frequencies of the 95th-percentile values and the
monthly mean precipitation values, and the 95th-percentile values. The FSSs of
MLQM are higher than those of SIM in all months. The FSSs of the frequencies
in the QM dataset are almost the same as those of SIM. It is confirmed that
MLQM can modify the bias of the spatial distribution of precipitation and
drastically improve the performance.

3.2 Applicability of the method for forecasting precipitation data

Figure 4 shows the frequencies of the 95th-percentile OBS data, the precipitation
estimated by the ML method with QM (MLQM-Forecast), and the simulated
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precipitation (SIM-Forecast) in the five years from 2014 to 2018 in January and
July as well as the correlation coefficient and RMSE values in January, April,
July and October. We used the forecasted data from 25 to 39 hours following
the initial time to remove the influence of the initial time as much as possi-
ble. However, accurately comparing the simulated precipitation amount with
the observed amount remains difficult because the forecasted data include er-
rors that depend on initial conditions. Nevertheless, the frequency distribution
characteristics are accurately estimated by MLQM-Forecast (Figure 4 and Fig-
ure S9). The correlation coefficient and RMSE values of the frequencies in the
MLQM-Forecast dataset are improved in all months.

Figure 4. Distributions of the frequency of the 95th-percentile values obtained
from the OBS, MLQM-Forecast, and SIM-Forecast datasets. The histograms
show the correlation coefficients and RMSEs of the 95th-percentile frequencies
in January, April, July, and October.

Moreover, the method reasonably improves the characteristics of the distribu-
tions of the monthly mean precipitation and 95th-percentile values in January
in MLQM-Forecast (Figure S10), although the amount of precipitation is over-
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estimated in both months. The same features are found in April and October
(Figure S11). As a result, the correlation coefficient and RMSE values of the
monthly mean and 95th-percentile values of MLQM-Forecast are worse than
those of SIM-Forecast (Figure S12). The testing term (five years) might be
too short to accurately evaluate the amount of precipitation because the pre-
cipitation distributions could be greatly influenced by only a few disturbances,
such as intensified rain bands and typhoons, in the evaluation area during the
warm season. The same characteristics are confirmed by the FSS. The FSSs of
MLQM-Forecaset are higher than those of SIM-Forecaset in all months (Figure
S13).

4 Discussion

In general, it is quite difficult to model extreme events due to the sparsity of
sampled data, particularly in summer. We cannot confirm that the cumula-
tive density functions of the simulated precipitation correspond to those of the
observed precipitation at higher precipitation intensities because the return pe-
riods of the precipitation intensities are unknown. Hence, more sampling is
required to model the precipitation amount accurately.

Nevertheless, the ML method has the ability to improve the estimated precipi-
tation frequency at each grid point, as we expected. Generally, it is impossible
to estimate precipitation without ML because it is too complicated to specify
the ML recognition result. Even a slight change in the atmospheric fields may
cause a significant change in local precipitation. Machine learning can easily
find patterns in such complex weather phenomena and allows humans to rec-
ognize that there some patterns exist even in extremely complex phenomena.
We can at least understand that ML reveals some sort of relation between the
simulated precipitation and observed precipitation, corresponding to large-scale
weather conditions, and estimates the precipitation using this relation.

The area size of the explanatory variable is also important for achieving a high
modeling performance. The performance is reduced if the size is excessively
small because there is insufficient information to recognize the relation of the
simulations with the observations. Moreover, in this study, the simulation per-
formance was not improved even when the size was extended to an area of more
than 113 square kilometers (Figure S4). We speculate that the ML method rec-
ognizes the meso-beta scale of convection systems such as cold and warm fronts
formed in low-pressure systems and the precipitation distribution characteristics
corresponding to orography.

Furthermore, high-quality input observation data and simulation data are also
necessary to improve the forecasting performance. The high performance in this
case indicates the high quality of the observed and simulation data provided by
the JMA. Moreover, it is extremely difficult to simulate convective systems at
the meso-beta scale perfectly using numerical models because of the nonlinearity
of precipitation systems. Therefore, subtle deviations in the location of the sim-
ulated precipitation band may affect both the learning and inference processes
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of machine learning, leading to larger errors in some cases. Regarding the issue
of the input data, it is necessary to include the relationships of the input data
with the simulations and meteorological theories in the discussion. When using
a simple input dataset, it is be easier to interpret the results and find problems
in the input data, even if machine learning is a black box.

In recent years, deep learning approaches have been developed rapidly, and thus,
bias correction methods have become more complicated. However, while the
accuracy of these methods might be improved by using complicated techniques,
it is much more difficult to understand what the ML method recognizes under
these conditions, and the methods might lack versatility. Moreover, when using
complicated techniques, it is impossible to fix issues that arise because we cannot
diagnose what is wrong with the method. Accordingly, the accuracy is not
the only matter of concern; rather, it is necessary to understand the system
(even if only slightly) to improve the reliability of the method. We can solve
the abovementioned problem by identifying the causes of issues and steadily
improving the method.

In this study, we assumed some relations between the observed and simulated
precipitation values and developed an ML method to correct the precipitation
distribution characteristics to reflect local conditions based on the observations
and the reproducibility of the numerical model by using ML with simple input
data. The hypothesis-verification approach is very important for clarifying the
system as a scientific process and to beginning to reduce the black-box issue of
ML. We expect that this method will be used to further improve the forecast-
ing performance by developing a combination of machine learning and quantile
mapping and that this method will continue to be a powerful tool for clarifying
complex weather and climate systems.

5 Conclusions

We developed a machine learning bias correction method using simple input data
and verified the relations between the simulated distribution of precipitation in
an area spanning approximately 100 km2 and the observed precipitation at the
center of the area. The method can represent the precipitation frequency at
each grid point corresponding to various weather conditions, which are greatly
influenced by local conditions. The combined method with QM can sufficiently
modify the monthly precipitation amount. Furthermore, this simple method
has many advantages: 1) it is simple to handle and process the data using this
method; 2) preprocessing, such as dimension reduction, is unnecessary for the
input data; and 3) the behavior of ML is relatively comprehensible, and thus,
the reliability of this method can be improved. Therefore, we expect that this
method can easily be verified in other regions and seasons and will be useful for
estimating the water resources and risks of water disasters.
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