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Abstract

The community has leveraged satellite accelerometer datasets in previous years to estimate neutral mass density and sub-

sequently exospheric temperatures. We utilize derived temperature data and optimize a nonlinear machine-learned (ML)

regression model to improve upon the performance of the linear EXTEMPLAR (EXospheric TEMPeratures on a PoLyherdrAl

gRid) model. The newly developed EXTEMPLAR-ML model allows for exospheric temperature predictions at any location

with a single model and provides performance improvements over its predecessor. We achieve a 4.2 K reduction in mean

absolute error and a 3.42 K reduction in the standard deviation of the error. Like EXTEMPLAR, our model’s outputs can

be utilized by the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar Extended (NRLMSISE-00)

model to more closely match satellite accelerometer-derived densities. We conducted two case studies where we compare the

CHAllenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) accelerometer-derived

temperature and density estimates to NRLMSISE-00, EXTEMPLAR, and EXTEMPALR-ML during two major storm periods.

The storm-time temperature comparison showed error reductions of 7-10% and 2-5% relative to NRLMSISE-00 and EXTEM-

PLAR, respectively, and the density comparison showed error reductions of 20-55% and 8-12%. We use Principal Component

Analysis to identify the dominant modes of variability in the model over one solar cycle. This shows the model is dominantly

driven by solar activity, and there is a strong latitudinal variation related to the Summer and Winter hemispheres.
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Abstract14

The community has leveraged satellite accelerometer datasets in previous years to es-15

timate neutral mass density and subsequently exospheric temperatures. We utilize derived16

temperature data and optimize a nonlinear machine-learned (ML) regression model to im-17

prove upon the performance of the linear EXTEMPLAR (EXospheric TEMPeratures on18

a PoLyherdrAl gRid) model. The newly developed EXTEMPLAR-ML model allows for19

exospheric temperature predictions at any location with a single model and provides per-20

formance improvements over its predecessor. We achieve a 4.2 K reduction in mean ab-21

solute error and a 3.42 K reduction in the standard deviation of the error. Like EXTEM-22

PLAR, our model’s outputs can be utilized by the Naval Research Laboratory Mass Spec-23

trometer and Incoherent Scatter radar Extended (NRLMSISE-00) model to more closely24

match satellite accelerometer-derived densities. We conducted two case studies where we25

compare the CHAllenging Minisatellite Payload (CHAMP) and Gravity Recovery and Cli-26

mate Experiment (GRACE) accelerometer-derived temperature and density estimates to27

NRLMSISE-00, EXTEMPLAR, and EXTEMPALR-ML during two major storm periods.28

The storm-time temperature comparison showed error reductions of 7-10% and 2-5% rela-29

tive to NRLMSISE-00 and EXTEMPLAR, respectively, and the density comparison showed30

error reductions of 20-55% and 8-12%. We use Principal Component Analysis to identify31

the dominant modes of variability in the model over one solar cycle. This shows the model32

is dominantly driven by solar activity, and there is a strong latitudinal variation related to the33

Summer and Winter hemispheres.34

Plain Language Summary35

Density in the upper atmosphere is highly variable and difficult to model. Empirical36

density models often rely on temperature profile predictions to determine species and mass37

densities. One of three key parameters in determining the temperature profiles is the asymp-38

totic value at the top of the thermosphere, called the exospheric temperature. By using tem-39

peratures derived from satellite acceleration measurements, we develop a machine-learned40

global temperature model called EXospheric TEMPeratures on a PoLyherdrAl gRid Machine41

Learned (EXTEMPLAR-ML). We achieve a 4.2 K reduction in mean absolute error and a42

3.42 K reduction in the standard deviation of the error relative to the model’s predecessor.43

We also look at temperatures and densities along satellite orbits during two major geomag-44

netic storms from the 21st century. In this study, we see major improvements over a signif-45

icant empirical model called NRLMSISE-00 and the linear predecessor to EXTEMPLAR-46

ML. We also use a mathematical decomposition tool on the model outputs to assess its inter-47

nal formulation. This shows that EXTEMPLAR-ML is most heavily driven by solar activity48

and the seasons.49

1 Introduction50

Thermospheric mass density modeling is vital to satellite tracking and orbit prediction,51

yet it remains a formidable task for researchers and operators. The thermosphere is highly52

driven by external forcings, such as space weather events, and complex internal dynam-53

ics. The primary external driver to the thermosphere is solar irradiance (Qian and Solomon54

2011). A majority of the solar irradiance energy input to the thermosphere can be captured55

with various solar indices and proxies (Bowman and Tobiska 2006). Although, these model56

drivers become less effective during solar minimum where other processes (e.g. composition57

changes) become increasingly relevant (Bowman et al. 2008, Mehta et al. 2019). Other space58

weather events, such as coronal mass ejections and solar flares, can send mass and energy59

towards Earth. This interacts with the magnetosphere resulting in Joule heating and particle60

precipitation which can cause large, sudden changes in density (Fedrizzi et al. 2012, Deng61

et al. 2013).62
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Nitroc oxide (NO) is a cooling mechanism responsible for long-term cooling trends63

present during solar minimum (Kockarts 1980), and short-term temperature decreases fol-64

lowing large geomagnetic storms (Mlynczak et al. 2003, Knipp et al. 2017). Lei et al (2012a)65

found that for the 2003 Halloween storm, temperature and density post-storm were appre-66

ciably lower than pre-storm levels. Many empirical models do not model this phenomena67

well and predict higher density in the recovery phase of major storms relative to observations68

(Oliveira and Zesta 2019, Licata et al. 2021b)69

The Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar Ex-70

tended (NRLMSISE-00 but referred to in this paper as MSIS) is a commonly used empir-71

ical thermospheric density model (Picone et al. 2002). As with many models (e.g. DTM72

(Bruinsma 2015) and JB2008 (Bowman et al. 2008)), MSIS heavily relies on temperature73

profiles to determine species densities and therefore mass density throughout the thermo-74

sphere. A key parameter in predicting the temperature profile is the exospheric temperature75

()∞) which is the asymptotic value that the temperature profile approaches at the top of the76

thermosphere, or thermopause (Bates 1959, Jacchia 1965). MSIS uses the Bates-Walker77

temperature profile (Walker 1965).78

The availability of accelerometer-derived density estimates, from satellite such as79

CHAllenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experi-80

ment (GRACE), has been advantageous for model development and assessment (Luhr et al.81

2002, Bettadpur 2012). Over the lifetime of satellites with onboard accelerometers, we ac-82

cumulate measurements over an abundance of locations and space weather conditions. Re-83

searchers have used these measurements to derive density estimates by removing accelera-84

tions from other sources (Sutton 2008, Doornbos 2012, Calabia and Jin 2016, Mehta et al.85

2017). Weimer et al. (2016) used the density estimates from Mehta et al. (2017) to approxi-86

mate exospheric temperatures by varying the parameter in MSIS using the bisection method87

until the model density closely matched that of the satellite. Weng et al. (2017) followed this88

methodology and used Sutton’s CHAMP density estimates to create an exospheric tempera-89

ture model.90

Weimer et al. (2020) had used the derived exospheric temperatures to fit 1,620 lin-91

ear models to make predictions on a polyhedral grid as a function of different space weather92

conditions over time. The model is called EXTEMPLAR (EXospheric TEMPeratures on a93

PoLyherdrAl gRid). In this work, we develop an improved exospheric temperature model by94

using a single nonlinear artificial neural network (ANN) to make predictions at any location.95

This global model is called EXTEMPLAR Machine Learned (EXTEMPLAR-ML).96

Principal Component Analysis (PCA), also referred to as Empirical Orthogonal Func-97

tion (EOF) analysis or Proper Orthogonal Decomposition (POD), is used in this work to in-98

vestigate the most dominant modes of variability in EXTEMPLAR-ML. PCA has been used99

to analyze thermospheric density datasets previously and is often used in the development of100

reduced-order models (Mehta and Linares 2017, Mehta et al. 2018, Gondelach and Linares101

2020). PCA has also been used to study satellite accelerometer datasets (Matsuo and Forbes102

2010, Lei et al. 2012b, Calabia and Jin 2016). Sutton et al. (2012) used PCA to produce ba-103

sis functions that represented the variability of temperature parameters used in an empirical104

Jacchia family model to improve its nominal density formulation (Jacchia 1970). Ruan et105

al. (2018) used CHAMP density estimates and a physics-based density model to develop an106

exospheric temperature model based in PCA. ML models tend to be ambiguous in nature,107

so we utilize PCA only to improve our understanding of the physical processes that drive108

EXTEMPLAR-ML, not for model development.109

The paper is organized as follows, we start by detailing the model development. Then,110

we discuss the methodology for temperature and density prediction using the model. Af-111

ter, we look at a baseline global temperature map to compare to the preceding model. We112

then investigate the dominant modes and PCA coefficients across one solar cycle. As a case113
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study, we compare the temperature and density predictions of MSIS, EXTEMPLAR and114

EXTEMPLAR-ML to CHAMP and GRACE-A during two major geomagnetic storms.115

2 Methodology116

2.1 Model Development117

We had access to over 81 million exospheric temperature estimates from Weimer et al.118

(2020), the associated polyhedral grid locations, and different space weather indices/proxies119

as potential drivers. The best linear model from previous work used (10,
√
"10, Poynting120

flux totals ((# and ((), a temperature perturbation term (Δ)), day of year (doy), and univer-121

sal time (UT). The cooling effect of Nitric Oxide emissions was simulated in the calculation122

of Δ) . We set out to use only operational indices for EXTEMPLAR-ML so that it could be123

used in real time. Therefore, we use (10, "10, (# , (( , local solar time (LST), geodetic lati-124

tude, doy, and UT. The (10 and "10 indices are representative of solar activity and are part of125

Space Environment Technologies’ (SET) SOLAR2000 algorithm (Tobiska et al. 2000) which126

has been recently benchmarked by Licata et al. (2020b). Descriptions of these indices are127

thoroughly explained by Tobiska et al. (2008). The Poynting flux values are calculated us-128

ing an electrodynamics model (referred to as the W05 model) described by Weimer (2005a,129

2005b). For doy and UT, the model uses sine and cosine functions of the fractional doy and130

UT, generating four temporal inputs (C1-C4), see Equation 1.131

C1 = B8=

(
2c3>H
365.25

)
C2 = 2>B

(
2c3>H
365.25

)
C3 = B8=

(
2c*)

24

)
C4 = 2>B

(
2c*)

24

)
(1)

Upon having set up the data into inputs (described above) and labels (associated log10)∞),132

we leverage a tool called Keras Tuner (O’Malley et al. 2019). This allows us to provide a133

range of hyperparameters upon which the tuner searches to find the best architecture/model134

through a Bayesian optimization scheme. The tuner settings are shown in Table 1. The tuner135

is provided 1 million random training samples and 200,000 validation samples.136

Table 1. Hyperparameter search space for EXTEMPLAR-ML tuner.137

Parameter Choices
Number of Hidden Layers 1 – 10

Neurons min = 64, max = 1024, step = 4

Activations relu, softplus, tanh, sigmoid,
softsign, selu, elu, linear

Dropout min = 0.01, max = 0.50, step = 0.01

Optimizer RMSprop, Adam,
Adadelta, Nadam

Once complete, the tuner returns the ten best models, which we evaluate on indepen-138

dent data to confirm model performance. The best architecture to come out of the tuner is139

displayed in Table 2. This model was trained further using 60 million random samples, with140

the remaining 21 million used as validation/test data. Once the final model is developed,141

we test its validity by first comparing its global temperature maps to that of its predecessor.142

This is to check for anomalies in the temperature distributions for a given condition. While143

EXTEMPLAR-ML is not restricted to prediction at the polyhedral grid locations, it still con-144

tains the name EXTEMPLAR, because it is trained on temperatures that are binned to those145

locations.146
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Table 2. Model architecture for the best model from the EXTEMPLAR-ML tuner.147

There are 10 inputs for Layer 1.148

Neurons Activation Dropout Rate
Layer 1 780 elu 0.23
Layer 2 584 tanh 0.13
Layer 3 336 softplus 0.13
Output 1 linear 0.00

2.2 Principal Component Analysis149

Principal Component Analysis is an eigendecomposition technique that determines150

uncorrelated linear combinations of the data that maximize variance (F.R.S. 1901, Hotelling151

1933). As mentioned in the Introduction, PCA is widely used in thermospheric density and152

exospheric temperature studies as both a modeling and analytical tool. We use PCA to get153

insight into EXTEMPLAR-ML, which requires predictions covering a vast array of condi-154

tions. To accomplish this, we evaluated the model at all 1,620 EXTEMPLAR grid locations155

between the solar maximums of solar cycle 23 and 24 (∼2002-2014) at a three hour cadence.156

These predictions provide the global evolution of exospheric temperatures spannig a solar157

cycle. We perform PCA on the spatiotemporal temperature maps to obtain the*, Σ, and +158

matrices. PCA decomposes the data and separates spatial and temporal variations such that:159

x (s, C) =
A∑
8=1

U8 (C)*8 (B) (2)

where x ∈ R= is the model output state (full 2D temperature maps), A is the choice of order160

truncation, U8 are temporal coefficients, and*8 are orthogonal modes or basis functions. The161

modes are the first A columns of the left singular vector derived by performing PCA on an162

ensemble of model output solutions such that:163

X =

 x1 x2 x3 . . . xm

 and X = *Σ+) (3)

In Equation 3, < represents the ensemble size (one solar cycle). The temperature data is de-164

noted by X. * is the left unitary matrix, and it is made of orthogonal vectors that represent165

the modes of variation. Σ is a diagonal matrix consisting of the squares of the eigenvalues166

that correspond to the vectors in*. We can extract temporal coefficients by performing ma-167

trix multiplication between Σ and +) . Therefore, the signs of the modes and coefficients are168

important in the analysis phase.169

2.3 Geomagnetic Storm Case Study170

We look at a 48 hour period between 12:00 UT on July 26, 2004 to 12:00 UT on July171

28, 2004. This encompasses a day-long geomagnetic storm with 0? peaking at 300 2=) . We172

predict exospheric temperatures along the orbits of CHAMP and GRACE-A and compare it173

to the satellite-derived temperatures, MSIS, and the best linear EXTEMPLAR model. We174

perform a similar comparison across the three-day period of October 29-31, 2003. This was175

one of the most significant geomagnetic storms of the 21st century, with 0? reaching 400176

2=) on two separate occasions. We then look at the CHAMP and GRACE-A densities plot-177

ted against MSIS, MSIS + EXTEMPLAR, and MSIS + EXTEMPLAR-ML for the same two178

periods. The density values for EXTEMPLAR and EXTEMPLAR-ML are obtained from179

MSIS while bypassing the normal )∞ calculation within MSIS, using the models’ tempera-180

ture outputs instead, as described by Weimer et al. (2020).181
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3 Results182

Once we obtained the model described in Section 2.1, we evaluated it on all training183

and validation data. This is shown in Figure 1. The top panel shows the original and pre-184

dicted )∞ values in a scatter plot with a background contour showing the absolute error. The185

bottom panel shows the error distributions for training and validation samples.186

Figure 1. Comparison of observed and predicted )∞ for training (green) and validation (yellow)187

sets. The background contour shows mean absolute percent error for that temperature combination.188

The bottom panel shows histograms of error for both sets.189

The )∞ scatter plot is fairly centered on the 1:1 line, which indicates a zero-error pre-190

diction. There is a skew towards underprediction at very high temperatures. However, some191

of these exospheric temperatures are not physical, due to some instances where an abnor-192

mally high temperature needs to be input to MSIS to obtain a match with the measured den-193

sity. A distinguishing feature in the top panel is the similarity between training and valida-194

tion performance. This indicates that the model is well-generalized and performs well on in-195

dependent/new data. The bottom panel of Figure 1 shows that the error distributions have196

close to zero-mean, and over 98% of training and validation samples have less than 10%197

error. The mean absolute error for training and validation are both 2.81%, confirming the198
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generalized behavior of the model. Table 3 shows the mean absolute error and standard de-199

viation of the error for EXTEMPLAR-ML and the best linear EXTEMPLAR model from200

Weimer et al. (2020), in Kelvin.201

Table 3. Model statistics for linear EXTEMPLAR (version 6) and EXTEMPLAR-ML.202

Model Mean Absolute Error Standard Deviation
EXTEMPLAR v6 27.92 K 37.53 K

EXTEMPLAR-ML 23.72 K 34.12 K

EXTEMPLAR-ML achieves an absolute error reduction of over 4 K, and a reduction203

in the error standard deviation of over 3 K. As previously mentioned, the EXTEMPLAR-ML204

drivers are only a subset of the EXTEMPLAR version 6 (v6) drivers, in an effort to make205

the model operation-capable, which makes the performance improvement significant. Next,206

we evaluate EXTEMPLAR-ML for a global grid to compare Figure 2 (below) with Figure 4207

from Weimer et al. (2020).208

Figure 2. Global )∞ map with following inputs: (10="10=120 sfu, (# =((=50 GW, doy = 80,209

and UT = 15 hours for EXTEMPLAR v6 (left) and EXTEMPLAR-ML (right). The black triangle210

and square refer to the maximum and minimum temperature locations, respectively.211

The global map has no clear defects and shows strong similarities to the EXTEMPLAR212

v6 map for the same conditions. The locations of maximum and minimum temperatures are213

also similar to the previous model. The main difference is in the low temperature region in214

the western hemisphere, where there is a larger region of < 834 K for EXTEMPLAR-ML. As215

there are only point estimates along orbits, there is no way to validate the global temperature216

maps, so we cannot confidently say which map is more accurate. However, we attribute this217

difference to the nonlinear temperature formulation by EXTEMPLAR-ML.218

3.1 Principal Component Analysis219

With the extensive EXTEMPLAR-ML prediction set described in Section 2.2, we can220

investigate the most dominant modes of variability and their associated PCA coefficients.221
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This is shown in Figure 3. It is important to note that the data was not centered prior to per-222

forming PCA, so the first mode is representative of the mean temperature distribution over223

this period. The longitudinal coordinates are local solar time scaled to longitude values with224

local noon being at 0◦.225

Figure 3. First three modes (left) and corresponding PCA coefficients (right) for the exospheric tempera-
tures between November 1, 2001 and April 1, 2014. The most highly correlated drivers are plotted against the
coefficients for comparison with the Pearson correlation coefficient shown in the title (Schober et al. 2018).

226

227

228

The first mode is representative of solar EUV heating denoted by the diurnal tempera-229

ture map and strong correlation with (10. This mode accounts for over 80% of the system’s230

variance. Mode 2 represents a latitudinal Summer-Winter variation. There is a linear pro-231

gression of the mode with latitude and U2 oscillated about zero with a period of 365 days. It232

has an inverse relationship to C2, described in Equation 1, and its amplitude is a function of233

the solar activity. Mode 3 resembles a map of the magnetic field with the low latitude band234

following the magnetic equator. There are also peaks in the poles, and U3 most strongly cor-235

relates with the Poynting flux totals (∼0.64 with (# and ((). We suspect this mode corre-236

sponds to the effects of high latitude heating from either Joule heating or electron precipita-237

tion.238

3.2 Modeled vs Observed Temperature Along Orbits239

In an effort to compare model performance between other temperature models and the240

observations, we evaluate the MSIS (unmodified), EXTEMPLAR v6, and EXTEMPLAR-241

ML exospheric temperature values along CHAMP and GRACE-A orbits for two storm peri-242

ods. The first is the 48 hour period between 12:00 UT on July 26, 2004 to 12:00 UT on July243

28, 2004. The results are shown in Figure 4.244
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Figure 4. )∞ for MSIS, EXTEMPLAR v6, EXTEMPLAR-ML plotted alongside CHAMP (left) and
GRACE-A (right) for a July 2004 geomagnetic storm.

245

246

In the pre-storm period (top panel), both EXTEMPLAR models adequately track the247

satellites while MSIS overpredicts. During the early phase of the storm, both EXTEMPLAR248

models still track the observations well, but the linear model becomes more sporadic around249

10:00 UT on July 27th. Both models far outperform MSIS in the second panel. The third250

panel shows the storm recovery where EXTEMPLAR-ML tracks the observations most251

closely, and EXTEMPLAR v6 overpredicts. In the last twelve hours, both EXTEMPLAR252

models do well, and MSIS overpredicts. The mean absolute error for EXTEMPLAR-ML is253

5.84% and 4.85% with respect to CHAMP and GRACE-A. For EXTEMPLAR v6, the mean254

absolute error is 8.55% and 7.46% with respect to CHAMP and GRACE-A. MSIS has the255

highest errors with 15.05% and 12.86% with respect to CHAMP and GRACE-A. Figure 5256

shows a similar comparison for a 72-hour period encompassing the 2003 Halloween storm.257

EXTEMPLAR-ML tracks the trends in both satellites for all 12-hour windows. Like260

the other two models, it has a more general response and does not track the abrupt peaks that261

are likely a result of imperfections in data processing. EXTEMPLAR struggles for brief pe-262

riods and MSIS has a mixed response with respect to accuracy. The mean absolute error for263

EXTEMPLAR-ML is 6.26% and 5.64% with respect to CHAMP and GRACE-A. For EX-264

TEMPLAR v6, the mean absolute error is 10.89% and 9.98% with respect to CHAMP and265

GRACE-A. MSIS has the highest errors with 15.91% and 13.03% with respect to CHAMP266

and GRACE-A.267

3.3 Modeled vs Observed Density Along Orbits268

We input the exospheric temperatures from Figures 4 and 5 into MSIS in order to ob-269

tain the associated mass density values along the CHAMP and GRACE-A orbits. Figure 6270
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Figure 5. )∞ for MSIS, EXTEMPLAR v6, EXTEMPLAR-ML plotted alongside CHAMP (left) and
GRACE-A (right) for the 2003 Halloween Storm.

258

259

shows the modeled densities, including the unmodified MSIS values, along with the satellite271

density estimates for the July 2004 storm.272

The overprediction of exospheric temperature by MSIS in the first 12 hours, seen in275

Figure 4, causes its modeled density to be notably higher than the observed values. Both276

EXTEMPLAR models provide similar accuracy pre-storm, but EXTEMPALR-ML more277

closely matches the CHAMP and GRACE-A estimates during the storm. In the recovery278

phase, EXTEMPLAR-ML densities are more similar to GRACE-A than to CHAMP. The279

mean absolute error for EXTEMPLAR-ML is 19.13% and 20.81% with respect to CHAMP280

and GRACE-A. For EXTEMPLAR v6, the mean absolute error is 27.78% and 32.33% with281

respect to CHAMP and GRACE-A. MSIS has the highest errors with 62.32% and 75.38%282

with respect to CHAMP and GRACE-A. Figure 7 shows the density variations resulting from283

the temperatures in Figure 5.284
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Figure 6. Density for MSIS, EXTEMPLAR v6, EXTEMPLAR-ML plotted alongside CHAMP (left) and
GRACE-A (right) for a July 2004 geomagnetic storm.

273

274

EXTEMPLAR-ML tracks the satellite densities well for the entire three-day period.287

The performance enhancement is most notable in the recovery phase (bottom panel) where288

the other two models tend to overpredict. The ability to capture the anomalously low temper-289

ature and density from enhanced NO production following a shock-led geomagnetic storm is290

highly desired as this prolonged period of lower than expected density can result in substan-291

tially different satellite positions in the context of conjunction analyses (Oliveira and Zesta292

2019). The mean absolute error for EXTEMPLAR-ML is 14.43% and 15.94% with respect293

to CHAMP and GRACE-A. For EXTEMPLAR v6, the mean absolute error is 24.62% and294

25.34% with respect to CHAMP and GRACE-A. MSIS has the highest errors with 35.39%295

and 35.97% with respect to CHAMP and GRACE-A.296

4 Summary297

In this work, we developed and optimized a machine learned nonlinear regression298

model to predict exospheric temperatures given a set of operational Space Weather and tem-299

poral drivers. This model, called EXTEMPLAR-ML, has nearly identical training and vali-300

dation/test performance with 2.81% mean absolute error across 81 million available samples.301

This is an extension of a linear EXTEMPLAR model developed by Weimer et al. (2020).302

Using fewer drivers, EXTEMPLAR-ML outperforms EXTEMPLAR with a 4.20 K decrease303

in absolute error and a 3.41 K decrease in the error standard deviation. An advantage of304

EXTEMPLAR-ML is that the single model can provide temperature predictions at any lo-305

cation, which was a limitation of its predecessor. The use of PCA provided insight to the306

temperature formulation within the "black-box" ML model. The first mode represented the307

effects of solar EUV heating and accounted for 81% of the system’s variance. Latitudinal308

variations accounted for the next 4.75% of the variance and were still a function of solar ac-309
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Figure 7. Density for MSIS, EXTEMPLAR v6, EXTEMPLAR-ML plotted alongside CHAMP (left) and
GRACE-A (right) for the 2003 Halloween Storm.

285

286

tivity. The last mode we looked at only accounted for 1.28% of the variance but described310

the effects of high latitude heating caused by geomagnetic storms.311

We performed two case studies where EXTEMPLAR-ML along with EXTEMPLAR312

v6 and MSIS predicted )∞ along CHAMP and GRACE-A orbits during two major geo-313

magnetic storms. In the July 2004 storm, EXTEMPLAR-ML achieved error reductions314

along both CHAMP and GRACE-A’s orbits ranging from 2.07-9.35% compared to EXTEM-315

PLAR v6 and MSIS. In the 2003 Halloween storm, EXTEMPLAR v6 struggled during pe-316

riods, leading to a higher error reduction of 4.57% and 3.97% with respect to CHAMP and317

GRACE-A. When these temperatures were used for density prediction, the relative accuracy318

of EXTEMPLAR-ML became more pronounced. The error reduction from EXTEMPLAR319

in terms of the resulting density ranged from 8-11% and 9-12% with respect to CHAMP and320

GRACE-A, respectively for the two storms. In the future, we plan to incorporate model un-321

certainty into EXTEMPLAR-ML (Licata et al. 2020a, Licata and Mehta 2021, Licata et al.322

2021a). We plan to develop a newer model using temperatures derived with NRLMSIS 2.0323
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(Emmert et al. 2021). With the successive model, we also plan to use the exact observation324

locations to reduce errors associated with binning measurements to the polyhedral grid.325

Data Availability Statement326

CHAMP and GRACE density estimates from (Mehta et al. 2017) can be found at327

http://tinyurl.com/densitysets. A data archive containing the supplemental graphs328

of neutral density predictions can be accessed online (at https://doi.org/10.5281/329

zenodo.3525166). Also contained here are the adjustments to the NRLMSISE-00 model330

supplied by J. Emmert; the total Poynting flux into both Northern and Southern Hemispheres331

from the Weimer 2005 model, for years 2002–2017; the derived ΔT values; and EXTEM-332

PLAR model code with the required files.333
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