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Abstract

The transition from the gabbroic oceanic crust to the residual mantle harzburgites of the Oman ophiolite has been drilled

at Holes CM1A and CM2B (Wadi Tayin massif) during Phase 2 of the International Continental Scientific Drilling Program

(ICDP) Oman Drilling Project (OmanDP) (Nov. 2017-Jan. 2018). In order to unravel the formation processes of ultramafic

rocks in the Wadi Tayin massif (CM) crust-mantle transition zone and deeper in the mantle sections beneath oceanic spreading

centers, our study focuses on the whole rock major and trace element compositions (together with CO2 and H2O concentrations)

of these ultramafic rocks (56 dunites and 49 harzburgites). Despite extensive serpentinization and some carbonation, most of

the trace element contents (REE, HFSE, Ti, Th, U) record high temperature, magmatic process-related signatures. Two major

trends are observed, with good correlations between (1) Th and U, Nb and LREE on one hand, and between (2) HREE, Ti

and Hf on the other hand. We interpret the first trend as the signature of late melt/peridotite interactions as LREE are known

to be mobilized by such processes (‘lithospheric process’), and the second trend as the signature of the initial mantle partial

melting (‘asthenospheric process’), with little or no overprint from melt/rock reaction events.
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Toulouse, CNRS, IRD, 14 avenue E. Belin, F-31400 Toulouse, France. 18 

8 Instituto Andaluz de Ciencias de la Tierra (IACT), Consejo Superior de Investigaciones 19 

Científicas–Universidad de Granada, Avd. Palmeras 4, 18100 Armilla, Granada, Spain 20 

9 School of Ocean & Earth Science, National Oceanography Centre Southampton, University of 21 

Southampton, European Way, Southampton SO14-3ZH, UK 22 

10 Lamont–Doherty Earth Observatory, Columbia University, Palisades, New York, 10964, U.S.A. 23 

* Corresponding author: Fatma Kourim (k.fatna@gmail.com)  24 

Keywords: Partial melting vs. melt-rock reaction; Dunites and harzburgites serpentinization and 25 

carbonation; Oman ophiolite Crust-Mantle transition; Holes CM1A and CM2B; ICDP Oman 26 

Drilling Project;  27 

Key Points: 28 

 The transition from the oceanic crust to the mantle of Oman has been drilled in the CM 29 

Holes during Phase 2 of the ICDP Oman Drilling Project  30 

mailto:k.fatna@gmail.com)


Confidential manuscript submitted to Journal of Geophysical Research: Solid Earth 

 

 There is large petrological and chemical variability in the dunites and harzburgites from 31 

Holes CM1A and CM2B 32 

 Partial melting vs. melt-rock reaction, and the effects of serpentinization and carbonation 33 

of dunites and harzburgites are investigated   34 
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Abstract 35 

The transition from the gabbroic oceanic crust to the residual mantle harzburgites of the Oman 36 

ophiolite has been drilled at Holes CM1A and CM2B (Wadi Tayin massif) during Phase 2 of the 37 

International Continental Scientific Drilling Program (ICDP) Oman Drilling Project (OmanDP) 38 

(Nov. 2017-Jan. 2018). In order to unravel the formation processes of ultramafic rocks in the Wadi 39 

Tayin massif (CM) crust-mantle transition zone and deeper in the mantle sections beneath oceanic 40 

spreading centers, our study focuses on the whole rock major and trace element compositions 41 

(together with CO2 and H2O concentrations) of these ultramafic rocks (56 dunites and 49 42 

harzburgites). Despite extensive serpentinization and some carbonation, most of the trace element 43 

contents (REE, HFSE, Ti, Th, U) record high temperature, magmatic process-related signatures. 44 

Two major trends are observed, with good correlations between (1) Th and U, Nb and LREE on 45 

one hand, and between (2) HREE, Ti and Hf on the other hand. We interpret the first trend as the 46 

signature of late melt/peridotite interactions as LREE are known to be mobilized by such processes 47 

(‘lithospheric process’), and the second trend as the signature of the initial mantle partial melting 48 

(‘asthenospheric process’), with little or no overprint from melt/rock reaction events.  49 

Plain Language Summary 50 

We focus on the transition from the oceanic crust to the Earth’s mantle by studying Holes CM1A 51 

and CM2B, drilled in the Oman ophiolite during Phase 2 of the International Continental Scientific 52 

Drilling Program (ICDP) Oman Drilling Project (OmanDP). Despite extensive serpentinization 53 

and some carbonation, the dunites and harzburgites from the transition zone and the mantle section 54 

show a large variability in their petrological and chemical compositions. Results indicate that most 55 

of the trace element contents (REE, HFSE, Ti, Th, U) record high temperature, magmatic process-56 

related signatures. Two major trends are observed, with good correlations between (1) Th and U, 57 

Nb and LREE on one hand, and between (2) HREE, Ti and Hf on the other hand. We interpret the 58 

first trend as the signature of late interactions between a percolating melt and the harzburgites 59 

and/or dunites, and the second trend as the signature of the initial mantle partial melting, with little 60 

or no overprint from melt/rock reaction events.  61 

1 Introduction 62 

Melts play a fundamental role in the lithospheric mantle chemical and mineralogical 63 

heterogeneities, and have a large effect on mantle rheology, viscosity and seismic anisotropy 64 

(Batanova & Savelieva, 2009; Kelemen et al., 1997; Tommasi & Vauchez, 2015). Numerous 65 

studies have been dedicated to melt-rock interaction characterization in both the continental and 66 

the oceanic lithospheric mantle (e.g. Bodinier et al., 1990; Dalton et al., 2017; Dygert et al., 2016; 67 

Godard et al., 2008; Kelemen et al., 1998, 1990; Kelemen & Ghiorso, 1986; Parkinson & Pearce, 68 

1998; Takazawa et al., 1992; Vauchez et al., 2005; Morgan et al., 2008; Navon & Stolper, 1987; 69 

Niu, 1997; Warren et al., 2009; Warren and Shimizu, 2010). Several studies demonstrated that 70 

trace element variations coupled with microstructural, mineralogical and petrological 71 

observations, and trace element numerical modeling, are a pertinent way to evaluate melt transport 72 

and constrain melt-peridotite processes (e.g. Navon & Stolper, 1987; Batanova et al., 1998; Godard 73 

et al., 1995; Kelemen et al., 1995; Kelemen & Ghiorso, 1986;  Kourim et al., 2014; Oliveira et al., 74 

2020). Despite all these studies, the nature of melt and/or fluids involved in the reactional processes 75 

in the oceanic upper mantle below spreading centers remains debated. One of the biggest 76 

challenges to understanding these processes is the collection of representative natural sample 77 
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suites. Finding locations where samples that have not been affected by either incomplete melt 78 

extraction or interaction with melt, coexisted at the same site with samples that were affected by 79 

either partial melt and/or interaction with melts migrating through the mantle is difficult. Abyssal 80 

peridotites (e.g. Godard et al., 2008; Johnson et al., 1990; Niu, 1997; Parkinson & Pearce, 1998) 81 

and mantle xenoliths (e.g. Bedini & Bodinier, 1999; Dalton et al., 2017; Fitzpayne et al., 2018; 82 

Grégoire et al., 2001) are good candidates to study mantle processes in present-day oceanic and 83 

continental settings, but their sampling is exceptional, lacking second-order geologic context and 84 

is limited to the uppermost oceanic and continental mantle.  85 

Oman ophiolite has been instrumental in elucidating the accretion and evolution of oceanic 86 

lithosphere in present-day oceans and exhibits the largest ophiolitic exposures of oceanic 87 

lithosphere worldwide. The mantle section of the Oman ophiolite is mainly composed of depleted 88 

harzburgites and of some dunites, and has been the subject of many petrological, geochemical and 89 

structural studies (e.g. Boudier & Coleman, 1981; Ceuleneer et al., 1988; Dygert et al., 2017; 90 

Kelemen et al., 1995; Godard et al., 2000; Le Mée et al., 2004; Monnier et al., 2006; Nicolas et 91 

al., 2000; Takazawa et al., 2003). The general consensus stands that the dunites, as channels in the 92 

mantle section or massive at the crust-mantle transition, are residues of reaction between a melt 93 

undersaturated in silica at low pressure and mantle harzburgites; this reaction leads to the complete 94 

consumption of orthopyroxene and to the concomitant precipitation of olivine (e.g. Abily & 95 

Ceuleneer, 2013; Boudier & Nicolas, 1995; Braun et al., 2002; Godard et al., 2000; Kelemen et 96 

al., 1995, 1997; Koga et al., 2001; Quick, 1981b; Rabinowicz et al., 1987; Rospabé et al., 2017, 97 

2018a, 2019a). However, the relationship between the harzburgites and the dunites, the nature of 98 

the reactant melt, and the chemical budgets related to the ‘dunitization’ process itself, are still 99 

debated. Oman ophiolite exposes large portions of the mantle and crust-mantle transition zone, 100 

suitable to understanding local to large scale studies of mantle heterogeneities and melt/peridotite 101 

reaction processes. The Oman Drilling Project (OmanDP) enabled sampling of a continuous 102 

section of the crust-mantle transition at Holes CM1A and CM2B (Wadi Tayin Massif, during 103 

Phase 2 of the ICDP OmanDP, Nov. 2017-Jan. 2018), starting from the base of the layered 104 

gabbroic crust and going through the uppermost harzburgitic mantle (Kelemen et al., 2020a, 105 

2020b; Proceedings available at https://www.omandrilling.ac.uk/). In this paper, we characterize 106 

the major and trace element contents of the dunites and harzburgites from the Hole CM1A and 107 

CM2B drill cores to better constrain dunitization processes by first, gaining insights into Wadi 108 

Tayin mantle and crust-mantle geochemical characteristics, then, comparing these characteristics 109 

to previously studied Maqsad diapir harzburgites and mantle-crust transition zone, taking 110 

advantage of the continuous and regular, high resolution sampling performed in the Oman Drilling 111 

Project.  112 

2 Geological setting and context of CM drill cores 113 

2.1 Geology of the Samail ophiolite 114 

The Samail ophiolite, located in the Sultanate of Oman and the United Arab Emirates (Fig. 1a), 115 

exposes a relatively continuous section of oceanic lithosphere, with, from top-to-depth, a 5-7 km-116 

thick crust made of pillow basalts, a sheeted dike complex and gabbros, overlying the crust-mantle 117 

transition at the top of the upper mantle peridotites (e.g. Coleman & Hopson, 1981; Glennie et al., 118 

1974; Searle & Malpas, 1980, Lippard et al., 1986; Nicolas et al., 1988; Nicolas, 2012 and 119 

references therein). According to the ages of pelagic sediments interbedded with basalts and of 120 

https://www.omandrilling.ac.uk/
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zircons in evolved gabbroic and plagiogranitic rocks, the accretion event that led to the formation 121 

of the Oman ophiolite has been estimated at around 94-97 Ma ago (Rioux et., 2012, 2013, 2016; 122 

Tilton et al., 1981; Tippit et al., 1981; Warren et al., 2005). The tectonic setting in which the Samail 123 

ophiolite evolved is still debated. The spatial distribution along the ophiolite of the nature of the 124 

(1) mafic dikes cutting-across the mantle section, and (2) lower crustal cumulates, as well as their 125 

geochemical signature, attest that both MORB like and depleted calc-alkaline series coexisted 126 

during the igneous evolution of the ophiolite (e.g. Benoit et al., 1996; 1999; Ceuleneer et al., 1996; 127 

Clénet et al., 2010; Python & Ceuleneer, 2003; Python et al., 2008). The dikes belonging to the 128 

MORB-like volcanic units have been mapped mainly in the SE of the ophiolite and in other more 129 

restricted spots, whereas the depleted calc-alkaline series were observed at a more widespread 130 

scale (Python & Ceuleneer, 2003). 131 

 132 

Along the Samail ophiolite, spatially constrained vertical flow structures frozen within the 133 

mantle section were interpreted as former asthenospheric diapirs distributed along the oceanic 134 

ridge (Ceuleneer, 1991; Ceuleneer et al., 1988; Jousselin et al., 1998; Nicolas et al., 1988, 2000). 135 

This mantle section is mainly composed of harzburgites (85 to 95%), relatively depleted with a 136 

typical orthopyroxene content of 15-25% and locally grading into lherzolites, and to a lesser extent 137 

of dunites (5-15%) (Boudier & Coleman, 1981; Lippard et al., 1986). The crust-mantle transition 138 

is mainly made of dunites and wehrlites and its thickness varies from a few meters to a few hundred 139 

meters (e.g. Abily & Ceuleneer, 2013; Boudier & Nicolas, 1995; Ceuleneer & Nicolas, 1985; 140 

Jousselin & Nicolas, 2000; Koga et al., 2001; Rospabé et al., 2017, 2018a). 141 

 142 

Geochemical studies have demonstrated the overprint of partial melting and of 143 

melt/peridotite reaction processes in the mantle harzburgites’ signatures (Gerbert-Gaillard, 2002; 144 

Girardeau et al., 2002; Godard et al., 2000; Hanghøj et al., 2010; Kanke & Takazawa, 2014; Khedr 145 

et al., 2014; Le Mée et al., 2004; Monnier et al., 2006; Takazawa et al., 2003). In this context, 146 

mantle dunites and dunites from the crust-mantle transition zone (CMTZ) have mostly been 147 

interpreted as replacive in origin, products of melt-harzburgite reaction leading to the complete 148 

consumption of orthopyroxene and concomitant precipitation of olivine (e.g. Abily & Ceuleneer, 149 

2013; Boudier & Nicolas, 1995; Gerbert-Gaillard, 2002; Godard et al., 2000; Kelemen et al., 1995, 150 

1997; Koga et al., 2001; Rabinowicz et al., 1987; Rospabé et al., 2018a). This dunitization process 151 

may have been enhanced by the involvement of a hydrous component in the reaction (Rospabé et 152 

al., 2017, 2018a, 2019a). However, a reaction origin and a cumulate origin are not mutually 153 

exclusive as it has been shown that the uppermost part (~ 20%) of the crust-mantle transition may 154 

have a composition consistent with cumulates while the main lower part (~80%) has a composition 155 

supporting the replacive origin (Abily & Ceuleneer, 2013). Furthermore, as olivine-saturated melt 156 

begins to cool conductively, hybrid processes, termed ‘relative crystallization’ (Collier & Kelemen 157 

2010) produce reactive characteristics (e.g. Benn et al., 1988; Boudier and Nicolas, 1995; Koga et 158 

al., 2001; Abily and Ceuleneer, 2013; Rospabé et al., 2018a). 159 

2.2 The crust-mantle transition at Sites CM1 and CM2 160 

Samples studied in this paper were drilled in the Wadi Tayin massif in the SE of the ophiolite 161 

during Phase 2 of the ICDP OmanDP (Nov. 2017-Jan. 2018). According to structural and 162 

petrological maps (Gerbert-Gaillard, 2002; Python & Ceuleneer, 2003; Nicolas et al., 2000), this 163 

site is located near the border - or in an intermediate position between the border and the axis of 164 

the frozen paleo-spreading center centered on the Maqsad (Sumail massif) paleo-mantle diapir - 165 



Confidential manuscript submitted to Journal of Geophysical Research: Solid Earth 

 

of the MORB segment in this part of the ophiolite. The crust-mantle transition zone (CMTZ) is 166 

relatively well exposed in this area, with a clear transition from harzburgite to the north to dunites 167 

then gabbros to the south (Fig. 1b). The two sites CM1 and CM2, separated by about 400 m, have 168 

been drilled twice: with one Hole for core recovery and a second wider Hole for geophysical 169 

logging. At these sites 400 m of core was recovered from CM1A and about 300 m of core was 170 

recovered from CM2B. 171 

 172 

The geological map produced by the OmanDP group during the preparation of Phases 1 and 2 173 

shows a general tilt of the units by about 30º to the south (Fig. 1c). Considering these petrological 174 

and structural configurations, Hole CM1A borehole was cored 400 m with an inclination of 60º 175 

trending to the north, in order to cut perpendicularly across the mantle-crust transition (Fig. 1d). It 176 

crosses from the gabbroic lower crust (~150 m; the Layered Gabbro “Crustal Sequence”, CS), 177 

through the dunite-rich crust-mantle transition zone (~150 m CMTZ) that includes the Dunite (DS) 178 

and Dunite with Gabbro Sequences (DGS), to the residual upper mantle harzburgites (~100 m, 179 

Mantle Sequence, MS). At Site CM2, the fully cored borehole CM2B is vertical, parallel to the 180 

wider rotary borehole for geophysical logging (Hole CM2A). Hole CM2B starts within the crust-181 

mantle transition zone (~110 m) and extends deeper in the underlying residual mantle peridotites 182 

than Hole CM1A (~180 m) (Fig. 1d). The main rock types sampled in Holes CM1A and CM2B 183 

are olivine-gabbro, gabbro, dunite, harzburgite and wehrlite, associated with minor gabbronorite, 184 

troctolite, websterite, anorthosite, and chromitite layers (Fig. 1d). The crust-mantle transition zone 185 

sampled in Hole CM1A has been divided into two parts according to the rock types present: the 186 

upper half is mainly made of dunites containing rare melt migration features (DS for Dunite 187 

Sequence); in the lower half, the dunites alternate with thin bands containing a higher proportion 188 

of interstitial plagioclase (+/- clinopyroxene), which has been called the Dunite with Gabbro 189 

Sequence (DGS). In the present article we focus on the geochemical compositions of dunites from 190 

the crust sequence (CS), crust-mantle transition zone (CMTZ) and mantle sequence (MS) and of 191 

mantle harzburgites. 192 

3 Results 193 

The sample selection strategy and the analytical methods are detailed in Supporting Information 194 

(see also Kelemen et al., 2020a, 2020b, 2020c). In summary, one sample was taken every 10 m 195 

along Holes CM1A and CM2B to cover the entire crust-mantle transition and mantle sections. 196 

Additional samples were collected to better characterize some specific levels (e.g. to document 197 

local, minor lithologies). The samples were analyzed for their major (as well as volatile) and trace 198 

element compositions. Sample lithology, macroscopic and microscopic observations and mineral 199 

modes calculated from major elements are reported in supplementary data table 1. Whole rock 200 

major and volatile element compositions are reported in supplementary data table 2. Whole rock 201 

trace element compositions are reported in supplementary data table 3.  202 

3.1. Sample description 203 

The studied samples represent the ultramafic lithologies (harzburgites and dunites) of the mantle 204 

section (46 harzburgites and 12 dunites), the crust-mantle transition zone (45 dunites) and the 205 

crustal Layered Gabbro Sequence (2 dunites) drilled at Holes CM1A (46 samples) and CM2B (59 206 

samples). Lithological classifications were made based on macroscopic and microscopic 207 

observations, and mineral modes calculated from XRF measurements (supplementary data table 208 
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1). Four rock groups have been defined, harzburgites (36), carbonate-bearing harzburgites (8), pure 209 

dunites (31) and impregnated dunites (29) (Fig. 1e, Fig. SD-1, supplementary data table 1).  210 

 211 

The harzburgites and carbonate-bearing harzburgites contain olivine (ol), orthopyroxene (opx) and 212 

minor spinel (sp) as primary minerals (Fig. 2 e, f, g, h, i, j, k and l, Fig. SD-1, supplementary data 213 

table 1), displaying a porphyroclastic texture. Olivine abundance (primary mode) ranges from 72% 214 

to 93% in the harzburgites and from 64% to 75% in carbonate-bearing harzburgites. The olivine 215 

typically show subhedral shape and equant habits. Orthopyroxene abundance ranges from 10 to 28 216 

% with mostly subhedral shapes; some orthopyroxene show sigmoidal crystal-plastic deformation 217 

features (Fig. 2i and j). Grains of spinel are present in all samples (up to 1-3%). Compared to the 218 

dunites, the harzburgites are less altered, the alteration becoming complete only in highly veined 219 

zones and at the bottom of both Holes where carbonate (carb)/serpentine (serp) associations occur 220 

(Fig. 2k and l). The most abundant minerals in the harzburgite background alteration are serpentine 221 

and magnetite (mag). The carbonate alteration occurs at the bottom of both Holes starting at 222 

388.3m depth in CM1A and at 279.5m depth in CM2B. Harzburgite sample CM2B 129Z1 5-10 223 

cm (depth 299.7 m) is the most carbonate vein-rich harzburgite. Secondary amphibole (amph), 224 

chlorite (chl) and hydrogrossular are also present as trace alteration minerals (abundance < 3%, 225 

supplementary data table 1). No patch or deformation features specifically related to the alteration 226 

were observed.   227 

 228 

The pure dunites are primarily composed of ol >97% and generally contain <1 % sp (Fig. 2a, b, c 229 

and d, supplementary data table1). Mineral modes calculated using bulk rock data (Fig. SD-1, 230 

supplementary data table1) indicate that many dunites have >10% normative pyroxene. The 231 

macroscopic and microscopic descriptions indicate that some dunites contain plagioclase (pl) 232 

and/or pyroxenes. We refer to this group of dunites as ‘impregnated dunites’ in contrast to the pure 233 

dunites containing only ol and sp. The ol in almost all samples has been completely replaced by 234 

serp (Fig. 2a, b, c and d). In many dunites and in impregnated dunites, no relics of porphyroclastic 235 

opx are present, indicating no textural relics of a porphyroclastic texture. The pure and impregnated 236 

dunites’ primary texture was a fine- to medium-grained granular microstructure, characterized by 237 

euhedral ol forming a mosaic of equigranular grain size distribution as preserved by the equant 238 

contacts between serp mesh cores (Fig. 2a, b, c and d). Alteration minerals mainly consist of serp 239 

and mag (Fig. 2a, b, c and d). In addition, brucite (brc) after ol was detected by X-Ray Diffraction 240 

(XRD, performed during the ChikyuOman 2018 Leg 3) in some serpentinized dunites from the 241 

crust-mantle transition zone and in dunites from the mantle sequence (absent in harzburgites). 242 

Where relics of ol are present, in rare cases, they are surrounded by serp and mag. If ol is 243 

completely serpentinized, the mesh cores are mainly composed of serp with minor mag and 244 

accessory grains of sulfides. Serpentine and more abundant magnetite at mesh rims trace former 245 

ol grain and sub-grain boundaries (Fig. 2a, b, c and d).  246 

3.2. Loss on ignition, CO2 and H2O contents 247 

Samples from Holes CM1A and CM2B display high loss on ignition (LOI) values. The LOI varies 248 

from 8.29 to 14.92 wt.% in the harzburgites, from 9.02 to 23 wt.% in the carbonate-bearing 249 

harzburgites, from 10.14 to 15.31 in the pure dunites and from 6.14 to 15.53 wt.% in the 250 

impregnated dunites (Fig. 3 and supplementary table 2). The averaged H2O concentration is 12.0 251 

± 1.7 wt.% in harzburgites, 11.0 ± 5.5 wt.% in carbonate-bearing harzburgites, 14.3 ± 1.2 wt.% in 252 
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dunites and 13.7 ± 1.6 wt.% in impregnated dunites. The LOI values correlate with measured water 253 

concentration (H2O), which slightly decreases downhole (Fig. 3). The concentrations of CO2 254 

measured in harzburgites, carbonate-bearing harzburgites excluding the carbonate vein-rich 255 

harzburgite CM2B 129Z1 5-10 cm (depth 299.7 m, CO2 = 19.54 wt.%), pure dunites and 256 

impregnated dunites vary from 0.12 to 0.31 wt.%, from 0.36 to 1.30 wt.%, from 0.13 to 0.34 wt.% 257 

and from 0.03 to 0.41 wt.% respectively. The averaged CaCO3 concentration excluding the 258 

carbonate-rich harzburgite mentioned previously (22.77 wt.%), is 0.40 wt.% in harzburgites, 1.57 259 

wt.% in carbonate-bearing harzburgites, 0.51 wt.% in pure dunites and 0.46 wt.% in impregnated 260 

dunites. The downhole profile of CaCO3 shows an increase in concentration in the deepest part of 261 

Holes CM1A and CM2B, with recovered harzburgites having higher CO2 concentrations, LOI and 262 

H2O contents, consistent with the particularly high alteration degree and high carbonate content in 263 

these samples (serp, brc, carb, see Fig. 3 XRD).   264 

3.3. Whole rock major element compositions 265 

Major element analyses were performed on 36 harzburgites, 8 carbonate-bearing harzburgites, 31 266 

pure dunites, and 29 impregnated dunites sampled along Holes CM1A and CM2B. 267 

The mantle section sequence (MS) 268 

Harzburgite is the most abundant lithology in the MS (36 harzburgites analysed) followed by 269 

impregnated dunite (9 impregnated dunites analysed) and pure dunite (4 pure dunites analysed). 270 

Mg# (Mg# = 100 × molar Mg/(Mg+Fetotal)) in mantle harzburgites is between 90.7 and 92.4. CaO, 271 

Al2O3, and TiO2 contents range from 0.19 to 2.07 wt.%, 0.53 to 0.91 wt.%, and 0.02 to 0.04 wt.%, 272 

respectively (Fig. 4). Harzburgite with dunite patches contains lower CaO concentrations than the 273 

average value (0.30 to 0.81 wt.%). Carbonate-bearing harzburgites are characterized by similar 274 

Mg#, Al2O3, and TiO2 contents (90.6, 0.70 wt.% and 0.03 wt.% on average respectively), and very 275 

high CaO concentrations ranging from 0.68 to 5.42 wt.% compared to carbonate-free harzburgites. 276 

Dunites from the MS have high Mg#, on average 90.2 for pure dunites and 91.1 for impregnated 277 

dunites (Fig. 4). The pure dunites have CaO, Al2O3 and TiO2 contents from 0.30 to 0.94 wt.%, 278 

0.32 to 0.72 wt.%, and 0.02 to 0.05 wt.% respectively, where the impregnated dunites have CaO 279 

contents ranging from 0.14 to 1.59 wt.%, Al2O3 from 0.21 to 0.95 wt.% and TiO2 from 0.02 to 280 

0.04 wt.% (Fig. 4). Along the MS, TiO2 and Al2O3 contents do not show any systematic variation 281 

with depth. On the other hand, the CaO content shows some variations downhole. The vertical 282 

evolution of the CaO content in harzburgites from Hole CM1A is different from other elements; 283 

successive trends of increasing and decreasing CaO with depth form a well-defined zigzag pattern 284 

In detail, it increases from 0.97 to 2.1 wt. % between 311 and 340 m and from 0.54 to 1.8 wt.% 285 

between 360 and 388 m, and decreases from 2.1 to 0.54 wt. % between 340 and 360 m then from 286 

1.8 to 0.8 wt.% at most from 388 to around 400 m. CaO contents in dunites and nearby harzburgites 287 

are correlated. Downhole intervals with the highest CaO contents are characterized by high 288 

carbonate vein concentrations (Fig. 3 XRD, and Fig. 4).  289 

The crust-mantle transition zone sequence (CMTZ) 290 

The CMTZ is composed mainly of pure and impregnated dunites (Fig. 1d). 27 pure dunites and 18 291 

impregnated dunites from Holes CM1A and CM2B CMTZ were analyzed. Both pure and 292 

impregnated dunites from the CMTZ display slightly lower Mg# (89.9 on average, Fig. 4) and 293 



Confidential manuscript submitted to Journal of Geophysical Research: Solid Earth 

 

CaO concentrations (pure dunites = 0.16 wt.%, and impregnated dunites = 0.28 wt.% on average, 294 

Fig. 4) compared to the dunites from the MS. Some dunites from CM1A DGS (between 252.96 295 

and 271.42 m) display lower Mg# (Mg# = 86.8-88.0) that seems mostly controlled by the increase 296 

in the FeO content. The TiO2 contents in pure and impregnated dunites from the CMTZ (0.04 wt.% 297 

on average) are slightly higher than the TiO2 contents in the MS dunites (0.03 wt.% on average). 298 

Al2O3 concentrations are lower in CMTZ pure dunites (0.42 wt.% on average) and higher in 299 

impregnated dunites (1.12 wt.% on average) compared to pure (0.53 wt.% on average) and 300 

impregnated (0.51 wt.% on average) dunites respectively from the MS. A similar zigzag pattern to 301 

the one observed in CaO along the MS is irregularly observed in CMTZ dunites (i.e. in CM1A, 302 

decreasing from 0.17 to 0.12 wt. % between 170 and 245 m and, increasing from 0.08 to 0.52 wt. 303 

% between 253 and 310 m, Fig. 4). This CaO zigzag variation in CM1A CMTZ dunites is 304 

associated with Mg# zigzag variation (decreasing from 91 to 89 wt. % between 170 and 245 m 305 

and, increasing from 87 to 91 wt. % between 253 and 310 m, Fig. 4).  The dunites’ CaO varies 306 

over ~ 20 m at the base of the CMTZ following the mantle harzburgites zigzag variation, whereas 307 

the Mg# varies over ~ 60 m, along with the FeO variations.      308 

The crustal sequence (CS)   309 

The two analyzed dunites from the Layered Gabbro Sequence (LGS) (C5707A-51Z-1 W, 31.0-310 

39.0 cm, 125.60 m in depth, and C5707A-58Z-2 W, 1.0-6.0 cm, 143.93 m in depth) are 311 

impregnated (Fig. 4), they have relatively low Mg# (85.6 and 85.5 respectively), compared to 312 

dunites in the other sequences. This tendency is similar to the dunites from CM1A DGS. CaO 313 

(0.04 wt.% and 0.19 wt.% respectively), Al2O3 (0.15 wt.% and 0.93 wt.% respectively) and TiO2 314 

(0.03 wt.%) contents are similar to the impregnated dunites values from the MS and the CMTZ 315 

(Fig. 3). 316 

CM Holes harzburgites, carbonate-bearing harzburgites, pure dunites and impregnated dunites 317 

(except CM1A LGS impregnated dunites) show similar major element compositions to previously 318 

reported harzburgites, dunites and impregnated dunites from the Oman ophiolite mantle and crust-319 

mantle transition zones (Fig. 5). Most of the pure and impregnated dunites from MS, and CMTZ 320 

plot above the terrestrial array (Earth differentiation trend, Jagoutz et al., 1979) in the MgO/SiO2 321 

vs. Al2O3/SiO2 diagram, whereas the harzburgites, carbonate-bearing harzburgites and some pure 322 

and impregnated dunites plot below. CM harzburgites have similar MgO and FeO to harzburgites 323 

from other massifs of the Oman ophiolite (with a slightly higher Mg# in some CM samples). The 324 

MgO-FeO variations in most of the CM dunites mimic the stoichiometric variation of the ol Mg-325 

Fe composition, similar to other pure/slightly impregnated dunites elsewhere, while only a few 326 

CM samples fall in the domain of the more highly impregnated dunites. Lower CaO and wider 327 

range of Al2O3 values characterize all the dunites compared to the harzburgites (Fig. 5).    328 

3.4.Whole rock trace element contents 329 

Chondrite-normalized Rare Earth Element (REE) and primitive mantle-normalized trace element 330 

variations and patterns are shown in Figures 6 and 7 respectively. Similar to other refractory 331 

peridotites from the Oman ophiolite mantle section and crust-mantle transition, the studied 332 

harzburgites, carbonate-bearing harzburgites, pure dunite and impregnated dunite whole rock 333 

concentrations are lower than chondritic (CN) and primitive mantle (PM) values (Figs. 6 and 7). 334 

Their REEs are characterized by three types of chondrite-normalized patterns: linear or flat linear, 335 
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U- or V-shaped, and concave-upward patterns. CM Holes show vertical trends, continuous over 336 

tens of meters, in their REE content. These are characterized by ~ 50 m-thick alternations between 337 

increasing and decreasing concentrations (‘zigzag’ patterns) (e.g. La, Yb, LREE patterns; Fig. 6). 338 

These trends along CM Holes are observed in both dunites and harzburgites, independent of the 339 

lithology, and the changes from one trend to another are commonly correlated with the presence 340 

of faults described by the structural team during the ChikyuOman2018 Leg 3 (Kelemen et al., 341 

2020a, 2020b).  342 

The mantle section sequence 343 

The mantle harzburgites show two types of chondrite-normalized REE patterns: (1) 19 344 

harzburgites display linear REE patterns characterized by a progressive depletion from heavy REE 345 

(HREE) (GdCN/YbCN= 0.25 ± 0.21, YbCN = 0.22 ± 0.11) to middle REE (MREE: Sm, Eu and Gd) 346 

(SmCN = 0.06 ± 0.05 and GdCN = 0.06 ± 0.05) and light (LREE) (LaCN/SmCN = 0.98 ± 0.74, LaCN 347 

= 0.06 ± 0.05). 6 samples show a positive Eu anomaly ((Eu/Eu*)CN = 2.36 ± 0.66, with (Eu/Eu*)CN 348 

= EuCN/√(SmCN × GdCN)). In detail, 12 harzburgites display linear LREE-depleted patterns (3 from 349 

CM1A and 9 from CM2B) characterized by a progressive depletion from HREE to LREE, and 7 350 

harzburgites (5 from CM1A and 2 from CM2B) display flat linear REE patterns characterized by 351 

slightly lower LREE concentrations compared to HREE concentrations. (2) 15 harzburgites (4 352 

from CM1A and 11 from CM2B) display U- or V-shaped REE patterns reflecting significant 353 

MREE depletion relative to LREE (LaCN/SmCN = 3.21 ± 1.18) and HREE (GdCN/YbCN = 0.07 ± 354 

0.06). 7 samples show a positive Eu anomaly ((Eu/Eu*)CN = 3.36 ± 1.69).  355 

The mantle pure dunites and impregnated dunites show two types of chondrite-normalized REE 356 

patterns: linear REE patterns (3 pure dunites from CM2B and 6 impregnated dunites (3 from 357 

CM1A and 3 from CM2B)) and U- or V-shaped REE patterns (5 pure dunites and 1 impregnated 358 

dunites from CM2B). In detail the linear REE pattern are subdivided to: (1) flat linear REE patterns 359 

displayed by the three CM2B impregnated dunites, they are characterized by roughly similar 360 

LREE (LaCN = 0.14 ± 0.07), MREE (SmCN = 0.10 ± 0.05), and HREE (YbCN = 0.18 ± 0.05) 361 

concentrations, together with a positive Eu anomaly ((Eu/Eu*)CN = 2.06 ± 0.65). (2) LREE-362 

depleted linear REE patterns displayed by 3 pure dunites and 3 impregnated dunites from CM2B 363 

show a progressive depletion from HREE (GdCN/YbCN= 0.25 ± 0.16 and 0.18 ± 0.04, YbCN = 0.22 364 

± 0.05 and 0.28 ± 0.07 respectively) to MREE (SmCN = 0.04 ± 0.03 and 0.04 ± 0.02, GdCN = 0.06 365 

± 0.04 and 0.05 ± 0.02 respectively) to LREE (LaCN/SmCN = 0.71 ± 0.28 and 0.37 ± 0.23, LaCN = 366 

0.03 ± 0.02 and 0.02 ± 0.01 respectively), 1 sample shows a positive Eu anomaly (Eu/Eu*)CN = 367 

1.60). The U- or V-shaped REE patterns (5 pure dunites and 1 impregnated dunites from CM2B) 368 

are characterized by significant MREE depletion relative to LREE (LaCN/SmCN = 2.66 ± 1.76) and 369 

HREE (GdCN/YbCN = 0.08 ± 0.12), 2 pure dunites display a positive Eu anomaly ((Eu/Eu*)CN = 370 

2.91 and 2.54).  371 

The crustal-mantle transition zone sequence (CMTZ) 372 

The pure dunites from the CMTZ show two types of chondrite-normalized REE patterns: (1) U-373 

shaped REE pattern displayed by 11 pure dunites (6 from CM1A and 5 from CM2B), with MREE 374 

depletion relative to LREE (LaCN/SmCN < 3.34) and HREE (0.07 < GdCN/YbCN < 0.27). Some 375 

samples also have positive Eu anomalies (4 samples from CM1A and 3 samples from CM2B, 376 

(Eu/Eu*)CN = 3.62 ± 2.49). (2) Linear LREE-depleted or slightly concave-upward REE patterns 377 
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displayed by 10 pure dunites from Hole CM1A (LaCN/YbCN = 0.07 ± 0.05) with similar HREE 378 

concentrations (YbCN = 0.13 ± 0.02) and lower LREE and MREE variation compared to HREE 379 

(LaCN = 0.01 ± 0.01; GdCN = 0.02 ± 0.01). Most samples display a positive Eu anomaly (6 samples, 380 

(Eu/Eu*)CN = 4.43 ± 2.44). 381 

The CMTZ impregnated dunites display three types of chondrite-normalized REE patterns: (1) 382 

The linear REE patterns displayed by 5 impregnated dunites (2 from CM1A and 3 from CM2B) 383 

are characterized by a progressive depletion from HREE (GdCN/YbCN= 0.38 ± 0.20, YbCN = 0.23 384 

± 0.09) to MREE (SmCN = 0.07 ± 0.06 and GdCN = 0.10 ± 0.09) to LREE (LaCN/SmCN = 0.77 ± 385 

0.19, LaCN = 0.05 ± 0.06), 2 samples show a positive and negative Eu anomaly ((Eu/Eu*)CN = 2.23 386 

and 0.45 respectively). (2) 3 samples from CM2B display U-shaped REE pattern, with MREE 387 

depletion relative to LREE (LaCN/SmCN < 3.93) and HREE (0.09 < GdCN/YbCN < 0.25). (3) One 388 

sample from CM1A and three samples from CM2B display concave-upward patterns characterized 389 

by a nearly flat slope of the HREE segment (GdCN/YbCN = 0.86 ± 0.39) followed by a progressive 390 

depletion from MREE to LREE (LaCN/SmCN = 0.13 ± 0.07). One CM1A impregnated dunite shows 391 

a negative Eu anomaly ((Eu/Eu*)CN = 0.42). 392 

The crustal sequence (CS)   393 

The two impregnated dunites from the Hole CM1A CS (C5707A-51Z-1 W, 31-39.0 cm, 125.60 m 394 

depth, and C5707A-58Z-2 W, 1.0-6.0 cm, 143.94 m depth) display relatively linear (REE) patterns 395 

characterized by a steady decrease of REE abundances HREE to LREE, as well as by a clear 396 

positive Eu anomaly ((Eu/Eu*)CN = 3.8-5.0).  397 

The PM-normalized multi-element patterns of most harzburgites and carbonate-bearing 398 

harzburgites exhibit strong to moderate enrichments in LILE, Th, U, Nb and Ta relative to LREE 399 

(e.g. averaged RbPMN/LaPMN = 12.95 and 18.24; UPMN/LaPMN = 4.64 and 4.45; NbPMN/LaPMN = 2.02 400 

and 4.30 respectively). The carbonate-bearing harzburgites display stronger Pb, Sr and Ti positive 401 

anomalies (averaged PbPMN/CePMN = 145.23; SrPMN/NdPMN = 373.50; TiPMN/GdPMN = 11.09) 402 

compared to the harzburgite (averaged PbPMN/CePMN = 25.83; SrPMN/NdPMN = 30.21, TiPMN/GdPMN 403 

= 3.52). Most pure dunites show similar enrichments exhibited by the harzburgites and carbonate-404 

bearing harzburgites in LILE, Th, U, Nb and Ta relative to LREE (e.g. averaged RbPMN/LaPMN = 405 

20.0; UPMN/LaPMN = 5.12; NbPMN/LaPMN = 4.10), but with smaller Pb and Sr positive anomalies 406 

(averaged PbPMN/CePMN = 19.68; SrPMN/NdPMN = 29.05). The pure dunites display stronger Ti 407 

positive anomalies compared to the harzburgites and smaller compared to the carbonate-bearing 408 

harzburgites (TiPMN/GdPMN = 8.98). The impregnated dunites exhibit moderate LILE, Th, U, Nb 409 

and Ta enrichments relative to LREE (e.g. averaged RbPMN/LaPMN = 3.94; UPMN/LaPMN = 3.12; 410 

NbPMN/LaPMN = 1.05), and the smallest Pb, Sr and Ti positive anomalies compared to all groups of 411 

rocks (averaged PbPMN/CePMN = 9.99; SrPMN/NdPMN = 14.03; TiPMN/GdPMN = 1.62).  412 

4 Discussion 413 

4.1 Effects of serpentinization and carbonation on the composition of dunites and 414 

harzburgites  415 

In some cases, alteration, especially serpentinization of ultramafic rocks (sometimes associated 416 

with mineralization related to hydrothermal activity), may significantly modify bulk-rock 417 



Confidential manuscript submitted to Journal of Geophysical Research: Solid Earth 

 

chemical composition (e.g. Beinlich et al., 2020; de Obeso & Kelemen, 2018; Gruau et al., 1998; 418 

Hodel et al., 2018; Malvoisin, 2015; Paulick et al., 2006; Snow & Dick, 1995). As described above, 419 

the dunites and harzburgites from the crust-mantle transition and mantle section of Holes CM1A 420 

and CM2B are extensively serpentinized (Fig. 2), up to 100% in many samples. In addition, strong 421 

carbonate-veining affected parts of the cores, especially at the base of Hole CM2B where it is 422 

intensely faulted (carbonate-bearing harzburgites, Fig. 3, CO2 and CaCO3 logs). To decipher the 423 

effects of such significant fluid/rock interactions on the composition of OmanDP CM samples is 424 

critical (especially on the trace elements). It particularly concerns the dunites, because of their 425 

more altered character (perhaps related to higher ol mode), and because their trace element budget 426 

was more significantly controlled by primary ol and trace phases such as pyroxenes before 427 

alteration (unlike the harzburgites that contain abundant residual pyroxenes). 428 

The LOI content is generally higher in carbonate-bearing harzburgite (averaged LOI = 13.04 ± 429 

9.57 wt.%), pure dunites (averaged LOI = 13.92 ± 1.21 wt.%) and impregnated dunites (averaged 430 

LOI = 13.33 ± 2.02 wt.%) than in harzburgites (averaged LOI = 11.91 ± 1.53 wt.%). 431 

Serpentinization of many of the studied samples appears to have led to enrichment in SiO2 as 432 

already observed in abyssal peridotites affected by a Si addition, and/or magnesium loss (e.g. de 433 

Obeso & Kelemen, 2018; Paulick et al., 2006; Snow & Dick, 1995). This open system behavior is 434 

confirmed by the plot of some dunites (3 from CM2B) and impregnated dunites (4 from CM1A 435 

and 4 from CM2B) below the mantle fractionation array at the same field as the harzburgites and 436 

the carbonate-bearing harzburgites (Fig. 5a), suggesting MgO loss and/or SiO2 enrichment as 437 

reported in pervasively serpentinized abyssal peridotites or talc-bearing serpentinites (de Obeso & 438 

Kelemen, 2018; Snow & Dick, 1995; Paulick et al., 2006). This may be the reason why there are 439 

elevated normative pyroxene modes in samples that were classified as dunites based on 440 

macroscopic (hand specimen) and microscopic (thin sections) observations (Fig. SD-1, 441 

supplementary data table 1). Some of these dunites have no pyroxenes or pyroxene pseudomorphs 442 

in thin section. This is supported by XRD analyses performed during ChikyuOman 2018 Phase 2 443 

Leg 3 which revealed the widespread occurrence of brucite associated with other alteration 444 

minerals (Kelemen et al., 2020a, 2020b). It also appears clear that the higher CaCO3 (averaged 445 

CaCO3 = 3.93 ± 10.85 wt.% compared to 0.40 ± 0.54 wt.% in harzburgites) together with higher 446 

CO2 contents (averaged CO2 = 2.82 ± 9.501 wt.% compared to 0.20 ± 0.25 wt.% in harzburgites) 447 

in the carbonate-bearing harzburgites at the base of CM1A and CM2B (4 from CM1A and 4 from 448 

CM2B) are related to carbonate-veins. However, the covariation of Ni and Co contents with the 449 

XMg suggests that the possible precipitation of sulfides related to these strong water/rock 450 

interactions did not erase the primary compositions.  451 

The plots of the concentration of several trace elements as a function of the LOI (Fig. 8a-c) and of 452 

the CO2 and CaCO3 contents show no clear correlation. On the contrary, some reasonably good 453 

covariations are observed between Th and U, Nb and especially La on one hand (Fig. 8 h-j), and 454 

Yb, Ti and Hf on the other hand (Fig. 8 n-o); the Zr content is partially correlated with both Th 455 

and Yb (Fig. 8 f, k). Since Th and Ti are generally considered immobile during alteration processes 456 

(e.g. Kogiso et al., 1997; Niu, 2004; Paulick et al., 2006), these trends probably reflect one or more 457 

overprinted geochemical signatures acquired during high temperature, magmatic processes rather 458 

than during a later serpentinization event. The large ion lithophile elements as well as Li and Pb 459 

do not correlate with the LOI nor with other elements (Fig. 8 b, c, g, l, m), and their compositions 460 

may result from the overprint of several processes having operated over a large range of 461 

temperatures and conditions, from igneous to alteration events. Accordingly, only the 462 
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concentrations in REE, HFSE and Th-U, will be used to discuss the igneous processes that led to 463 

the formation of the dunites from the crust-mantle transition zone and mantle sequence sampled 464 

by the CM Holes. 465 

4.2. Partial melting vs. melt-rock reaction in the Oman ophiolite mantle section 466 

The mantle section of CM Holes (Wadi Tayin massif) is composed of refractory harzburgites with 467 

relatively homogeneous modal and major element compositions (excluding some major elements 468 

e.g. CaO and Na2O, Figs. 4 and 5) and more variable trace element contents (Figs. 6, 7a and 7b).  469 

Similar to other previously studied Wadi Tayin massif and Maqsad diapir harzburgites (Godard et 470 

al., 2000; Hanghøj et al., 2010; Monnier et al., 2006) and most refractory abyssal peridotites 471 

(Godard et al., 2008; Niu, 1997; Warren et al., 2009), CM harzburgites plot near the most depleted 472 

end of the mantle fractionation array (Fig. 5a). They display similar low Al2O3/SiO2 ratios in 473 

comparison to other harzburgites from Wadi Tayin and Maqsad harzburgites (0.01-0.02, 0.01-0.04 474 

and 0.01-0.08 respectively), and a high MgO/SiO2 ratios typical of refractory peridotites (0.98-475 

1.10, 0.95-1.10 and 0.96-1.15 respectively). Oman harzburgites are characterized by narrow FeO 476 

and MgO contents compared to the pure and impregnated dunites (Fig. 5b), with slightly higher 477 

Mg# in CM harzburgites (90.7-92.4) compared to Wadi Tayin and Maqsad harzburgites (89.6-478 

91.5 and 88.4-91.1 respectively). Generally, Al2O3 and CaO show broad positive correlation in 479 

harzburgites from Wadi Tayin massif and Maqsad diapir (Fig. 5c), Godard et al, (2000) 480 

demonstrating that the observed Al2O3/CaO ratio variability displayed by Wadi Tayin and Maqsad 481 

harzburgites decreases with increasing cpx content in the main harzburgites sequence to lower 482 

values in the cpx-harzburgites at the base of the mantle section. Al2O3/CaO ratio variability is also 483 

observed along cores CM1A and CM2B, however CaO variability at the bottom of CM Holes is 484 

related to CO2-bearing fluids interactions with CM harzburgites (see section 4.1.).  485 

Most pure and impregnated dunites from CM mantle and crust-mantle transition zone plot above 486 

the mantle fractionation array, similar to previously studied dunites and impregnated dunites from 487 

the mantle section of Wadi Tayin massif (Godard et al., 2000; Hanghøj et al., 2010) and the CMTZ 488 

at the top of Maqsad diapir (Rospabé et al., 2018a, 2019a) (Fig. 5a). CM pure and impregnated 489 

dunites show similar FeO, MgO, Al2O3 and CaO contents to other pure and impregnated dunites 490 

from Wadi Tayin and Maqsad harzburgites (Fig. 5b, 5c). The CM mantle harzburgites, pure and 491 

impregnated dunites show variable trace element compositions and contrasting shapes in their REE 492 

and extended trace element patterns (Fig. 7a-b) (their major element compositions are much more 493 

homogeneous, Figs. 4 and 5). Significant geochemical variability of the mantle peridotites has also 494 

been observed all along the Oman ophiolite. In some cases, previous geochemical studies inferred 495 

the overprint of partial melting and melt/peridotite reaction processes in the mantle harzburgite 496 

signatures (e.g. Gerbert-Gaillard, 2002; Girardeau et al., 2002; Godard et al., 2000; Hanghøj et al., 497 

2010; Kanke & Takazawa, 2014; Khedr et al., 2014; Le Mée et al., 2004; Monnier et al., 2006; 498 

Takazawa et al., 2003). 499 

Two different geochemical trends are combined in the trace element contents of all samples studied 500 

here. On one hand, Yb shows a good correlation with Ti and some HFSE (Fig.8o). Heavy REE 501 

have been demonstrated to be less impacted than MREE and especially LREE during melt-502 

peridotite reactions such as melt/rock re-equilibration during melt migration or in response to 503 

conversion of harzburgite to dunite (e.g. Godard et al., 1995; Kelemen et al., 1990; Navon & 504 

Stolper, 1987; Prinzhofer & Allègre, 1985; Spiegelman & Kelemen, 2003; Vernières et al., 1997; 505 
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Rospabé et al., 2018a). Therefore, these correlations may have been formed during partial melting, 506 

with little or no overprint by subsequent melt-peridotite interactions at shallow depth. On the other 507 

hand, we observe a good correlation between Th, U and La, and partially with the HFSE (e.g. Nb, 508 

Fig. 8h-j), that does not correlate with Yb or Ti concentrations. As the U-/V-shape of the REE 509 

patterns, resulting from the selective enrichment in LREE relative to MREE and HREE in 510 

peridotites, may be attributed to chromatographic fractionation associated with interstitial melt 511 

percolation and/or to the transformation of harzburgite into dunite (e.g. Godard et al., 1995; Navon 512 

& Stolper, 1987; Prinzhofer & Allègre, 1985; Vernières et al., 1997; Rospabé et al., 2018a), we 513 

interpret this second geochemical signature as the overprint of melt-peridotite reaction processes.   514 

4.2.1. Geochemical logs  515 

Vertical chemical trends are observed along CM Holes, especially in REE (e.g. La, Yb; Fig. 6), 516 

and in some major elements (e.g. FeO, MgO, CaO, Na2O; Fig. 4). These chemical trends are 517 

continuous over tens of meters, and alternate between increasing and decreasing (‘zigzag’ patterns) 518 

with a characteristic thickness of ~ 50 m. Abrupt changes in these trends, particularly in Yb, LREE 519 

and HREE concentrations, are mostly associated with the presence of faults (Fig. 6). The trends 520 

observed in CM1A and CM2B dunites and harzburgites do not show any significant correlation as 521 

a function of LOI, CO2, or CaCO3 contents (Figs. 3 and 8). This, together with the continuity of 522 

each individual trend, suggests that the trends were imprinted at high temperature and are not 523 

related to post-magmatic, low temperature events. Furthermore, the trends are observed in both 524 

dunites and harzburgites in the mantle section, independent of dunite and harzburgite alternations. 525 

Similar trend changes attributed to the focus of the percolation/migration along faults have been 526 

observed for the Maqsad CMTZ dunites, with the same characteristic thickness of about 50 m 527 

(Rospabé et al. 2019a, 2020). Our results seem to confirm the significant impact of deep-seated 528 

syn-magmatic faults on the development of the crust-mantle transition at the expense of the 529 

shallower mantle and the recorded whole rock chemical signatures, in addition to their impact on 530 

the formation of the lower oceanic crust (Abily et al., 2011; see also Sauter et al., 2021). Such 531 

structural characters must have developed early and are not just restricted to the Maqsad area (e.g. 532 

Rospabé (2018) for other Oman areas and Sauter et al. (2021) for present-day oceans). 533 

4.2.2. The origin of REE pattern shapes in Oman ophiolite harzburgites 534 

CM mantle harzburgites display two types of chondrite-normalized REE patterns: (1) linear (3 535 

harzburgites from CM1A, and 9 from CM2B) to flat linear REE patterns characterized by a 536 

progressive depletion from HREE to MREE to LREE, some samples show similar LREE and 537 

HREE concentrations and slightly lower LREE and MREE variation compared to HREE (5 538 

harzburgites from CM1A and 2 from CM2B); (2) U- or V-shaped REE patterns reflecting 539 

significant MREE depletion relative to LREE and HREE (4 harzburgites from CM1A and 11 from 540 

CM2B, and all the 8 carbonate-bearing harzburgites from CM1A and CM2B). Most of CM 541 

harzburgites are enriched in LREE relative to MREE (7 harzburgites display flat linear REE 542 

patterns and 15 display U- or V-shaped REE patterns) with 12 harzburgites (3 from CM1A and 9 543 

from CM2B) that are depleted in LREE relative to MREE and HREE, this is not expected for 544 

mantle residues after near-fractional partial melting (Godard et al., 1995, 2000, 2008; Gruau et al., 545 

1998; Johnson & Dick, 1992; Johnson et al., 1990; Kelemen et al., 1997; Navon & Stolper, 1987; 546 

Prinzhofer & Allègre, 1985; Vernières et al., 1997). The linear REE patterns observed in CM 547 

harzburgites are similar to the main harzburgites mantle section REE patterns from Wadi Tayin 548 
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described by Godard et al. (2000); these harzburgites have relatively homogeneous modal and 549 

major element compositions. The Maqsad diapir area harzburgites and Samail massif cpx-550 

harzburgites display concave-upward and ‘spoon-shaped’ REE patterns respectively, these 551 

patterns are not observed in CM Wadi Tayin harzburgites. The Maqsad diapir has been interpreted 552 

as frozen upwelling mantle that fed a former spreading centre (Ceuleneer et al., 1988). The 553 

concave-upward REE patterns and the higher Al2O3/CaO ratios and TiO2 contents in the diapir 554 

harzburgites result from the feedback between deformation and melt percolation, and the cpx-555 

harzburgites REE patterns and chemical characteristics are interpreted as a result of a cpx forming 556 

melt-rock reaction at decreasing melt mass (at near-solidus conditions) along the lithosphere-557 

asthenosphere boundary (Godard et al., 2000).    558 

Figure 9 shows the modal composition of CM1A, CM2B (harzburgites and carbonate-bearing 559 

harzburgites) and Nakhl-Samail-Wadi Tayin massif samples (harzburgites, Godard et al., 2000) 560 

plotted with two published melting models: model 1 represents the Niu (1997) polybaric melting 561 

model (1a) with and (1b) without excess ol; model 2 represents the Walter et al. (1995) isobaric 562 

melting at 11 (2a), 16 (2b) and 17 kbar (2c). The figure indicates that CM harzburgites could result 563 

from high degrees of partial melting and melt extraction in the range of 15-30 % (e.g. Asimow et 564 

al., 2001; Kelemen et al., 1990, 1992, 1995; Niu, 1997; Walter et al., 1995), as suggested by 565 

Godard et al. (2000) for the main harzburgite section of the MORB-like, NW-SE paleo spreading 566 

segment (Nakhl-Samail-Wadi Tayin massifs). This range is higher than melting degrees producing 567 

MORB in present-day oceans (5-10 %; Langmuir et al., 1992) and high-Ti magmas such as those 568 

forming the dyke complex and the MORB-like lava sequence in Oman (Godard et al., 2006; 569 

Lippard et al., 1986). However, Niu (1997) and Dick & Natland (1996) have reconciled this 570 

inconsistency by considering that abyssal peridotites represent only the shallowest part of the 571 

mantle column affected by partial melting and therefore record the highest melting degrees. In 572 

contrast, MORB are thought to represent integrated, mixed melt fractions from polybaric 573 

decompression melting over 60-100 km at ascent melting column and therefore record average 574 

melting degrees. 575 

The linear REE patterns of some studied harzburgites do not show features of strong LREE 576 

depletion, but most of the other CM harzburgites show U-shaped REE patterns, characterized by 577 

LREE enrichment. This, together with the high (primary) proportion of ol (75-90 %) observed in 578 

some samples, point to the fact that near fractional partial melting alone fails to explain the 579 

harzburgite geochemical signatures along the CM cores. Vernières et al. (1997) noted that the 580 

relatively unfractionated REE distribution may simply result from melt transport through the 581 

melting peridotites, as an “open-system melting process”. This process would result in a negative 582 

correlation between LREE/HREE ratios and peridotite fertility, as commonly observed in other 583 

ophiolites (e.g. Prinzhofer & Allègre, 1985). It results from the competition between the partial 584 

melting continuously depleting the mantle residue on one hand and chromatographic effects 585 

related to the melt extraction that enrich the residue in the most incompatible elements on the other 586 

hand (e.g. Johnson et al., 1990; Navon & Stolper, 1987; Niu, 2004; Takazawa et al., 1992; 587 

Spiegelman & Kelemen, 2003). 588 

 589 

CM harzburgites show good correlations among Yb, Ti and Hf concentrations, indicating that the 590 

variability in HREE was more likely controlled by the melting process rather than by the overprint 591 

of melt-rock reaction processes (Fig. 8 n-o). We compared the linear REE patterns in CM 592 

harzburgites to Vernières et al. (1997) plate model calculations performed by Godard et al. (2000), 593 

https://www.sciencedirect.com/science/article/pii/S0012821X00001497#BIB2
https://www.sciencedirect.com/science/article/pii/S0012821X00001497#BIB25
https://www.sciencedirect.com/science/article/pii/S0012821X00001497#BIB25
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who modeled trace elements in peridotites form the Nakhl-Samail-Wadi Tayin massifs to explore 594 

whether the REE variations observed in the studied harzburgites resulted from reactive porous 595 

flow at increasing melt mass, or from partial melting coupled with melt transport (Fig. 10). The 596 

authors first simulated a standard incremental melting model (experiment a, Fig. 10a, Johnson et 597 

al., 1990). Then, they simulated reactive porous flow at increasing melt mass in a second model 598 

(experiment b, Fig. 10b). Experiment (a) produces strongly LREE-depleted peridotite residues, 599 

quite different in shape from CM and other Oman harzburgites. This experiment does not provide 600 

a better fit to the data when the presence of the trapped melt in the residue is included (Fig. 10c). 601 

Experiment (b) produces peridotite residues moderately depleted in LREE and with a small amount 602 

of trapped melt (0.5-1 %) (Fig. 10d). The linear REE patterns of harzburgites from Holes CM1A 603 

and CM2B are similar to Nakhl-Samail-Wadi Tayin harzburgites of Godard et al. (2000) and well 604 

reproduced by experiment (b). The model suggests that part of the studied harzburgites were 605 

pervasively percolated by diffuse melt flow which affected their geochemical signature. However, 606 

the presence of many dunite intervals at the top of the mantle section requires an orthopyroxene-607 

consuming reaction between the residual peridotites and infiltrated melts. 608 

 609 

4.2.3. Cryptic and modal mantle refertilization in Oman ophiolite 610 

The CMTZ pure dunites from CM holes (Wadi Tayin massif) display two types of chondrite-611 

normalized REE patterns: (1) U-shaped REE patterns (6 samples from CM1A and 5 from CM2B); 612 

(2) Linear LREE-depleted or slightly concave-upward REE patterns (10 samples from Hole 613 

CM1A) with similar HREE, MREE and LREE concentrations, with slightly and lower LREE and 614 

MREE concentrations compared to HREE in some samples. The CMTZ impregnated dunites 615 

display three types of chondrite-normalized REE patterns: (1) linear REE patterns (2 samples from 616 

CM1A and 3 from CM2B); (2) U-shaped REE patterns (3 samples from CM2B); (3) concave-617 

upward patterns characterized by a nearly flat slope of the HREE segment followed by a 618 

progressive depletion from MREE to LREE. The Maqsad mantle-crust transition zone pure dunites 619 

trace elements are characterized by U-shaped to concave-upward REE patterns (Godard et al., 620 

2000; Rospabé et al., 2018a, 2019a), similar to Maqsad diapir harzburgites (Godard et al., 2000) 621 

and to CM mantle dunites and harzburgites trace element patterns but with larger range of LREE 622 

variations in Maqsad MTZ dunites compared to Wadi Tayin CMTZ (CM cores). Maqsad 623 

impregnated dunites described by Rospabé et al. (2018a, 2019a) are characterized by similar trace 624 

element patterns to CM impregnated dunites, varying between linear LREE-depleted to variably 625 

concave-upward trace elements patterns. Maqsad MTZ pure and impregnated dunites have been 626 

interpreted as end-members that recorded different stage of an initially shared same igneous 627 

processes (Rospabé et al., 2018a, 2019a). Boudier & Nicolas (1995) and Godard et al (2000) attest 628 

that Maqsad MTZ dunites are diapir harzburgites that were strongly modified by ol-forming melt-629 

rock reactions at high melt/rock ratios. Furthermore, Rospabé et al. (2018a) argue that the pure 630 

dunites are residues left after extraction of a percolating melt, whereas, the impregnated dunites 631 

correspond to a frozen stage before complete melt extraction.     632 

Relatively good covariations are observed in CM dunites and harzburgites between Th and U, Nb 633 

and especially La (Fig. 8 h, j), whereas their concentrations are not correlated with the HREE. 634 

Following many previous works, we interpret these correlations as the result of melt/peridotite 635 

reaction contemporaneously with, and/or subsequent to, the partial melting event discussed above. 636 

https://www.sciencedirect.com/science/article/pii/S0012821X00001497#FIG7
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The crust-mantle transition zone pure and impregnated dunites from CM Holes display similar 637 

REE patterns to the dunites and harzburgites in the mantle section, U-/V-shaped REE patterns 638 

(displayed by 11 pure dunites and 3 impregnated dunites from the CM, CMTZ) cannot be 639 

explained by a pure cumulate origin (Fig. 7a-b). Several studies argued that the LREE enrichment 640 

relative to MREE cannot be explained by REE partition coefficients between ol and melt (Frey et 641 

al., 1978; Hauri & Hart, 1995; Kelemen et al., 1993; Lee et al., 2007; McKenzie & O’Nions, 1991; 642 

Sun & Liang, 2014) and may better be explained by peridotite metasomatism as a result of melt-643 

peridotite reactions (e.g. Agranier & Lee, 2007; Godard et al., 1995; Navon & Stolper, 1987; 644 

Vernières et al., 1997). Most CM harzburgites display U-shaped REE patterns (15 harzburgites 645 

and 8 carbonate-bearing harzburgites) characterized by a LREE-enrichment compared to the linear 646 

REE patterns (12 harzburgites), with strong LREE enrichments indicating extensive interaction 647 

with a pervasive melt (Fig. 6a-b; e.g. Gerbert-Gaillard, 2002; Godard et al., 2000; Monnier et al., 648 

2006). CM samples, in particular in Hole CM2B, show downhole variations that indicate a 649 

decreasing degree of melting with increasing depth (see Section 4.3.3. below geochemical logs). 650 

Two intervals from 170 m to 260 m, and 230 m to 300 m depth, are particularly good examples of 651 

this (Fig. 6, CM2B e.g. LREE, La, U). The correlations observed between LREE enrichment and 652 

an increasing fraction of trapped melt - calculated from experiment (b and d) in the most residual 653 

peridotites from ‘Plate model’ of Vernières et al. (1997) applied by Godard et al. (2000) 654 

(experiment b and d, see Fig.10) - in CM samples (e,g, La, Fig. 6), suggest that CM samples have 655 

experienced extensive interaction with a pervasive melt or fluid (for fluid-interaction at Maqsad 656 

CMTZ see also Rospabé et al. 2017, 2018a, 2019a). In the mantle section sampled by the CM 657 

cores, crosscutting dunites are widespread and represent end products of the opx-consuming 658 

reaction. The harzburgites experienced a more extensive melt flow at a shallow level that 659 

contributed to their ol enrichment (Fig. 1e, logs). The dunites were probably individualized by 660 

channeled percolation at the top of the melting column.  661 

 662 

4.3. General geological and magmatic context of the OmanDP CM sites 663 

Most studies of the ultramafic rocks from the Oman ophiolite consider the dunites to be channels 664 

in the mantle or massive at the crust-mantle transition, and replacive in origin. In this model, the 665 

dunites represent residues of reaction between a melt undersaturated in silica at low pressure and 666 

the host mantle harzburgites during a melt percolation event that led to the complete consumption 667 

of orthopyroxene and to the concomitant precipitation of olivine (e.g. Abily & Ceuleneer, 2013; 668 

Boudier & Nicolas, 1995; Braun et al., 2002; Godard et al., 2000; Kelemen et al., 1995, 1997; 669 

Koga et al., 2001; Rabinowicz et al., 1987; Rospabé et al., 2017, 2018a, 2019a). The hypothesis 670 

of the replacive origin of the dunites, also proposed for other ophiolitic sections and for dunites 671 

associated with abyssal peridotites (e.g. Dick & Natland, 1996; Kelemen et al., 1990; Godard et 672 

al., 2008; Quick, 1981a, 1981b), contrasts with an older cumulative model, in which ol 673 

crystallization and accumulation created the lowermost part of the oceanic crust (e.g. Elthon, 1979; 674 

O’Hara, 1965; Smewing, 1981). Alternatively, it has been proposed that the crust-mantle transition 675 

of the Oman ophiolite may be of double origin, with the lower 80% as replacive and the upper 676 

20% as cumulates (Abily & Ceuleneer, 2013). In the case of the OmanDP CM cores, the 677 

alternations between dunites and mantle harzburgites at the top of the mantle sequence is consistent 678 

with a melt/rock reaction origin, a feature observed at crust-mantle transitions of many massifs 679 

https://www.sciencedirect.com/science/article/pii/S0012821X00001497#BIB41
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along the Oman ophiolite (e.g. Boudier & Nicolas, 1995) and that cannot be accounted for by a 680 

simple fractional crystallization process.  681 

The CM ultramafic rocks studied in this paper (Wadi Tayin) compared to previously studied 682 

Maqsad MTZ dunites and diapir harzburgites show that: (1) the dunites have a replacive origin, 683 

they are the products of melt-harzburgite reaction leading to the complete consumption of 684 

orthopyroxene and concomitant precipitation of ol (e.g. Abily & Ceuleneer, 2013; Boudier & 685 

Nicolas, 1995; Gerbert-Gaillard, 2002; Godard et al., 2000; Kelemen et al., 1995, 1997; Koga et 686 

al., 2001; Rabinowicz et al., 1987; Rospabé et al., 2018a, and references therein).  (2) The 687 

alternations between dunites and mantle harzburgites observed at the top of the mantle sequence 688 

of CM Holes were also observed at the base of the crust-mantle transition in many other massifs 689 

along the Oman ophiolite (e.g. Boudier & Nicolas, 1995), recording a snapshot of melt/harzburgite 690 

reaction frozen at the time of the uppermost mantle dunitization. (3) The vertical chemical trend 691 

changes related to the focus of the percolation/migration along faults observed at CM Holes 692 

samples have been previously observed at the Maqsad CMTZ dunites, with the same characteristic 693 

thickness of about 50 m (Rospabé et al. 2019a, 2020), confirming the control of synmagmatic 694 

faulting on melt/peridotite reactions and the petrological and geochemical structuration of the 695 

CMTZ. 696 

Structural and petrological mappings of the Oman ophiolite have revealed contrasting domains 697 

along the ophiolite. Especially, the spatially varying nature and composition of the dikes cross-698 

cutting the mantle section reflect formation involving a MORB-like melt mainly in the south-699 

eastern Nakhl, Samail and Wadi Tayin massifs (troctolite and ol-gabbro dikes), contrasting with a 700 

more widespread depleted, calc-alkaline magma composition elsewhere (mostly gabbronorite and 701 

pyroxenite dikes) (Python & Ceuleneer, 2003; Python et al., 2008). The MOR-like area 702 

characterizes a NW-SE oriented paleo-spreading segment that seems to have developed within 703 

older, already accreted lithosphere of depleted calc-alkaline affinity (Ceuleneer et al., 1988; 1996; 704 

Gerbert-Gaillard, 2002; Godard et al., 2000; Nicolas et al., 2000; Python & Ceuleneer, 2003). This 705 

MORB segment is hypothesized to have been centered on, and fed with melts by, the fossil mantle 706 

diapir of the Maqsad area in the Samail massif (Rabinowicz et al., 1987; Ceuleneer et al., 1988; 707 

Jousselin et al., 1998). According to the published structural and petrological maps, the drilling 708 

site is located within the area where melts were MORB-like, near the NE limit of the paleo 709 

spreading segment. This delimitation has been defined as the Makhibiyah shear zone in the Wadi 710 

Tayin massif, making the contact with the older lithosphere (Nicolas & Boudier, 2008). 711 

Accordingly, it is reasonable to consider that a MORB-like melt played an important role in the 712 

formation of the CM dunites and harzburgites. 713 

The two main differences with the crust-mantle transition and mantle section of the neighboring 714 

Maqsad area, that have been extensively studied due to their diapir-related features, are that (1) if 715 

the two sites (Maqsad and OmanDP CM) are both more or less related to the rise of the mantle 716 

diapir, the CM site may have had less pronounced magmatic activity due to its distance to the axis 717 

of the diapir, and (2) the CM site may have been contaminated by possible remelting of the base 718 

of the old lithosphere during the development of the MORB segment, as evidenced in the Samail 719 

massif at the borders of the area influenced by the diapir (Amri et al., 1996; Benoit et al., 1999; 720 

Clénet et al., 2010). In cores from Holes CM1A and CM2B, core description revealed the 721 

widespread presence of magmatic impregnations in the dunites (i.e. minerals that crystallized 722 

interstitially between ol grain during melt migration; e.g. Benn et al., 1988; Dick, 1989), and of 723 
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magmatic segregation or more intruding dikes (Kelemen et al., 2020a, 2020b). This evidence for 724 

melt migration was described within both the crust-mantle transition and the mantle sequence. The 725 

impregnations in dunites are composed of plagioclase and clinopyroxene, and the magmatic 726 

segregations and dikes are mostly troctolitic and gabbroic, consistent with a MORB-like parent 727 

melt produced by decompression melting in the mantle. On the other hand, more exotic websterite 728 

and anorthositic gabbros to anorthosites were also observed in the mantle sequence and the 729 

dunite/harzburgite alternations.  730 

CM ultramafic rocks studied in this paper (Wadi Tayin) show thus multiple differences compared 731 

to the previously studied Maqsad CMTZ dunites and diapir harzburgites: (1) the CM samples have 732 

been more intensively affected by low temperature alteration features (serpentinization up to 100% 733 

in many samples). (2)  The crust-mantle transition zone is thinner along CM drilled Holes (~150 734 

m, Kelemen et al., 2020a, 2020b) compared to the Maqsad CMTZ (300-400 m, Abily and 735 

Ceuleneer, 2013, Boudier and Nicolas, 1995; Jousselin and Nicolas, 2000; Rabinowicz et al., 1987; 736 

Rospabé, 2018; Rospabé et al., 2019a). (3) CM pure dunites display lower LREE concentrations 737 

compared to the Maqsad ones. (4) Two major trends are observed in the trace element signatures 738 

of CM dunites and harzburgites, with good correlations between the Th and U, Nb and LREE on 739 

one hand, and between the HREE, Ti and Hf on the other hand, that are not observed at Maqsad. 740 

(5) The CM site CMTZ is mostly composed of pure dunites at the top and impregnated dunites at 741 

the bottom, whereas the typical structuration of the Maqsad CMTZ is generally composed by 742 

impregnated dunites at the top and pure dunites at the bottom (Rospabé, 2018; Rospabé et al. 743 

2019a). (6) The dunites’ impregnation characteristic appears to be different in Maqsad (e.g., mostly 744 

plagioclase and clinopyroxene (Boudier and Nicolas, 1995; Koga et al., 2001; Abily and 745 

Ceuleneer, 2013) but also widespread opx and amphibole impregnations in the higher level of the 746 

transition zone (Rospabé et al., 2017, 2018a, 2019a) compared to CM Hole dunites (plagioclase 747 

and clinopyroxene impregnations only). Similarly, exotic silicate inclusions (opx, amph, mica for 748 

the more abundant) enclosed in disseminated chromite grains in the dunites from the Maqsad area 749 

as well as in associated chromitite ore bodies (Lorand and Ceuleneer, 1989; Leblanc and 750 

Ceuleneer, 1991; Schiano et al., 1997; Borisova et al., 2012; Rollinson et al., 2018; Zagrtdenov et 751 

al., 2018; Rospabé et al., 2019b; 2020, 2021), suggest the involvement of a fluid or fluid-rich melt 752 

in the melt/rock reactions, which were not investigated in existing work on cores CM1A and 753 

CM2B - a few chromite schlierens have been sampled along the cores but not studied in details 754 

yet. Further investigation of CM ultramafic rock mineral chemistry is need to evaluate these 755 

discrepancies between the two CM and Maqsad sites. 756 

All the above similarities and differences between CM Wadi Tayin and Maqsad ultramafic rocks 757 

point to a lighter imprint of melt-rock reaction at CM compared to Maqsad (e.g., thinner transition 758 

zone, lighter LREE enrichment in dunites, two distinct geochemical trends in trace elements, that 759 

perhaps are totally overprinted by stronger melt/rock reaction at Maqsad). This could be the 760 

consequence of one or the several factors: It could be related to the structural position of Wadi 761 

Tayin (at the periphery of the diapir) and Maqsad (centered on the diapir) leading to different 762 

melt/rock ratios (i.e., the geological context), to timing of the occurrence of the melt-rock 763 

interaction, and/or to the nature of the percolating magma/fluid involved in the melt-rock reactions. 764 
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Further detailed mineral chemistry, trace element geochemical modelling, structural and 765 

microstructural studies will be of use for addressing the above questions.          766 

Conclusions 767 

Continuous sampling of the Oman crust-mantle transition zone at Holes CM1A and CM2B, 768 

recovered by the Oman Drilling Project allows the study of the large range of petrological and 769 

geochemical variations in Oman ultramafic rocks with an unprecedented high resolution. Volatile 770 

(H2O and CO2), and major and trace elements of 56 dunites and 49 harzburgites from Holes CM1A 771 

and CM2B have been analyzed. CM1A and CM2B volatile element contents reflect extensive 772 

serpentinization (+/- carbonation) linked to the late-stage interaction with H2O- and/or CO2-773 

bearing fluids. The refractory samples are characterized by relatively homogeneous modal and 774 

major element compositions, whereas other samples show primary cryptic and modal 775 

refertilization. Bulk rock Mg, Si and Al systematics and normative mineral modes suggest that 776 

open system behavior during alteration (Mg loss and/or Si gain) affected many samples. However, 777 

the trace element concentrations are interpreted as reflecting magmatic processes and exhibit 778 

significant variations: the refractory harzburgites characterized by linear REE patterns are 779 

interpreted as mantle residues after ≥ 15 % melt extraction. The REE signatures in these samples 780 

can be explained by melt transport associated with partial melting. Other harzburgites displaying 781 

U-/V-shaped REE patterns are interpreted as the result of interstitial melt percolation. The pure 782 

and impregnated dunites from the mantle and the crust-mantle transition zones are characterized 783 

by similar trace element patterns as the mantle harzburgites, they are interpreted as reflecting 784 

different stages of ol-forming melt/rock reactions at high melt/rock ratio. The plagioclase and 785 

pyroxene minerals present in impregnated dunites indicate that the impregnated dunites represent 786 

the stage before complete extraction of the melt from the dunites, whereas the pure dunites 787 

represent the melt/rock reaction end-product after complete melt extraction (i.e. compaction of the 788 

ol matrix and system closure before/without interstitial plagioclase and clinopyroxene 789 

crystallization).  790 
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Data availability  810 

Data are available as Supporting Information Tables 1-3. Sample lithology, macroscopic and 811 

microscopic observations and mineral modes calculated from major elements are reported in 812 

supplementary data table 1. Whole rock major and volatile element compositions are reported in 813 

supplementary data table 2. Whole rock trace element compositions are reported in supplementary 814 

data table 3. All data will become available online on PANGAEA (www.pangaea.de). These 815 

include analysis results of major, as well as volatiles and trace element compositions and the 816 

calculated mineral modes from XRF data of all analyzed samples. 817 
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Figure captions 1245 

 1246 
Figure 1 Geological context, a Simplified geological map showing the location of Holes CM1A 1247 

and CM2B in the context of the regional and local geology (after Nicolas & Boudier, 1995). b 1248 

Field photographs showing the location of Holes CM1A and CM2B. c Simplified N-S cross-1249 

section showing the different sampled lithologies and the correlation in depth between Holes 1250 

CM1A and CM2B. d Downhole stratigraphy of CM1A and CM2B showing the distribution of the 1251 

lithologies in the crust, crust-mantle and mantle sequences. e pie charts showing the studied 1252 

samples lithology count in Hole CM1A and CM2B (see Section 3 in the Supporting Information). 1253 

 1254 
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 1255 
 1256 

Figure 2 microphotographs of petrographic details of a selection of CMTZ dunites (a, b, c and d) 1257 

and harzburgites (e, f, g, h, i, j, k and l) from Holes CM1A and CM2B. The dunites are 1258 

characterized by fine- to medium grained granular texture and the harzburgites by porphyroclastic 1259 

texture. The dunites and harzburgites have generally preserved their primary high temperature 1260 

texture (granular or porphyroclastic textures) after complete (a, and b), or partial (c, d, e, f, g, h. i, 1261 

j, k and l) replacement of olivine crystals by serpentine. i and j illustrate microphotographs of a 1262 

plastically deformed orthopyroxene surrounded by neoblasts. k and l show harzburgite CM2B-1263 

104Z2 crosscut by low-temperature veins (Carbonate).  1264 

 1265 

 1266 
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 1267 

Figure 3 Downhole plots of (from left to right) the lithology, LOI (wt.%), H2O (wt.%), CO2 (wt.%) 1268 

and calculated CaCO3 (wt.%) contents in pure dunites, impregnated dunites, harzburgites and 1269 

carbonate-bearing harzburgites recovered samples at Holes CM1A and CM2B. The thick solid red 1270 

lines indicate the faults. XRD: X-Ray Diffraction, serp: serpentine, brc: brucite, mag: magnetite.  1271 

 1272 
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 1273 

Figure 4 Downhole plots of (from left to right) the lithology, Mg# (cationic 100 x Mg/(Mg+Fetotal); 1274 

calculated assuming all Fe as FeO) (mol%), SiO2 (wt.%), TiO2 (wt.%), Al2O3 (wt.%), FeO (wt.%), 1275 

MgO (wt.%), MnO (wt.%), CaO (wt.%), Na2O (wt.%), K2O (wt.%), and P2O5 (wt.%) in whole 1276 

rock samples recovered at Holes CM1A and CM2B. The thick solid red lines indicate the faults.  1277 

 1278 
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 1279 

Figure 5 Whole rock major compositions of samples recovered at Holes CM1A and CM2B 1280 

compared to other crust-mantle transition dunites and mantle harzburgites/lherzolites  from the 1281 

Oman ophiolite (Gerbert-Gaillard, 2002; Godard et al., 2000; Hanghøj et al., 2010; Khedr et al., 1282 

2014; Monnier et al., 2006; Nicolle et al., 2016; Rospabé et al., 2018a, 2019a; Takazawa et al., 1283 

2003). (a) MgO/SiO2 versus Al2O3/SiO2, (b) total iron as FeO versus MgO, and (c) Al2O3 versus 1284 

CaO. Compositions are recalculated on a volatile-free basis. Red bar in panel (a) represents the 1285 
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silicate Earth differentiation trend (or ‘‘terrestrial array”) (Jagoutz et al., 1979). Dashed grey lines 1286 

in panels (b) and (c) represent constant Mg# and Al2O3/CaO ratios respectively.  1287 

 1288 

Figure 6 Downhole plots of (from left to right) (LREE: (La+Ce+Pr+Nd)CN), (HREE: 1289 

(Ho+Er+Tm+Yb+Lu)CN), (La)CN, (Yb)CN, (La/Sm)CN, (Gd/Yb)CN, (U)PMN and (Th)PMN in whole 1290 

rock samples recovered at Hole CM1A and CM2B (CN: chondrite-normalized; PMN: primitive 1291 

mantle-normalized). The thick solid red lines indicate the faults, and the thicker solid black lines 1292 

indicate the (La)CN and (La/Sm)CN concentrations in the most  residual peridotites from ‘Plate 1293 

model’ of  Vernières et al. (1997) applied by Godard et al. (2000) (experiment b and d, see Fig.9), 1294 

the numbers on the black lines indicate the proportions of trapped melt (in percentage) issued from 1295 

the models. Normalizing chondrite and Primitive Mantle values are from Barrat et al. (2012) and 1296 

Sun and McDonough (1989) respectively. 1297 

 1298 

 1299 
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 1300 

Figure 7a Chondrite-normalized REE and Primitive Mantle-normalized multi-element patterns of 1301 

pure dunites, impregnated dunites, harzburgites and carbonate-bearing harzburgites from the crust, 1302 

crust-mantle transition zone and mantle sections recovered at Hole CM1A. Other pure dunites 1303 

(dark gray field formed) and impregnated dunites (field formed by black line) from the crust-1304 

mantle transition, and harzburgites (light gray field) and lherzolites (field formed by dashed line) 1305 

patterns from the mantle section of the whole Oman ophiolite are reported for comparison 1306 

(Gerbert-Gaillard, 2002; Girardeau et al., 2002; Godard et al., 2000; Hanghøj et al., 2010; Khedr 1307 

et al.,2014; Lippard et al., 1986; Monnier et al., 2006; Nicolle et al., 2016, Rospabé et al., 2018a, 1308 

2019a; Takazawa et al., 2003). Normalizing chondrite and Primitive Mantle values are from Barrat 1309 

et al. (2012) and Sun and McDonough (1989) respectively.  1310 
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 1311 

Figure 7b Chondrite-normalized REE and Primitive Mantle-normalized multi-element patterns of 1312 

pure dunites, impregnated dunites, harzburgites and carbonate-bearing harzburgites from the crust-1313 

mantle transition zone and mantle sections recovered at Hole CM2B. Other pure dunites (dark gray 1314 

field formed) and impregnated dunites (field formed by black line) from the crust-mantle 1315 

transition, and harzburgites (light gray field) and lherzolites (field formed by dashed line) patterns 1316 

from the mantle section of the whole Oman ophiolite are reported for comparison (Gerbert-1317 

Gaillard, 2002; Girardeau et al., 2002; Godard et al., 2000; Hanghøj et al., 2010; Khedr et al.,2014; 1318 

Lippard et al., 1986; Monnier et al., 2006; Nicolle et al., 2016, Rospabé et al., 2018a, 2019a; 1319 

Takazawa et al., 2003). Normalizing chondrite and Primitive Mantle values are from Barrat et al. 1320 

(2012) and Sun and McDonough (1989) respectively.  1321 

 1322 
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 1323 

 1324 

Figure 8 Plots of LOI (wt.%) vs. Zr (ppm), Cs (ppm), Li (ppm), MgO (wt.%), and SiO2 (wt.%); Th (ppm) vs. Zr 1325 

(ppm), Cs (ppm), Nb (ppm) , La (ppm), and U (ppm); Yb (ppm) vs. Zr (ppm), Cs (ppm), Li (ppm), Hf (ppm), and Ti 1326 

(ppm) in dunite and harzburgites recovered at Hole CM1A and CM2B. Other pure dunites, impregnated dunites, 1327 

harzburgites and lherzolites compositions from the crust-mantle and the mantle section of the whole Oman ophiolite 1328 

are reported for comparison (Gerbert-Gaillard, 2002; Girardeau et al., 2002; Godard et al., 2000; Hanghøj et al., 2010; 1329 

Khedr et al., 2014; Lippard et al., 1986; Monnier et al., 2006; Nicolle et al., 2016, Rospabé et al., 2018a, 2019a; 1330 

Takazawa et al., 2003).  1331 



Confidential manuscript submitted to Journal of Geophysical Research: Solid Earth 

 

 1332 

 1333 

Figure 9 Modal compositions of the analyzed CM harzburgites plotted on a cpx/opx vs. olivine 1334 

diagram. The field defined by the mantle harzburgites studied in Godard et al., 2000 is reported 1335 

for comparison. Published melting models are also shown for comparison: model 1 represents the 1336 

polybaric melting model after Niu (1997), (1a) with and (1b) without excess olivine; model 2 1337 

represents the isobaric melting after Walter et al. (1995) at 11 (2a), 16 (2b) and 17 kbar (2c). The 1338 

initial modal composition is given by Niu (1997) for polybaric melting and was fixed for isobaric 1339 

melting as: 55% ol, 28% opx, 15% cpx and 2% sp. Numbers refer to percent melting degrees.     1340 

  1341 

 1342 
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 1343 

Figure 10 CM1A and CM2B REE linear flat shaped REE patterns compared to the ‘Plate model’ 1344 

of  Vernières et al. (1997) applied by Godard et al. (2000) to simulate REE variations in a peridotite 1345 

affected by partial melting with (a) or without (b) melt infiltration. The chondrite-normalized REE 1346 

patterns of the Oman harzburgites from Godard et al. (2000) (main harzburgite section) are also 1347 

shown for comparison. The authors simulate standard incremental melting in model (a) and the 1348 

percolation of fixed N-MORB composition melt through molten peridotites in model (b). The 1349 

initial modal composition was (spinel neglected): 57% ol, 28% opx and 15% cpx. The melting 1350 

reaction was taken from Walter et al. (1995). Mineral/melt partition coefficients are the same as 1351 

those selected by Bedini & Bodinier (1999). Numbers on the chondrite-normalized REE patterns 1352 

indicate olivine proportion (in percentage) in residual peridotites. Thicker lines indicate the REE 1353 

patterns of the less residual peridotites. In model (a), the most residual peridotite (76% olivine) is 1354 

produced after 21.1% melt extraction. In model (b), the ratio of infiltrated melt to peridotite varies 1355 

from 0.02 to 0.19. (Bottom) Modifications of the REE patterns of residual peridotites due to the 1356 

presence of equilibrium, trapped melt. Models (c) and (d) show the effect of trapped melt on the 1357 

most residual peridotites of models (a) and (b), respectively (thicker solid lines). Numbers on the 1358 

REE patterns indicate the proportions of trapped melt (in percentage). Normalizing chondrite 1359 

values are from Barrat et al. (2012). 1360 
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