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Abstract

Predicting Pacific Decadal Oscillation (PDO) transitions and understanding the associated mechanisms has proven a critical but

challenging task in climate science. As a form of decadal variability, the PDO is associated with both large-scale climate shifts

and regional climate predictability. We show that artificial neural networks (ANNs) predict PDO persistence and transitions

on the interannual timescale. Using layer-wise relevance propagation to investigate the ANN predictions, we demonstrate that

the ANNs utilize oceanic patterns that have been previously linked to predictable PDO behavior. For PDO transitions, ANNs

recognize a build-up of ocean heat content in the off-equatorial western Pacific 12-27 months before a transition occurs. The

results support the continued use of ANNs in climate studies where explainability tools can assist in mechanistic understanding

of the climate system.
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predictability in CESM2 detected by neural networks2
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Key Points:5

• Artificial neural networks (ANNs) predict Pacific Decadal Oscillation (PDO) per-6

sistence and transitions in CESM2.7

• Explainable AI unveils regions used by ANNs for predicting the PDO on inter-8

annual timescales.9

• Predictable PDO transitions can be preceded by a heat build up in off-equatorial10

western Pacific.11
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Abstract12

Predicting Pacific Decadal Oscillation (PDO) transitions and understanding the asso-13

ciated mechanisms has proven a critical but challenging task in climate science. As a form14

of decadal variability, the PDO is associated with both large-scale climate shifts and re-15

gional climate predictability. We show that artificial neural networks (ANNs) predict PDO16

persistence and transitions with lead times of 12 months onward. Using layer-wise rel-17

evance propagation to investigate the ANN predictions, we demonstrate that the ANNs18

utilize oceanic patterns that have been previously linked to predictable PDO behavior.19

For PDO transitions, ANNs recognize a build-up of ocean heat content in the off-equatorial20

western Pacific 12-27 months before a transition occurs. The results support the con-21

tinued use of ANNs in climate studies where explainability tools can assist in mechanis-22

tic understanding of the climate system.23

Plain Language Summary24

The Earth’s oceans are capable of storing large amounts of heat with spatial pat-25

terns of ocean heat lasting for decades at a time. One such pattern is called the Pacific26

Decadal Oscillation (PDO). As these patterns indicate how heat is distributed over the27

globe, they are associated with increased predictability of extreme weather events as well28

as being an important factor for marine ecosystems. Predicting when the PDO will shift29

from one pattern to the other has proven a tricky proposition in climate science as mech-30

anisms from the atmosphere and the ocean both play a role. Here we show that artifi-31

cial intelligence can predict PDO transitions over 12 months in advance. We also inves-32

tigate the predictions and show that they are related to known physical mechanisms —33

our models are making the right predictions for the right reasons. We leverage past knowl-34

edge, and the new discoveries from artificial intelligence to speculate how ocean patterns35

can lead to PDO predictability.36

1 Introduction37

The Pacific Decadal Oscillation (PDO; Mantua et al., 1997; Zhang et al., 1997) is38

recognised as one of the most important sources of predictability on decadal timescales39

(Cassou et al., 2018). As such it has been linked to increased predictability of surface40

variables, including precipitation and temperature, as well as being an important fac-41

tor in marine ecosystems and resource management. The PDO is not itself considered42
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a single mode of variability, but a manifestation of several different forcings operating43

on different timescales: the integration of stochastic atmospheric forcing associated with44

the Aleutian low; tropical-subtropical atmospheric teleconnections associated with the45

El Nino Southern Oscillation (ENSO) phenomenon; the re-emergence of winter-to-winter46

sea surface temperature (SST) anomalies; and ocean gyre dynamics (Newman et al., 2016,47

and the references therein). In its positive phase, the PDO manifests as a pattern of neg-48

ative SST anomalies in the central and western North Pacific Ocean, surrounded by pos-49

itive anomalies around the eastern edge, extending southward to around 20◦N (Figure 1a).50

While the combination of mechanisms that contribute to the PDO are considered51

to be largely understood, challenges still exist in the realm of PDO predictability (Cassou52

et al., 2018). This is especially true in predicting PDO transitions, i.e. when the PDO53

shifts from one phase to the other. Stochastic models (Deser et al., 2003; Newman et al.,54

2003; Schneider & Cornuelle, 2005), linear inverse models (LIMs; Newman, 2007; Alexan-55

der et al., 2008; Dias et al., 2019), atmosphere-only models (Farneti et al., 2014) and fully56

coupled climate models (Meehl & Hu, 2006; Meehl et al., 2014) have been used to recre-57

ate the relevant processes that contribute to PDO variability and by comparing to ob-58

servations, attempt to estimate how these processes can lead to predictability. This has59

lead to a single robust theory for PDO transitions: studying periods of mega-droughts,60

Meehl and Hu (2006) posited that tropical SST anomalies drive surface wind-stress anoma-61

lies in the off-equatorial Pacific (∼ 25
◦
) via atmospheric teleconnections, forcing oceanic62

Rossby waves that propagate westward on decadal timescales. This results in a build-63

up of ocean heat content in the off-equatorial western Pacific. If an ENSO event sub-64

sequently switches the sign of the tropical Pacific SST anomaly, this off-equatorial heat65

is redistributed via Kelvin waves throughout the equatorial region, leading to a transi-66

tion in the PDO. Meehl et al. (2016) investigate this mechanism in the context of the67

Interdecadal Pacific Oscillation (IPO; similar to the PDO but the spatial domain spans68

the full meridional extent of the Pacific), finding that initialized hindcasts with the Com-69

munity Climate System Model, Version 4, (CCSM4; Gent et al., 2011) show skill in sim-70

ulating past IPO transitions with this mechanism appearing to coincide with those par-71

ticular transitions. Since the PDO is considered the North Pacific manifestation of the72

IPO, the mechanism outlined above is directly relevant to understanding and predict-73

ing PDO transitions (Farneti et al., 2014; Lu et al., 2021).74
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While stochastic climate models and LIMs model the climate system as linear, it75

has been suggested that predictive skill, especially of oceanic variability, could be gained76

using methods that better capture non-linearities in the system (Newman, 2007). Ar-77

tificial neural networks (ANNs), a form of unsupervised machine learning, offer such a78

non-linear framework and have proven skillful at predicting processes in the climate sys-79

tem such as identifying the forced response to climate change, ENSO evolution and Madden-80

Julian Oscillation teleconnections (Barnes et al., 2020; Ham et al., 2019; Toms et al., 2020;81

Mayer & Barnes, 2021). Specifically in the case of oceanic predictability, Ham et al. (2019)82

used a convolutional neural network to predict ENSO evolution, showing significantly83

higher forecast skill than previous dynamical forecasts, while also identifying spatial SST84

patterns corresponding to increased predictability. Similarly, Nadiga (2021) demonstrated85

how reservoir computing (a form of recurrent neural networks) increases predictability86

of oceanic variability in the North Atlantic Ocean on the interannual timescale, espe-87

cially during period of infrequent or missing data. Together, these studies suggest that88

neural networks are effective for investigating and predicting climate processes related89

to oceanic variability. These, along with explainable AI (XAI, methods designed to aid90

the interpretation of the decision-making process of a neural network) can identify sig-91

nals associated with a neural network’s prediction.92

In this study we show that ANNs are effective tools for predicting persistence and93

transitions in the PDO. In our analysis we examine predictions with lead-times from 1294

months onward. Recall the PDO is considered a combination of forcings that propagate95

on different timescales, from stochastic atmospheric forcing on the timescale of days to96

weeks, to oceanic Rossby wave propagation on multi-year scales (Newman et al., 2016).97

We examine predictability on the shorter than “decadal” timescales to avoid averaging98

out the forcings on shorter timescales that may contribute to predictive skill. We choose99

to still use the PDO terminology, however, as we are investigating predictability of the100

PDO spatial pattern across various timescales.101

Furthermore, we investigate mechanisms identified by the ANNs that lead to pre-102

dictability, both long-term persistence and predicting transitions. Most notably, we lever-103

age explainable AI methods to attribute patterns of ocean heat content anomalies to in-104

creased PDO predictability. We emphasize that not only are we concerned with optimiz-105

ing an ANN to solve a prediction problem, but we also explore the decision making pro-106

cess of the ANN to uncover potential sources of predictability (Toms et al., 2020).107
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2 Data and Methods108

2.1 Data109

We use monthly mean sea surface temperature (SST) and ocean heat content (OHC)110

from the Community Earth System Model Version 2 (CESM2; Danabasoglu et al., 2020)111

pre-industrial control run for the Coupled Model Intercomparison Project, Phase 6 (CMIP6;112

Eyring et al., 2016). The presence of realistic ENSO and PDO variability in CESM2 was113

demonstrated by Capotondi et al. (2020). We use the full 2000 year run, with the large114

amount of data available (24000 months) desirable for training the ANNs. OHC is cal-115

culated as the vertical heat content integral from the surface to 100 m depth (Fasullo116

& Nerem, 2016). Both OHC and SST are interpolated to a 4◦×4◦ grid and we desea-117

sonalize both the SST and OHC fields by subtracting their respective monthly mean an-118

nual cycles at each grid point. Furthermore for OHC (the input for the ANNs), we stan-119

dardize each grid point by dividing it by its monthly standard deviation and apply a 6-120

month running mean.121

The PDO is calculated from the deseasonalized SSTs, defined as the leading em-122

pirical orthogonal function (EOF) of the North Pacific (110E-260E, 20N-60N) monthly123

SSTs. This EOF, projected onto the global deseasonalized SST field, is presented in Fig-124

ure 1a. In contrast to previous studies where the PDO index is defined using low pass125

filters with between 5–11 year cut-offs, here the PDO index is defined as the 6-month126

running mean of the principal component time series. This is because PDO transitions127

are considered to be influenced by interannual variability associated with e.g. ENSO (Meehl128

et al., 2016, 2021) and we want our ANNs to be able to account for these processes. The129

distribution of phase durations in CESM2 is shown in Figure 1b, demonstrating that there130

are a large number of phases of shorter duration, with decreasing samples as phase du-131

ration increases. The PDO representation in CESM2 is considerably improved over pre-132

vious versions of the model, with periods of long term persistence similar to the obser-133

vational record. However, the PDO within CESM2 contains extended periods of rapid134

fluctuation (Capotondi et al., 2020). We choose to retain and investigate these periods135

because the observational record is relatively short, and furthermore it has been posited136

the PDO will become weaker and of shorter phase under climate change (Li et al., 2019),137

hence high frequency PDO variability may become more relevant in future climate sce-138

narios.139
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Figure 1. a) North Pacific PC 1 projected onto global de-seasoned SST. b) Histogram show-

ing distribution of PDO phase lengths in CESM pre-industrial control run. Inset: slice of PDO

index showing PDO phase length as number of months between phase changes.
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2.2 Artificial Neural Network140

We use a single layer artificial neural network (ANN) to predict whether a PDO141

phase transition will occur within 30 months, i.e. for some input, the output is a clas-142

sification (yes or no) of whether a PDO transition will occur within the following 30 months.143

An overview of neural networks is provided in the supplement as well as our rationale144

for using a 30 month lead time in this study. The input layer to the ANN is three maps145

of deseasoned and standardized 4◦ × 4◦ OHC anomalies, four months apart i.e. if the146

ANN is predicting PDO transition occurrence within some month τ = 0, the three in-147

put maps are τ = −38, τ = −34, and τ = −30 months. The input fields are flattened148

and concatenated resulting in an input vector of 12150 pixels. The input vector is fed149

into a densely connected hidden layer with 8 nodes which utilize the Rectified Linear Unit150

(ReLU) activation function. Finally, this is fed into an output layer of two nodes with151

softmax activation, representing the prediction. We interpret the ANN’s prediction as152

the node with the higher value, and this value is termed the “ANN’s confidence”. For153

example, if the output is 0.63 on the persistence node, and 0.37 on the transition node,154

this represents a prediction of persistence with 0.63 confidence. For training, we use the155

categorical cross entropy loss function. We have found that setting the problem up as156

a binary classification task – will it or will it not transition in the next 30 months – yields157

insights into the mechanisms for PDO transition predictability. With that said, we have158

explored other architectures as well, including setting the problem up as a regression task159

whereby the network must predict the number of months until the next transition. In160

this instance, the network struggles to differentiate weak PDO states that may flip sign161

in the coming months from those weak PDO states that are on their way to persist for162

years. Since the main goal of this work is to identify mechanisms that offer PDO tran-163

sition predictability, we present results from the binary classification architecture here164

although the regression architecture warrants further exploration.165

We split the data into training and validation, using the first 90% (1800 years, 21600166

samples) for training and final 10% (200 years, 2400 samples) for validation. Since there167

are more samples where transitions occur than persistence (see Figure 1b, there are more168

short duration phases than long), we manually balance the classes in both the training169

and validation sets. To generate the training data we use all of the persistence samples170

in the training set, and randomly grab an equal number of transition samples from the171

training set. We do the same from the validation set. This results in 9386 training sam-172
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ples (4693 of each class) and 1110 validation samples (555 of each class) for each neu-173

ral network. We train 60 networks total with identical architecture and vary only the174

random seed which controls how the weights in each network are initialized. Here we present175

results as averages from the best 3 networks. Full model specifications, descriptions and176

analysis of all 60 networks is included in Table S1 and the supplement text. After train-177

ing, we use the ANN to make predictions of both training and validation data. As we178

are able to rank an ANN’s output by confidence, when presenting results as composites179

we choose to discard the 50% least confident predictions. Since the network is less con-180

fident about these predictions, removing them from our analysis suggests our results will181

focus on those with the strongest signals.182

To investigate the decisions made by the ANNs, we use the neural network attri-183

bution technique called layer-wise relevance propagation (LRP; Bach et al., 2015). LRP184

propagates the prediction from an ANN back through the network and provides in our185

case, a map of relevance values corresponding to the input grid, with positive values in-186

dicating points that were relevant to the specific prediction, and negative values indi-187

cating points that detracted from the prediction. The higher the value, the more “rel-188

evant” the grid point. The utility of LRP in climate predictability studies has been dis-189

cussed by Toms et al. (2020); Mamalakis et al. (2021) and used in studies by e.g. Mayer190

and Barnes (2021); Toms et al. (2021); Sonnewald and Lguensat (2021). Here, we present191

composites of LRP maps for predictions when the network is correct and confident. Each192

relevance map is first normalized by the prediction confidence (i.e. LRP map is divided193

by the winning confidence) before compositing, then the composite map is scaled by its194

maximum absolute value so that the composite map has a maximum absolute relevance195

value of 1.196

3 Results197

3.1 Detecting Persistence198

The average total accuracy of the best three ANNs is 65%, with average conditional199

accuracy for predicting persistence of 55% (given no transition occurs, the ANN correctly200

predicts no transition). While this accuracy is above that expected by random chance,201

the low conditional accuracy across all persistence samples is likely due to the set up of202

this problem. Consider a sample that transitions 31 months after input; this sample would203
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be designated persistence. However, a sample that transitions 29 months after input would204

be classified as a transition, despite the similarity of the input samples. Because of this,205

the samples that persist just beyond 30 months have very low accuracy while those with206

much longer phase duration (potentially more indicative of long-term PDO persistence)207

are more rare but have higher prediction accuracy (62% for durations > 40 months).208

This is demonstrated in Figure 2. In panel a we show the average distribution of phase209

duration (green line) with the blue line demonstrating the number of samples correctly210

identified by the ANN in the validation data. The increase of samples at month 30 is due211

to our method of balancing the number of samples per class for our neural network in-212

puts. Recall that the number of samples in the transition class (area under green curve213

for durations 0-30 of months) is equal to the number of samples in the persistence class214

(area under green curve for durations of 30+ months), and to achieve this we sub-sampled215

the transition samples while maintaining all persistence samples. The sub-sampling main-216

tains the shape of the distribution of phase duration in the transition class but reduces217

its size, resulting in a jump in the number of samples at phase duration > 30 months.218

Panel b shows the accuracy as a function of phase duration (i.e. blue divided by green).219

For example, when a transition occurs 10 months after input, (i.e. duration of 10 months220

on the horizontal axis), the ANNs are correct and predict a transition around 75% of the221

time. Similarly, when a transition occurs 60 months after input (i.e. the correct predic-222

tion is that no transition occurs within 30 months), the ANNs are correct around 90%223

of the time. To compare the results to random chance, the dashed line indicates accu-224

racy of 0.5, with shading indicating the 5th-95th percentile range for each phase dura-225

tion bin. For samples around the cut off of 30 months, there is a dramatic drop in ac-226

curacy. However, as duration increases so does prediction accuracy with high accuracy227

for samples between 45 and 65 months. Note for samples of duration above 70 months228

accuracy is again very low. We propose that this is because these samples will occur early229

in a PDO phase (i.e. very soon after a transition) and hence having a weak PDO pat-230

tern for the ANNs to discern. It is hence difficult for the ANN to differentiate between231

these samples and those where the sign flips very soon after input. We hence propose232

that the ANNs have learned patterns relating to persistence especially for samples where233

the phase is of longer duration. We also consider the accuracy of the predictions with234

the top 50% confidence values, shown in the dashed red line in Fig. 2. This shows that235

predictions with higher confidence are more likely to also be accurate, especially for the236
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regime we consider here (transitions that occur in 12-27 months). As higher confidence237

corresponds to higher accuracy, this implies that our networks have learned when pat-238

terns are more likely to lead to predictability.239

Figure 3 shows the composite maps for correct predictions for cases when the PDO240

persists in its positive phase. The LRP heatmap of relevance values calculated for month241

τ = −30 (the last input month) are shown in Figure 3a, while Figures 3b and 3c dis-242

play the standardized OHC anomaly at the input month (τ = −30) and the final month243

(τ = 0). OHC anomalies at both the input time and the prediction show a positive PDO244

pattern in the North Pacific, with the horse-shoe shaped positive anomalies surround-245

ing negative anomalies, verifying that indeed the ANNs have predicted a persisting pat-246

tern. Furthermore, the large magnitude anomalies in the North Pacific at input (Fig. 3b)247

are suggestive of PDO persistence as they correspond to a high magnitude PDO index248

which takes time to decay. It is thus encouraging that the largest relevance values in the249

LRP heatmap in Fig. 3a align with the positive horse-shoe shape in 3b. This suggests250

that the ANNs recognize large positive OHC anomalies in the North Pacific ocean as be-251

ing an indicator that the PDO will persist on the interannual timescale, and this is con-252

sistent with our physical understanding.253

3.2 Detecting Transitions254

We now consider the ANNs’s ability to predict PDO transitions within CESM2.255

The average conditional accuracy for predicting a transition (i.e. given a transition oc-256

curs, the ANN predicts a transition) is 74%. The conditional accuracy of transitions 12-257

27 months after input (given a transition occurs 12-27 months after input, the ANN pre-258

dicts the transition) is 69%. This is apparent in Figure 2b, with high accuracy for tran-259

sitions that occur very soon after input (duration of 0-12 months on the horizontal axis)260

with reduced accuracy for transitions that occur in the 12-27 month window (duration261

of 12-27 months on the horizontal axis). These later transitions are hence more difficult262

for the ANNs to learn because they must learn to detect precursors of transitions more263

than 12 months before it occurs. Up to 27 months, accuracy values fall on or above the264

95th percentile of random chance. This suggests that when correct, the ANNs have learned265

patterns that lead to PDO transitions and furthermore, that they can recognize them266

more than 12 months in advance.267
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Figure 2. a: Average distribution of phase duration in the validation data for the three

ANNs, green shows all the validation data and blue is number correctly predicted by the ANN

with data binned into 3 month averages. b: Red line is accuracy of each phase duration bin (blue

divided by green from above), red dashed line is accuracy of each phase duration when we only

consider samples with highest 50% confidence. Grey dashed line indicates accuracy of 0.5, or

random chance, with shading indicated 5th–95th percentile range for random chance.
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Figure 3. Composite maps when ANN correctly and confidently predicts persistence. a)

Composite mean of LRP maps at final input month (τ=-30). Red areas correspond to positive

relevance and blue to negative relevance. b) Composite mean of OHC input maps at τ=-30.

Color scale is OHC anomaly in units of standard deviation σ at each grid-point. c) Composite

mean of OHC at predicted month, color scale as in b).
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Figure 4. Composite maps of correct and confident predictions of PDO transition when tran-

sition occurs 12-27 months after input. Left column is positive to negative transitions, and right

column is negative to positive transitions. Number of samples in each column is included in the

title. Panels a) and b) are composite LRP 30 months before predictions. Red regions correspond

to highest relevance and blue to lowest. Pink boxes highlight regions where OHC build-up is

considered to precede PDO transitions (125E-180E, 5N-30N, and 150E-200E, 5S-30S). Panels c)

and d) are the composite OHC maps 30 months before prediction, with color scale OHC anomaly

in units of standard deviation. Dashed contours in c) and d) correspond to regions with highest

5% relevance in a) and b) respectively with dotted contour the lowest 5%. Panels e) and f) show

composite OHC when transition occurs and panels g) and h) show OHC at the predicted month.
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Figure 4 shows the composite result for correct prediction of PDO transitions when268

the transition occurs 12-27 months after input. We choose this window because it means269

the ANNs must recognize patterns that signal transitions at least 12 months in advance270

while there no loss in accuracy due to the 30 month cutoff. Positive to negative tran-271

sitions are displayed in the left column and negative to positive transitions are displayed272

in the right column. Figures 4a and 4b are the LRP maps for the final input map (month273

τ = −30) with Figure 4c and 4d the corresponding OHC. We highlight the strongest274

relevance regions from the LRP maps by superimposing LRP contours (Fig. 4a and 4b)275

onto the OHC (Fig. 4c and 4d), with solid lines contours outlining highest 5% relevance276

values. Similarly, dashed contours encircle regions with the lowest 5% relevance values.277

Furthermore, we include pink squares in Fig. 4a–d to emphasize the regions where a build-278

up of OHC has been suggested in the literature to precede a PDO transition (Meehl et279

al., 2016). Lastly, to track the OHC evolution throughout the transition process, pan-280

els 4e and 4f show the OHC when the transition occurs, and 4g and 4h the OHC at month281

τ = 0. Note in Figure S3-S4 we show the LRP maps and associated OHC for each in-282

put grid (τ = −38, τ = −34 and τ = −30) but we do not include them here as they283

are very similar but with lower relevance values.284

Large negative anomalies in the northern and southern off-equatorial western Pa-285

cific precede the positive to negative PDO transitions (Fig. 4c), while large positive anoma-286

lies precede negative to positive transitions in the southern off-equatorial western Pa-287

cific (Fig. 4d). Together, these suggest the presence of a build up of OHC in either the288

northern or southern off-equatorial Pacific at least 12-27 months before a PDO transi-289

tion occurs. In conjunction with the anomalies in Fig. 4c, the ANNs have recognized the290

northern region of heat content build up, with high relevance in the LRP composite in291

Fig. 4a. Conversely for negative to positive transitions, the ANNs mostly focus on the292

large positive anomalies over the maritime continent as well as the negative anomalies293

in the Atlantic, as shown by the high relevance values in Fig. 4b. The large relevance294

values in the Atlantic could signify the ANN detecting Atlantic teleconnections driving295

PDO transitions, which we discussion further in section 4. We also speculate that the296

lack of high relevance in the specific regions previously posited to contain anomalies lead-297

ing to transitions (Meehl et al., 2016, pink boxes in Fig. 4b) could be due to a westward298

shift of these anomalies in CESM2 leading to the high relevance values in the maritime299

continent. Conversely, the larger number of samples in Fig. 4b compared to positive to300
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negative transitions (N = 4279 for negative to positive compared to N = 3258 for pos-301

itive to negative), results in weaker relevance signals. In supplement figure S6 we show302

by k-means clustering the LRP maps that there are indeed several distinct patterns within303

the LRP composite likely corresponding to different transition regimes detected by the304

ANNs, and cluster three of Fig. S6 (middle column) shows high relevance correspond-305

ing to the off-equatorial western Pacific for negative to positive transitions. So there ap-306

pear to be different OHC patterns leading to PDO predictability. Furthermore the re-307

gions of high relevance in the composite in Fig. 4b suggest that the ANNs are using the308

OHC anomalies in these regions for its correct predictions, hence, we suggest future in-309

vestigation into how these OHC anomaly patterns may preempt PDO transitions. Fur-310

thermore, the ANNs appear to be better at predicting negative to positive transitions311

than positive to negative transitions as there are more correct samples in the latter cat-312

egory (note there approximately the same number of transitions in each category). It313

is unclear whether this is due to PDO representation in CESM2, or whether there are314

fundamental differences in the transition process.315

At the month the PDO transition occurs, note the large equatorial anomalies via316

La Nina and El Nino (Fig. 4e and 4f respectively). Furthermore, the anomalies in the317

western off-equatorial Pacific have switched sign in each panel at the transition as well.318

These factors are consistent with the mechanism posited by e.g. Meehl et al. (2016), that319

an ENSO event following the OHC build-up causes the OHC to be redistributed by equa-320

torial Kelvin waves. This redistribution of heat, and the associated atmospheric telecon-321

nections, effect a PDO transition. Lastly, after the transition occurs (Fig. 4g and 4h),322

OHC anomalies have largely shifted into the opposite PDO phase pattern as we would323

expect.324

The evolution of OHC throughout the PDO transition and corresponding LRP heatmaps325

suggest that not only are PDO transitions preceded by OHC build-up in the off-equatorial326

western Pacific 12-27 months before the transition, but for positive to negative transi-327

tions, our ANNs detect this heat build up as relevant to its predictions. Furthermore,328

we suggest that this is also the case for negative to positive transitions but it is likely329

that regimes where this is detected by the ANNs are averaged out in the composite (Fig330

S6). Conversely, there are other signals detected in the relevance maps (Figs 4a and 4b),331

and in addition the OHC anomalies are not consistently strong in the off-equatorial re-332

gions (Fig. 4d) which suggests that there are likely mechanisms other than that proposed333
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by Meehl et al. (2016) that contribute to PDO transitions. The ability of the ANNs to334

apparently detect a known precursor to PDO transitions supports their use in climate335

variability problems to identify and possibly discover regions leading to predictability.336

4 Discussion and Conclusion337

We show that PDO transitions are preceded by large amplitude OHC anomalies338

in either the northern or southern off-equatorial western Pacific 12-27 months before the339

transition occurs. Furthermore, using LRP we show that these anomalies are detected340

by the ANNs and were relevant to their correct predictions of positive to negative tran-341

sitions. This finding is similar to the work of Meehl et al. (2016) however in their anal-342

ysis they suggest that OHC must build up in the off-equatorial western Pacific over a343

period of 10-15 years before a transition occurs. The transition predictions analyzed here344

only have inputs 12-27 months before the transition occurs, yet the ANNs do make cor-345

rect predictions above random chance, implying that perhaps the timescale of the OHC346

build-up is less important than the fact that the anomaly is present. This is similar to347

the finding of Lu et al. (2021) whose network analysis did not necessarily require OHC348

to build-up over a long period of time as long as it reached a certain threshold. More-349

over, as we have applied 6 month smoothing, it is perhaps surprising that mechanisms350

contributing to PDO transition predictability were able to be detected by the ANNs. This351

suggests that the decadal scale of OHC build-up, and the interannual scale of ENSO in-352

teract cooperatively and hence filtering out shorter duration signals may hinder the de-353

tection of mechanisms relating to PDO transitions. This was also suggested by Lu et al.354

(2021), who found their method less likely to detect their “early warning signal” when355

an 11-year low pass filter is applied. Note that if we only focus on transition predictions356

for long PDO phases, i.e. the PDO must persist for a minimum 2.5 years before and fol-357

lowing a transition, our results are essentially unchanged (see Figure S7). We use 2.5 years358

here as a balance between sample size and long duration phases.359

The maps in Figures 3 and 4 are presented as composite means of correct predic-360

tions. As we have suggested, the signals detected by LRP and presented in these figures361

may not necessarily be cooperating on every prediction. We check for this by using clus-362

ter analysis on the LRP composites in Figure 4. Figures S5-S6 show how k-means clus-363

tering highlights different signals in the LRP maps. Notably, the off-equatorial western364

Pacific is highlighted in at least one cluster for both positive-to-negative transitions and365
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negative-to-positive transitions. Interestingly, there are regimes when the Atlantic Ocean366

seems to be a highly relevant region for predictability. Since Atlantic teleconnections are367

hypothesized to influence both PDO variability and ENSO events, and an ENSO event368

is considered to be required to trigger a PDO transition (Kucharski et al., 2016; Chikamoto369

et al., 2020; Johnson et al., 2020; Meehl et al., 2020) it is not unrealistic that Atlantic370

OHC signals could assist in predicting PDO transitions. In particular, teleconnections371

from the Atlantic are considered a key influence for triggering El Nino events (Ham et372

al., 2013) whereas La Nina events are thought to be largely triggered by a preceding El373

Nino event. In Figure 4b, the neural networks concentrate relevance in the Atlantic basin374

preceding the El Nino event (and PDO transition) in Figure 4f. Given this, it appears375

that the neural network recognizes the precursors of the El Nino event required for the376

transition during negative to positive transitions. This highlights the ANNs’s ability to377

detect distinct mechanisms contributing to predictability.378

We show how ANNs and interpretability techniques can aid in the discovery and379

investigation of mechanisms behind climate predictability. In the future, we suggest in-380

vestigating regions highlighted here as potentially connected to PDO transitions, such381

as the Atlantic Ocean. This is especially important in examining the possibility of dif-382

ferent pathways that can lead to PDO transitions and hence we support the continued383

use of methods such as ANNs and k-means clustering in objectively identifying poten-384

tial regimes. In a broader sense, we encourage the future use of ANNs and XAI in cli-385

mate predictability studies. We have shown that they are not just a tool for maximiz-386

ing prediction accuracy, but also as a way of investigating potential mechanisms that lead387

to predictability, and to advance our understanding of our chaotic climate system.388
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Introduction

Here we provide a short overview of neural networks, along with the specifications of the

artificial neural network (ANN) used in this study. We also describe the rationale behind

the choice of a 30 month lead time followed by various statistics of the three ANNs used.

Lastly we include supplementary figures to support our discussion and conclusions.

Text S1: Neural Network Overview

A general description of an artificial neural network (ANN) is thus: the neural network

learns from some training data to map an input to some output, with hidden weights and

connections optimized in the training process, and an activation function which allows for

non-linearities. The network is trained for a set number of passes though the training data

(called epochs), updating hidden weights based on minimizing the so-called loss function.

The ANN architecture and training procedure in this study has been optimized for the

specific problem that we consider. The use of regularization, dropout layers, training

epoch and sample weights were carefully chosen to balance accuracy, but prevent over-

fitting. Values used are included in Table S1. A more in-depth description of ANNs, as

well as a broad background on their application to climate studies can be found in Toms,

Barnes, and Ebert-Uphoff (2020).

Text S2: Rationale behind 30 month lead time Our ANN learns to predict whether

a PDO phase transition will occur within some cut-off time. Consider an input such

that by the time of the output, a transition has occurred (i.e. the true output is 1). If,

for example, the lead time is 30 months and the transition occurred 29 months after the

input, then this would be classified transition however it would be difficult for the ANN to
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guess as it is similar to inputs where transitions occur at 31 months (which are classified

persistence). The accuracy of the ANN dramatically decreases for samples where the

transition occurs within around 3 months of the lead time. On the other hand, we want

to focus on transitions occurring at least 12 months after input in order to benchmark

our networks against previous work. Hence, in order to optimize for the accuracy of

samples with transitions at least 12 months after input, retain good general accuracy, and

a reasonable cut-off for recognizing persistence, we choose a lead time of 30 months (2.5

years).

Text S3: Summary of the ‘best’ neural networks

In order to find the best models for our problem setup we have trained 60 neural

networks of the identical architecture, each with a different random seed. Note this seed

is the same for both initializing the neural network and for choosing the transition samples

to grab from the training/validation data. We train many models because we do not use

all of the available data in the training process. This, along with the inherent randomness

in the ANN training process can result in variation in the ANNs’s accuracy. The random

seed is set and recorded before the training/validation data is selected and the model is

trained.

In Figure S1 we show various statistics of each individual neural network. The left panel

compares the total accuracy of each ANN (x axis) with its persistence recall (percentage

of the time that when persistence occurs, the ANN guesses persistence, y axis). This plot

shows the difficulty in guessing persistence for this particular problem, with no ANNs

above 56% recall. We comment on the reason for this in the main. As persistence appears
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to be more difficult for the ANNs to learn, we designate the ‘best’ ANNs as those that

combine high accuracy and high persistence recall. These are indicated in each plot by

the pink dots.

The right panel demonstrates the ANNs’s ability to predict transitions that occur 12-27

months after input, with total accuracy on the x axis and 12-27 month transition recall

(percentage of the time that when a transition occurs 12-27 months after input, the ANN

predicts the transition) on the y axis. This shows that the NNs we have designated as

the ‘best’ (again in pink dots) have recall of 12-27 month transitions of around 65%-72%.

While these are not the best ANNs for this task in particular, we choose them for this

study as they are the best at both persistence and transitions, with their recall implying

they have learned both, and are least likely to be over-fit.

In Figure S2 we show the confusion matrices for the best three ANNs described above.

These demonstrate how the ANNs perform at the classification task on the validation

data (1110 samples; 555 persistence, 555 transitions). Each row is the actual class the

samples belong to, while the columns show how the ANN designated them, i.e. the top

row are samples that are true persistence while the left column is the samples that were

predicted as persistence. This means the main diagonal is where the ANN was correct

and the off-diagonal is where the ANN was wrong. The number in each box is the number

of samples placed in that category e.g. the top left box is number of samples with actual

persistence and the ANN predicted persistence, whereas the bottom left is where an actual

transition occurred but the ANN predicted persistence. In all cases, the ANNs were better
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at correctly predicting transitions than persistence while the largest source of inaccuracy

is due to the ANNs predicting transitions when the true class is persistence.
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Figure S1. (left) Comparison of total accuracy (horizontal) and persistence recall (vertical)

for all ANNs trained. Blue dots are all ANNs with pink dots representing the ANNs used in the

study. (right) Comparison of total accuracy (horizontal) and 12-27 month transition recall.
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Figure S2. Confusion matrices for the 3 models used in this study. Vertical axis is the actual

class and horizontal axis is the predicted class. Number of samples in each bin is printed in each

square and total accuracy of each ANN in the title.
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Figure S3. Left column: composite LRP maps for input maps where model correctly guesses

transition from positive to negative occurs 12-27 months after final input. a) 38 months before

output, c) 34 months before output, e) 30 months before output (and panel a in Figure 3). Right

column: As left column but for composite OHC anomaly, with units of standard deviation at

each grid point and color scale as in Figure 3.
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Figure S4. As Figure S4 but for negative to positive transitions.
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Figure S5. K-means of LRP maps when model correctly predicts positive to negative transition

12-27 months after input. Each column represents a cluster. Top row is LRP maps at month

τ = −30, second row is corresponding OHC with top and bottom 5% from the LRP contoured

(dashed and dotted respectively as in Figure 3). The third row is OHC at the transition while

the bottom row is OHC at month τ = 0.
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Figure S6. As Figure S5 but for negative to positive transitions

September 30, 2021, 8:44pm



X - 12 :

Figure S7. As Figure 4 in main but only for correct transition predictions where the PDO

phase length preceding AND following a PDO transition are > 30 months.
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Table S1. Table of neural network specifications and accuracy for the ANNs used in this

study.

Input 3 deseasoned and standardized 4◦ × 4◦ OHC
grids, 4 months apart

Architecture 3 vectorized OHC grids (12150 pixels total)
connected to a single hidden layer with 8
nodes and rectified linear unit (ReLU) ac-
tivation function, then connected to 2 out-
put nodes representing positive and negative
phase prediction with softmax activation to
normalize outputs to probabilities.

Training L2 regularization coefficient of 12 and
dropout of one node per epoch on hidden
layer. Adam optimization algorithm, with
initial learning rate of 10−3, dropping by a
factor of 2 every 25 epochs. Trained for 300
epochs total. Categorical cross entropy loss
function. First 1800 years (21600 samples)
used for training, latter 200 years (2400 sam-
ples) used for validation (see main).

Output Prediction of whether PDO transition occurs
within 30 months of last input map.
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