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Abstract

Tsunamis generated by large earthquake-induced displacements of the ocean floor can lead to tragic consequences for coastal

communities. Ionospheric measurements of Co-Seismic Disturbances (CIDs) offer a unique solution to characterize an earth-

quake’s tsunami potential in Near-Real-Time (NRT) since CIDs can be detected within 15 min of a seismic event. However,

the detection of CIDs relies on human experts, which currently prevents the deployment of ionospheric methods in NRT. To

address this critical lack of automatic procedure, we designed a machine-learning based framework to (1) classify ionospheric

waveforms into CIDs and noise, (2) pick CID arrival times, and (3) associate arrivals across a satellite network in NRT.

Machine-learning models (random forests) trained over an extensive ionospheric waveform dataset show excellent classification

and arrival-time picking performances compared to existing detection procedures, which paves the way for the NRT imaging of

surface displacements from the ionosphere.
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SUMMARY5

Tsunamis generated by large earthquake-induced displacements of the ocean floor can lead to tragic6

consequences for coastal communities. Ionospheric measurements of Co-Seismic Disturbances (CIDs)7

offer a unique solution to characterize an earthquake’s tsunami potential in Near-Real-Time (NRT) since8

CIDs can be detected within 15 min of a seismic event. However, the detection of CIDs relies on hu-9

man experts, which currently prevents the deployment of ionospheric methods in NRT. To address this10

critical lack of automatic procedure, we designed a machine-learning based framework to (1) classify11

ionospheric waveforms into CIDs and noise, (2) pick CID arrival times, and (3) associate arrivals across12

a satellite network in NRT. Machine-learning models (random forests) trained over an extensive iono-13

spheric waveform dataset show excellent classification and arrival-time picking performances compared14

to existing detection procedures, which paves the way for the NRT imaging of surface displacements15

from the ionosphere.16

Key words: Ionosphere/atmosphere interactions – Tsunami warning – Machine Learning17

1 INTRODUCTION18

Large seafloor displacements due to earthquakes are known to generate destructive tsunamis. Unfortunately, Near-19

Real-Time (NRT) mapping of the co-seismic surface displacements to characterize the earthquake tsunami potential20
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is still challenging for conventional methods, especially for earthquakes withMw > 8 (LaBrecque et al. 2019; Wright21

et al. 2012; Katsumata et al. 2013). In our definition, NRT corresponds to times within 15-20 minutes after the22

earthquake onset which is crucial for early-warning application as it gives several tens of minutes for populations to23

evacuate before the tsunami reaches the coasts.24

Recently, several research groups have demonstrated that ionospheric measurements can offer an alternative to25

seismo-geodetic methods to estimate the tsunami potential of earthquakes. The ionosphere is an electrically charged26

atmospheric layer that is concentrated around 150-400 km of altitude. This layer is sensitive to the vertically propa-27

gating acoustic energy excited by natural hazards (earthquakes, tsunamis, volcanic eruptions) and man-made events28

(explosions, rocket launches, nuclear tests) (Heki 2006; Rolland et al. 2016; Komjathy et al. 2016; Shults et al. 2016;29

Astafyeva & Shults 2019; Astafyeva 2019). In particular, ionospheric signatures of earthquakes, known as co-seismic30

ionospheric disturbances (CID), can be detected 7-9 minutes after the earthquake. CIDs waveform characteristics are31

correlated to the seismic source properties. For instance, the amplitude of the CID scales almost linearly with the32

magnitude of an earthquake (Astafyeva et al. 2013b, 2014; Cahyadi & Heki 2015; Occhipinti et al. 2018; Heki 2021),33

or - for submarine earthquakes - with the tsunami wave height or volume of water that was displaced due to an earth-34

quake (Kamogawa et al. 2016; Rakoto et al. 2018; Manta et al. 2020). Additionally, CID arrival times and detection35

coordinates provide strong constraints on the position of the seismic source, or the origin of tsunami (Afraimovich36

et al. 2006; Heki et al. 2006; Astafyeva et al. 2009; Tsai et al. 2011; Lee et al. 2018; Bagiya et al. 2020; Inchin et al.37

2021; Zedek et al. 2021). Moreover, Astafyeva et al. (2011, 2013a); Astafyeva (2019) showed that the distribution of38

the first-detected CIDs match the position of the maximum displacement on the ground, and (Kakinami et al. 2021)39

showed that the initial point of CID matches the maximum vertical displacement of the tsunami source.40

However, despite the high potential of seismo-ionospheric assessment of natural hazards, the detection and anal-41

ysis of ionospheric disturbances still rely on human experts. This manual process is problematic for processing large42

data volume to detect CIDs and estimate seismic source parameters. Only a few studies have focused on the autom-43

atization of detection procedures in the ionosphere but only at low frequencies (Efendi & Arikan 2017; Belehaki44

et al. 2020). Ravanelli et al. (2021) investigated the use of both GNSS ground and ionospheric TEC measurements45

for NRT tsunami genesis estimation. However, Ravanelli et al. (2021) did not present any detection procedure for46

CIDs, but only showed TEC variations in NRT scenario. In addition, their TEC processing procedure included the use47

of 8th order polynomial fit in order to highlight the co-seismic signature. The latter is not possible in our definition48

of NRT mode, i.e. 15-20 minutes after the earthquake onset time. The first NRT-compatible method detecting CID49

was suggested by Maletckii & Astafyeva (2021). However, this study only showed good results on 1 Hz data with50

CIDs showing high temporal TEC derivative. Therefore, the community needs methods allowing for rapid automatic51

detection and recognition of CIDs for both future NRT developments and processing of large amount of TEC data52

retrospectively.53

The problem of earthquake waveform detection has been investigated in the seismic community since the early54

days of modern computers (e.g., Allen 1982)). The automatization of waveform detection procedures has historically55
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been performed in the seismic community using analytical methods such as the Short-Time Average / Long-Time56

Average (STA/LTA) filter(Allen 1982)). However, the high rate of false positives generated by these analytical fil-57

ters has motivated the seismic community to implement Machine-Leaning (ML) approaches that combine both low58

computational time and high accuracy (Ross et al. 2018; Mousavi et al. 2020). Even when only small labelled wave-59

form datasets are available, ML methods provide excellent classification results (Provost et al. 2017; Wenner et al.60

2021). In particular, Random Forests (RF, Breiman 2001) show excellent generalization abilities, and do not require61

an extensive hyper-parameter tuning. Random-forest is an ensemble technique that build predictions by aggregating62

predictions from a set of decision trees. Aggregating results from individual decision trees built using bootstrap ag-63

gregation, that consist of randomly selecting input features to train each tree, makes RF particularly robust to new64

data.65

To address the lack of automatic detection method, we build a RF-based architecture to classify TEC timeseries,66

pick arrival times, and associate detected arrivals. Random-forests are trained over an extensive CID waveform dataset67

from 12 large-magnitude earthquakes, to classify vTEC waveforms between CIDs and noise and pick arrival times68

in NRT. Our method is, to the best of our knowledge, the first reported machine-learning classifier and arrival-time69

picker of CIDs. In this paper, we first describe the generation of our waveform dataset, our detection procedure, and70

our machine-learning models. We show classification performance results over our testing dataset and against other71

analytical detection methods. We finally discuss the future implementation of such method for NRT applications.72

2 DATA COLLECTION73

The Global Navigation Satellite Systems (GNSS) are widely used to sound the ionosphere. GNSS signals transmitted74

by satellites and captured by ground-based dual-frequency GNSS receivers enable the estimation of the differential75

slant TEC (sTEC), that is equal to the number of electrons along a line-of-sight (LOS) between a satellite and a76

receiver. The sTEC is calculated from phase and code measurements (Hofmann-Wellenhof et al. 2008; Afraimovich77

et al. 2006; Shults et al. 2016). The phase measurements provide precise information about the ionospheric variations78

and disturbances, but they are biased by an unknown phase ambiguity constant. The code measurements are noisy79

and less precise, but are not ambiguous, which enables to estimate the bias by averaging the code values along the80

arc of measurements. The sTEC is then estimated by removing the bias from the phase measurements. However, in81

near-real-time scenario, since the CID and other disturbances are clearly seen in phase measurements, we suggest82

to calculate the sTEC using solely phase measurements that can be rapidly retrieved in real-time via the Networked83

Transport of RTCM via Internet Protocol (NTRIP):84

sTECph =
1

A
∗ f

2
1 ∗ f22
f21 − f22

∗ (L1 ∗ λ1 − L2 ∗ λ2) (1)

where A = 40.308 m3/s2, L1 and L2 are phase measurements, λ1 and λ2 are wavelengths at the two Global85

Positioning System (GPS) frequencies: f1 = 1227, 60 and f2 = 1575, 42 MHz. Once the sTEC is calculated, the first86
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data value is subtracted from all data series to remove the unknown bias. Finally, because the sTEC is affected by the87

elevation angle of the LOS, we convert sTEC to vertical TEC (vTEC) by using the standard “mapping function”:88

vTEC = sTEC ∗ cos
(
arcsin(

Re cos θ

Re +Hion
)

)
, (2)

where Re is the Earth radius, θ is the LOS elevation angle, Hion is the altitude of ionospheric detection. The Hion89

cannot be known because the sTEC is an integral parameter. Based on the physical principles, the Hion is presumed to90

be around the ionization maximum, i.e. around 250-350 km. Here we take Hion=250 km for all events. This choice is91

reasonable from the point of view of the ionospheric physics, while determining of the real altitude of CID detection92

is out of the scope of this work. Moreover, once the system is trained, it can detect CID in TEC data series for any93

Hion value. The total electron content is measured in TEC units (TECU), with 1 TECU= 1016 electrons/m2.94

To construct our database, we collected GNSS-TEC data with CID signatures for 12 earthquakes that occurred95

between 2003 and 2016 (see Figure 1 and Table A1), including the M6.6 Chuetsu earthquake which is the smallest96

earthquake ever recorded by ionospheric GNSS data (Cahyadi & Heki 2015). The typical CID waveform are N-shaped97

and hump signatures (Figure 1b). However, CID waveforms also depend both on the magnetic field configuration in98

the epicentral region and on the geometry of the GNSS-sounding (Heki & Ping 2005; Astafyeva & Heki 2009; Rolland99

et al. 2013; Bagiya et al. 2019). Therefore, in order to correctly represent the large diversity of CID waveforms in our100

model, we included a variety of different TEC signatures that could be recorded after an earthquake (examples shown101

in Figures 1b to 1e).102

The GNSS data used in this study were of 1, 15 and 30 second cadences (see Table A1). Following the NRT-103

compatible scenario, we did not apply band-pass filter to extract or amplify CID signatures, but only worked with raw104

relative vTEC.105

3 AUTOMATIC DETECTION AND ASSOCIATION MODELS106

We propose a multi-step RF-based procedure to detect and associate CIDs (see Figure 2): 1) selection of a time107

window, 2) data preprocessing, 3) waveform features extraction, 4) RF-based classification of inputs features between108

noise and CID classes, 5) if detection probability > 50% at step 4, RF-based arrival time picking, 6) if 3 successive109

time windows classified as CID, confirmation of the presence of an arrival and aggregation of arrival times, and 7) if110

a detection is confirmed at step 6, we then associate this arrival to previously detected CIDs. Finally, we shift the time111

window and repeat the procedure.112

3.1 Preprocessing and feature extraction113

To extract consistent waveform features in TEC data with different sampling times, we first downsample all waveforms114

down to 30 s (see Supplementary Section S6). Consistency in sampling rate is critical as the higher-frequency spectral115

content can lead to substantial variations in input features. For example, energy peaks at higher frequencies, that would116
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a)

Tohoku
Sanriku

Kaikoura

Kii
Sumatra1

Sumatra2

Macquarie
Fiordland

Tokachi

Chuetsu

Illapel
Iquique

b) c) d)
arrival

e)

5 mn

f) g)

noise

Figure 1. CID waveform dataset. (a) map showing the event included in the training dataset. Details about

each event can be found in Table A1. (b) to (g) vTEC waveforms against time that include a CID arrival

(panels b to e, green) and that only contain noise (panels f and g, red). The CID arrival time is shown as a

grey vertical line in panels (b) to (e).

normally be smoothed out at lower frequencies, can drastically alter the envelope kurtosis and skewness. Additionally,117

TEC data may contain long-term trends due to GNSS satellite motion and other long-period TEC changes which can118

be considered as noise for the problem of CID detection. Therefore, we remove long-term trends (signals with periods119

typically greater than 30 mn) by first taking the time derivative of vTEC waveforms to remove long-wavelength120

trends and then performing a linear de-trending. Derivatives are computed using second order central differences121

in the interior points and second order one-sides (forward or backwards) differences at the boundaries. Once the122

TEC waveforms have been pre-processed, we extract 46 features calculated from the vTEC timeseries, spectra, and123

spectrograms (see Supplementary Section S1). These features are commonly used for signal classification tasks (e.g.,124

Hammer et al. 2013; Hibert et al. 2014; Provost et al. 2017; Wenner et al. 2021).125
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a)

If CID class

If > 3 successive 
CID detections

If noise classIf ≤ 3 CID 
detections

+ Arrival time aggregation (8th 
quantile) over detection windows

Figure 2. Detection and association procedures described in Section 3: 1) selection of a time window, 2)

preprocessing of the waveform, 3) extraction of waveform features from i) time series, ii) spectrum, and iii)

spectrogram, 4) RF classification of input waveform, 5) RF arrival time picking, 6) confirmation of an arrival

if RF has classified three consecutive time windows (at times tn−2, tn−1, tn) as arrival, and 7) association

of arrivals across different satellites and stations.

3.2 Building a single-station CID detector126

We selected a RF model (Breiman 2001) to discriminate vTEC signals between earthquakes and noise classes. Our127

RF model takes the features extracted from a given waveform at the previous step as inputs and outputs the probability128

of this waveform to be signal or noise. An input waveform is classified as CID if the detection probability predicted129

by the RF is over 50%. RFs predictions are constructed from average predictions from an ensemble of individual130

decision trees. Individual decision trees are built through bootstrap aggregation that consist of randomly selecting131

input features to train each tree. RFs have excellent generalization abilities, and do not require an extensive hyper-132

parameter tuning. We used the ”ExtraTrees” scikit implementation of the random forest (Pedregosa et al. 2011) which133

introduces an additional layer of randomness when building decision trees which allow for better generalization of134

the training dataset (Geurts et al. 2006). The training procedure relies on bootstrap samples to build each tree along135

with out-of-bag samples to estimate the generalization score. Bootstrapping makes decision trees less sensitive to136

the choice of training dataset which reduces the probability of overfitting. Additionally, the error computed from137

out-of-bag samples provides an excellent metric for RF’s classification performances.138

We need to first build a dataset of features to train our RF classifier. This dataset building process is summarized139
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in Figure 3. For each station, CID wavetrains are described by an arrival time and a duration. Wavetrain durations140

are considered uniform across satellites and stations for a given event (see Table A1). Signal durations are used to141

automatically label waveforms as CIDs, i.e., to build our training dataset. We consider a time-window to contain a142

CID if it overlaps the true wavetrain, i.e., CID confirmed by human analyst, by at least 70% which makes the RF143

more flexible to detect partial CID waveforms. Values picked for the duration correspond to estimates of the minimum144

duration of the CID across the network of satellites and stations. This choice ensures that at least the arrival time145

and/or the time at vTEC maximum are contained in the waveforms. Similar to Ross et al. (2018), we augment our146

training dataset by selecting four time-windows over each CID arrival by randomly shifting the beginning of the time147

window while still fulfilling the 70% overlap condition. Noise waveforms are selected randomly across all dataset148

with the condition that it should not overlap any CID wavetrain. Before extracting features, we add artificial Gaussian149

noise to the waveforms in the training dataset to reduce overfitting similar to Mousavi et al. (2020). We add Gaussian150

noise to both arrival and noise waveforms s so that the perturbed waveform s shows a specific Signal-to-Noise Ratio151

(SNR) such that s = s+
√

σ2

SNRn, where s is the original waveform, σ2 is the variance of the original waveform, n is152

the added noise sampled from a normal distribution, and the SNR is picked within the range SNR ∈ (1, 5). The final153

dataset consists of 2867 CIDs and 2867 randomly-picked noise waveforms.154

3.3 Building an arrival-time picker155

After the classification step, our detection algorithm needs to accurately select the arrival time in each window with156

a detection probability > 50%. This time picking procedure remains challenging using threshold-based conditions157

such as STA/LTA filters (Allen 1982). False positives will degrade the arrival time estimate when using threshold-158

based methods since signal-to-noise ratio, signal duration and dispersion characteristics vary significantly between159

events. To overcome this problem, we build an automatic arrival-time picking procedure by using an ”ExtraTrees” RF160

regressor. Our RF takes a normalized pre-processed waveform as input (see Figure 2) and outputs offset in seconds161

from the window central time, i.e, a float number between -360 and 360. We trigger this arrival time picker only over162

windows where an arrival has been confirmed.163

Similar to the RF classifier, we first have to build a waveform dataset to train our RF arrival-time picker (see164

Figure 3). We select arrival window for waveforms that overlaps the true wavetrain by at least 30%. This overlap is165

significantly lower than for the detector. This choice aims at training the RF to pick arrival times over the first detection166

window with incomplete CID waveforms. Similar to the training of the RF classifier in Section 3.2, we augment our167

training dataset by selecting four time-windows over each CID arrival by randomly perturbing the beginning of the168

time window while still fulfilling the 30% overlap condition which captures the uncertainty in arrival-time picking.169

The final dataset to train the arrival-time picker consists of 2867 CIDs.170
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3.4 Confirming a detection on a single station171

Because of the natural variability of the ionosphere, false detections can still be present after the RF classification step.172

These false detections generally correspond to short-time spikes in RF detection probabilities while true detections173

show an increase in RF detection probabilities over longer time periods. To further remove false positives, we confirm174

a detection if 3 consecutive time windows are classified as CIDs. Variations of this value between 2 and 5 have a175

relatively small (< 1%) influence on both recall and precision (see Supplementary Section S3). Short-time decrease176

in detection probabilities can occur within long CID wavetrains (generally caused by large earthquakes) compared177

to the processing time window. To reduce the number of false negatives, we notify the end of an CID wavetrain if 4178

consecutive time windows show a detection probability below 50%.179

Once a detection is confirmed, we must determine a single arrival time for the whole wavetrain. However, predic-180

tions in successive windows classified as CIDs and belonging to the same wavetrain might not have the same predicted181

time. Therefore, we determine the detected wavetrain’s arrival time by computing the 8th decile of the predicted ar-182

rival times over up to 10 successive CID windows. This choice of decile removes the influence of outliers in predicted183

arrival times made in early detection windows. We do not include predicted arrival times beyond 10 time steps, i.e.184

300 s, since these arrivals might correspond to time windows that do not include the true arrival time.185

3.5 Associating confirmed detections186

Once arrival times are picked across a network of stations and satellites, their spatial distribution informs us about187

the nature of the detected disturbance. Because large-scale disturbances (e.g., geomagnetic storms, internal gravity188

waves) or false positives can still pollute the detection dataset after the confirmation procedure at step 5, it is critical189

to discriminate between CIDs and other sources. If the detected signals belong to a CID, arrival times should follow190

the geometry of the CID wavefront, whose geometry is controlled by local sound velocities (Inchin et al. 2021).191

Therefore, the difference in CID arrival times between two stations/satellites can not be lower than the time it takes192

an acoustic wavefront to propagate between these two stations/satellites at the local acoustic velocity. Furthermore,193

the spatial extent of the CID wavefront in the ionosphere is constrained by the dimensions of the activated faults at194

the ground (Inchin et al. 2021) which is generally below 1000 km. Arrivals detected at two stations/satellites located195

at large distances from each other (i.e., > 1000 km) are not likely to belong to the same CID wavefront. By ignoring196

combinations of detections that show un-realistic travel times, we further improve the quality of our detection dataset.197

The association procedure is performed on a set of confirmed arrivals and consists of three steps: 1) for new198

detections dcurrent, give dcurrent an unused association number scurrent, 2) For each detection dcurrent find other199

confirmed detections daccept across the satellite network within an acceptable time range from the current detection200

dcurrent. By acceptable time range, we consider all arrivals with a time offset from the current detection toffset <201

rmax/cmin, where rmax = 500 km is the maximum association range between two detection points, and cmin = 0.65202

km/s is the minimum horizontal acoustic velocity. rmax is chosen as the maximum possible radius of a CID wavefront,203
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b) Preprocessing

Window 
selection

Noise 
windows

CID
windows

Feature extraction

RF picker training dataset

Noise 
+ CID

only
CID

RF classifier training dataset

Normalization

vTEC waveform 
dataset

85% training

15% validation

85% training

15% validation

Figure 3. Building datasets to train our CID classifier and arrival-time picker. Each waveform in our vTEC

dataset contains information about the CID arrival time and wavetrain duration. First, 4 CID windows and

4 noise windows are extracted from each vTEC waveform. CID windows must overlap the CID wavetrain

by at least 70% while noise windows must start or end at least 1000 s, respectively, after or before the

CID wavetrain. Each window is then pre-processed (derivative and linear detrending) to remove long-term

trend. Features are extracted from the preprocessed CID and noise waveforms to build a training dataset

for our RF classifier with 85% assigned to the training dataset and 15% to the validation dataset. To build

our arrival-time picker RF model, preproccessed CID waveforms are normalized with 85% assigned to the

training dataset and 15% to the validation dataset.

and cmin corresponds to the minimum acoustic velocity in the lower ionosphere. Finally, 3) for each detection in an204

acceptable time range daccept, if detection has an association number saccept, change scurrent to saccept.205

4 RESULTS206

To optimize our ML models for detection and arrival-time picking, we split both datasets between 85% training207

data and 15% validation data (see Figure 3). The classifier’s validation dataset is to calculate confusion matrices and208

measure the rate of false and true positives which is not accessible when bootstrapping samples. The performance of209

the classification procedure is sensitive to the window size used for training. In Figure 4a, we show both recall and210

precision metrics for both classes vs the choice of window size. Precision indicates the proportion of true detections211

relative to all detections (true positives plus false positives). Recall corresponds to the ratio of correct detections over212

all detections that should have been made (true positives plus false negatives). Because performances are also affected213

by the choice of overlap threshold used to build the training dataset, recall and precision are averaged over four214

overlaps between 30% to 90%. We observe that there is a clear improvement in both noise precision and arrival recall215

(up to ∼ 94%) with an increase in window size over the testing dataset up to 720 s. This owes to the higher number216
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of incomplete CID wavetrain for smaller windows than larger ones. For larger time windows > 720 s, precision and217

recall values plateau as the predictive power of some input features computed over large time windows diminishes. We218

selected a time window of 720 s which gives excellent classification results while facilitating the arrival time picking219

procedure by decreasing the range of possible values compared to larger time windows.220

The RF model can provide an estimate of the relative feature importance through the calculation of the Gini’s221

impurity during training. The three best features (see Figure 4b) include two timeseries features (ratio of the envelope222

mean over the envelope maximum and the kurtosis of the timeseries) as well as a spectral feature (energy up to223

the Nyquist frequency, i.e., 0.0165 Hz), which differs from other signal classification studies (e.g., Wenner et al.224

2021). However, the calculation of feature importance can be biased when considering continuous or high-cardinality225

categorical variables or when inputs features are co-linear. Co-linearity is present in our input dataset between spectral226

and time-series features (see Supplementary Section S2) which indicates a potential bias in variable importance results.227

The significant overlap between distributions supports the choice of a large number of features to properly discriminate228

between each class. Note that this overlap between clusters is also present when using other clustering methods229

such as such as Principal Component Analysis and t-distributed Stochastic Neighbor Embedding (see Supplementary230

Section S2), which further highlights the complexity of this classification problem.231

The recall for our detection model, shown in Figure 4c, is high for a wide range of probability thresholds indi-232

cating that the RF rarely labels true arrivals as noise. We observe in Figure 4d that this value decreases rapidly for233

probability thresholds > 50% corresponding to a stricter classification. A threshold at 50% is a good trade-off to234

balance true and false positive rates. True and false positives show strong similarities in terms of amplitude and fre-235

quency content (see Figure 4e). However, with larger thresholds, the fall-out, i.e., the number of false alerts will also236

decrease. Changes in number of false alerts with variations in probability thresholds highlights that the threshold can237

be adapted to specific applications depending on the objective. For early warning applications, the number of missed238

alert should be low and lower thresholds could therefore be used. In contrast, when building arrival-time catalog to239

invert for source parameters, precision is key and false alerts should be avoided, which necessitates larger thresholds.240

Additionally, results indicate that RF outperforms the other analytical methods, including STA/LTA filters, in terms241

of both true and false positive rates (see Appendix B).242

Detection results for a waveform recorded during the 2011 Sanriku earthquake (Figure 5a) show that both pre-243

dicted (vertical grey line) and true (vertical red line in top panel) arrival times overlap, as the absolute error is low244

(< 3 s). Note that the time used to plot detection probabilities corresponds to the end of the time window used for each245

classification. We observe that the duration of this wavetrain (∼ 450 s) is much larger than the true wavetrain (∼ 200246

s), owing to the large time windows employed in our detection model. Outside of the detected wavetrain, detection247

probabilities generally remain low (< 20%) in accordance to the high true negative rate shown in Figure 4c.248

In addition to the classification of individual waveform snippets, accurate arrival times are crucial for NRT ap-249

plications. We assess our model’s arrival-time picking accuracy by computing the error between predicted and true250

arrival times. Arrival-time errors for each event in our CID dataset in Figure 5b indicate that most arrivals (∼ 95%)251
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are captured with an absolute error < 60s, i.e., less than two time steps, and a large proportion of arrivals (∼ 80%)252

are accurately reproduced with an absolute error < 30 s, which is below the sampling time in each CID waveform.253

Some outliers are present for both Illapel and Kaikoura events. Errors for the Kaikoura earthquake owe primarily to254

the high noise level in the waveforms (i.e., random fluctuations of TEC background) which leads to large variations in255

vTEC time derivatives. For Illapel, false positives are lumped together with the true detection windows and degrade256

the arrival-time picking performance over 4 time steps. However, the average arrival-time picking error across the257

whole dataset decreases significantly as the number of time steps increases, i.e., time since first detection (see Figure258

5c).259

Confirmed detections across multiple satellites/stations can be used to plot ionospheric maps for each event.260

Comparing Tohoku’s ionospheric images in Figures 5d and 5e, we observe that the spatial distribution of arrival times261

is accurately reproduced by our detection model. The earliest arrival times match the location of maximum slip at the262

surface. The slight shift of the first arrivals to the south east owes to our choice of altitude of detectionHion (Astafyeva263

et al. 2013a). However, some spurious arrivals are present in Figure 5e, west of the fault with early arrival times, and264

south-east of the fault with late arrival times. These false detections correspond to rapid changes in vTEC occurring265

more than 20 mn before or after the true arrival and classified as earthquake signals by our model.266

Our association procedure enables the discrimination between detections belonging to the same wavefront and267

spurious arrivals. The distribution of association classes for the confirmed detections is shown in Figure 5f. Owing268

to the large time difference between spurious arrivals and the true arrivals, false detections are correctly classified in269

different association classes (see first vertical dark purple line in the inset plot in Figure 5f). The time evolution of270

the distribution of confirmed arrivals (see Supplementary Section S5) indicates that the entirety of the true arrivals271

were detected within 15 min after the event. Note that the position of ionospheric detection points is dependent on the272

altitude of detection Hion, which could impact the association classes. However, while changing Hion from 180 to 250273

km for Tohoku affects the location of the ionospheric points, true CID arrivals are still correctly associated within the274

same class (see Supplementary Section S7).275

New detections have also been reported by our model west of the epicenter (Figures 5d and 5e), in addition to276

the ones picked by human analysts, for the largest class corresponding the true CID (inset plot in Figure 5e and light277

purple class in Figure 5f). A low signal-to-noise ratio pulse is visible after the predicted arrival time (vertical line) at278

t = 9.9 mn after the earthquake, which is consistent with acoustic travel time from the source highlighted by other279

studies (e.g., Astafyeva et al. 2013a). Using our model also ensures consistency in the choice of arrival times, in280

contrast to human analysts who introduce a subjective uncertainty range when determining the true onset.281

In order to further assess the ability of our model to detect arrivals on new unseen data, we processed waveforms282

recorded after the 2014 Iquique earthquake (see Table A1). In Figure 6a, we show the slip distribution of the Iquique283

earthquake along with the RF predicted arrivals times and association classes in Figures 6b and 6c. Predicted arrival284

times are coherent with the region of maximum slip at the surface despite a few false detections south of the fault.285

This confirms the excellent detection, arrival-time picking, and classification results on new data.286
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lower elevations, and 250 km for higher elevations. These maps are generated 15 minutes after the event.
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Figure 6. Ionospheric maps for the 2014 Iquique earthquake. (a) map showing the epicenter location (yellow

star) and surface projection of the fault slip (in m) as green to yellow patches. (b) CID detections using our

RF-based classifier and time picker, and (c) association classes determined from confirmed detections. CID

coordinates were calculated at the intersection point between the LOS and the ionospheric layer using

Hion = 250 km. These maps can be generated 15 minutes after the event.

5 DISCUSSION287

Monitoring procedures NRT-compatible require both high accuracy and low computational time. To provide an es-288

timate of our algorithm’s computational time, we show in Figure 7 the cost associated with detection, arrival-time289

picking, and association steps after the 2011 Tohoku event at station 0908 and satellite G05 (Figure 7a) on a single290

CPU (Dell T5610 Intel Xeon E5-2630 v2 2.6Ghz 6 CPUs 64GB RAM on CentOS 7). The computational time for291

feature extraction, classification, validation, and time picking for a single satellite/station pair is always below 1 s and292

is dominated by RF steps (Figure 7b). This result suggests that a similar detection methodology, trained with higher293

sampling-rate data, could be implemented for NRT applications up to 1 Hz. Note that the time picking step is only294

present when a detection occurs which explains the jump in computational cost around 7 mn after the earthquake.295

We observe a significant increase in computational cost across the network 9 mn after the earthquake in Figure296

7c. This jump in association cost corresponds to the earthquake-induced acoustic wave reaching the ionosphere which297

leads to a large number of detections at each combination of satellite/station (see Figure 7d). This association proce-298

dure is computationally expensive since it must scan through all possible neighbors of each new detection to update299

association classes, which scales linearly with the number of new detections. Yet, the maximum cost for one time300

step over the whole network is less than 6 s. It takes around 1 s to process 10 new detections, at a given time, over a301



Near-real-time detection of co-seismic ionospheric disturbances using machine learning 15

0

10
vT

EC
satellite G05 - station 0908

a) Tohoku

0

5

10 Cost (s) across network
c)

0

50
Nb of new detections

d)

30 20 10 0 10 20 30 40
Time since earthquake (min)

0

100
Nb of associated detections

e)

0.0

0.5

1.0 Cost (s) single station
b)

feature
classification

time-picking
validation
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network of about 100 satellites/stations. The number of associated detections reaches a plateau about 13 mn after the302

earthquake (see Figure 7e) which corresponds to the end of the association of all first CID arrivals.303

The practical implementation of our detection/association procedure will require an efficient internet between304

the relevant GNSS stations to collect and extract timeseries for classification in NRT. However, because the overall305

computational cost of one time iteration using our method is below 6 s on a single CPU using non-compiled Python306

codes, at least 24 s are available for data acquisition and processing with waveforms sampled at 30 s. The association307

step is currently the most costly (∼ 90% of the total cost) but can be run in parallel to the other detection steps. Note308

that we also explored the feasibility of using our model to detect CIDs at a higher sampling rate by extracting input309

features without downsampling input data (see Supplementary Section S6). Our RF detection model always shows310
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detection probabilities > 50% using a 1 s sampling time but still predict a strong increase in detection probability311

around the CID arrival. This suggests that increasing the detection threshold to higher values (e.g., from 50% to 70%)312

would enable implementation of our detection method at higher sampling-rates at the cost of a higher false positive313

likelihood.314

Our model seems to be also able to detect vTEC variations associated with volcanic explosions and Rayleigh315

waves (see Supplementary Section S8). This suggests that a dataset of volcanic-induced and Rayleigh waves vTEC316

waveforms should be built and used to train an efficient discriminator between noise, earthquake, and volcanic phases.317

However, the discrimination between TEC signals from volcanic or seismic origin can easily be done by comparing318

the predicted arrival times at the ionospheric points to the distribution of seismic events in seismic catalogs which are319

available in NRT (Thompson et al. 2019).320

6 CONCLUSIONS321

We introduced an automatic procedure for detection, arrival-time picking, and association of CIDs. Detection and322

arrival time picking steps are performed using random forests trained over a CID dataset built from 12 earthquake323

events. These methods show excellent classification results with 96% true positive rate and 96% true negative rate,324

and arrival-time accuracy with an average error < 20 s using a 120 s time delay since the first detection window.325

Our model also outperforms threshold-based detection methods in terms of both recall and precision. Our analytical326

classification procedure accurately associates all arrivals corresponding to the same wavefront. Classification results327

also indicate that low signal-to-noise ratio arrival that were not picked by human analysts could also captured by our328

RF detection model.329

The performance of our automated procedure is promising for future NRT applications, including the use of CID330

arrival times for construction of ionospheric images of seismic sources. The first demonstration of seismo-ionospheric331

imagery was based on retrospective analysis of CID generated by the 2011 Tohoku earthquake (Astafyeva et al. 2011,332

2013a). Here we show that our newly developed method can generate such images in NRT. Note that the position of333

ionospheric detection points is dependent on the altitude of detectionHion. The latter parameter is not known precisely,334

but it is presumed to be around the height of ionospheric ionization maximum, i.e. around 250-350 km, depending on335

solar, geomagnetic, seasonal and diurnal conditions. Future studies should focus on determining the real Hion in order336

to obtain accurate source locations.337

Acquiring labeled vTEC data from additional events which will significantly improve the generalization abilities338

of our RF models. Additionally, the choice of features made in this paper could be further refined to obtain better339

accuracy (Han & Kim 2019). More accurate RF classifications could also alleviate the need for a validation step340

presented in Section 3.4. However, RF memory costs increase exponentially with tree depth, and consequently dataset341

size, ∼ 2D, with D the tree depth (Louppe 2014; Solé et al. 2014). The RF classification model is only about 70342

mb but will grow considerably larger with new data. With a larger dataset, image segmentation ML techniques such343

as standard convolutional neural networks (Ross et al. 2018, 2019), transformers (Mousavi et al. 2020) or residual344
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networks (Mousavi et al. 2019) applied on non-engineered inputs such as spectrograms could lead to substantial345

improvements in accuracy and memory costs for both classification and arrival time picking steps.346

The proposed association algorithm does not incorporate any information about the source nor the atmospheric347

dynamics. This procedure could be improved by assessing the consistency of arrival time differences across a network348

of satellites and stations using a range of possible sources, similarly to the methods used for the automated produc-349

tion of seismic bulletins (Draelos et al. 2015). In contrast to seismic media, atmospheric velocities, i.e., winds, are350

time-dependent which introduces further complexity when computing theoretical source-receiver arrival times. Fast351

simulations of acoustic wave propagation up to the ionosphere with realistic atmospheric specifications would greatly352

improve the classification between true and false arrivals and enable the localization of the largest surface displace-353

ments (Bagiya et al. 2019; Inchin et al. 2021; Zedek et al. 2021). Finally, to confirm the detection of an earthquake354

across a given network and trigger an alert for human analysts, an additional heuristic could be implemented based,355

for example, on the number of detections per association class.356

APPENDIX A: LIST OF EVENTS357

The list of events compiled in our CID dataset is described in Table A1.358

APPENDIX B: COMPARISON OF RF-BASED METHOD TO ANALYTICAL DETECTORS359

To further assess the RF classification performance, we compare the results to two analytical detection methods: 1) a360

Short-Time Average / Long-Time Average (STA/LTA) detection method, and 2) a derivative-based threshold method.361

The STA/LTA method requires to set four parameters: the STA and LTA time windows and two thresholds to activate362

and deactivate the detection trigger. The STA window represents the average duration of expected earthquake signals363

while the LTA window captures the average TEC noise amplitude. The STA/LTA method employed here uses a 60 s364

STA window and a 400 s LTA window. A detection is triggered if the STA/LTA threshold reaches 2.5 while the end of365

a wavetrain is chosen where the threshold goes below 0.5. This trigger value of 2.5, lower than employed at seismic366

stations, is used to make sure we capture each arrival, i.e., to increase the true positive rate. Parameters are chosen367

empirically and could be improved with a thorough investigation of the STA/LTA accuracy over the whole dataset.368

However, fine tuning the hyperparameters increases the likelihood of over-fitting a specific dataset. This shows the369

advantage of using a ML-based approach that relies on an efficient optimization procedure enabling us to reach high370

accuracy without strong overfitting.371

The analytical method used for comparison, referred to as ”AN”, is based on the analysis of TEC rate-of-change.372

Maletckii & Astafyeva (2021) noticed that, in a majority of cases, the CID are characterized by a rapid and high373

increase of TEC. To capture the CID arrival we therefore suggest to analyze the rate of TEC change between the two374
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consecutive epochs, between every two and every three epochs:375

∂vTEC1 = |vTECi − vTECi+1|, (B.1)

∂vTEC2 = |vTECi − vTECi+2|, (B.2)

∂vTEC3 = |vTECi − vTECi+3|, (B.3)

∂vTEC4 = |vTECi − vTECi+4|, (B.4)

where the subscript i corresponds to the time step ti. The vTEC at epoch i is considered as the CID arrival if each376

slope ∂vTEC1, ∂vTEC2, and ∂vTEC3 (and ∂vTEC4 for 1s data) are greater that the thresholds shown in Table A2.377

These threshold values were determined analytically over multiple events. Detections are confirmed if 12 consecutive378

time steps fulfill the threshold conditions described in Table A2.379

To assess the performance of each method, we determine the False and True negative and positive rates over380

the waveforms included in the testing dataset. To provide meaningful results, we scan entire waveforms (from 1-h to381

2-h duration) instead of a few windows as done for RF training. Including entire waveforms means that more noise382

windows will be included than CID windows, which is an excellent test to assess the performance of each method in383

more realistic conditions (where CIDs are rare). We consider that a wavetrain, i.e., a time window characterized by an384

arrival time and a duration, classified as CID by any method is a true positive if it overlaps the true arrival by at least385

70%.386

Our RF-based detection method outperforms AN and STA in terms of true positive and negative rates (see Fig-387

ures A1). We observe a lower true negative rate than determined during the RF validation step (see Figure 4c). This388

owes to the presence of much larger number of noise windows in the dataset. The STA/LTA filter also performs well389

to detect true arrivals. However, this high true positive rate comes at the cost of a low false positive rate, i.e., a large390

number of false alerts. The analytical method using only local time derivatives shows a large number of false negatives391

owing to presence of noise in the data.392

ACKNOWLEDGMENTS393

This work was supported by the French Space Agency (CNES, Project ”RealDetect”).394

DATA AVAILABILITY395
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Figure A1. Confusion matrices calculated over the RF testing dataset consisting of 1-h to 2-h long wave-

forms for (a) the RF classification model, (b) the analytical time-derivative based model, and (c) the

STA/LTA filter. Confusion matrices show from top to bottom and left to right, the True Positive Rate (TPR),

False Positive Rate (FPR), False Negative Rate (FNR), and True Negative Rate (TNR), such that: TPR =

TP/(TP + FN), TNR = TN/(TN + FP ), FPR = TP/(TP + FP ), and FNR = TN/(TN + FN).

earthquakes). RF models, validation, and associations codes will be released upon publication on a FigShare and a401

GitHub repository.402
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Table A1. List of events included in the dataset. Events are sorted by magnitude

.

Event
Reference Mag. Lat. ; Lon.

Date
(DD/MM/YY)

Time
(UTC)

Min. signal
duration (s) Sat. Samp

Tohoku 9.1 38.3 ; 142.37 11/03/2011 05:46:23 800 G26
G05

1s, 30s

Astafyeva et al. (2011, 2013a)

Sumatra 1 8.6 2.35 ; 92.8 11/04/2012 08:38:37 300 G32 15s

Astafyeva et al. (2014)

Tokachi 8.3 41.78 ; 143.90 25/09/2003 19:50:06 440 G13
G24

30s

Heki & Ping (2005)

Illapel 8.3 -31.57; -71.61 16/09/2015 22:54:32 600 G25,G12
G24

15s, 30s

Bagiya et al. (2019)

Sumatra 2 8.2 0.90 ; 92.31 11/04/2012 10:43:09 300 G32 15s

Astafyeva et al. (2014)

Iquique 8.2 -19.61 ; -70.77 01/04/2014 23:46:47 700 G01,G20
G23

15s, 30s

Bagiya et al. (2019)

Macquarie 8.1 -49.91 ; 161.25 23/12/2004 14:59:03 550 G05 30s

Astafyeva et al. (2014)

Fiordland 7.8 -45.75 ; 166.58 15/07/2009 09:22:29 300
G20

30s

Astafyeva et al. (2013b)

Kaikoura 7.8 42.757 ; 173.077 13/11/2016 11:02:56 550 G20
G29

1s, 30s

Bagiya et al. (2018)

Sanriku 7.3 38.44 ; 142.84 09/03/2011 02:45:20 200 G07, G10
G08

1s, 30s

Thomas et al. (2018); Astafyeva & Shults (2019)

Kii 7.2 33.1 ; 136.6 05/09/2004 10:07:07 425 G15 30s

Heki & Ping (2005)

Chuetsu 6.6 37.54 ; 138.45 16/07/2007 01:12:22 300 G26 30s

Cahyadi & Heki (2015)
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Table A2. Slope parameters for different sampling rates used by the analytical detector AN.

Sampling (s) s1 (TECU/epoch) s2 (TECU/epoch) s3 (TECU/epoch) s4 (TECU/epoch)

1 0.017 0.027 0.045 0.05

15 0.08 0.125 0.12 -

30 0.11 0.18 - -
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S1 List of input features21

All input features used to train the RF classifier presented in Section 3 are described in Table table S1.22

The distribution of input features over our training and testing datasets is shown in Figure S1.23

S2 R2 cross correlations of input features and clustering analysis24

The RF model can provide an estimate of the relative feature importance through the calculation of the25

Gini’s impurity during training. Figure 4b shows that the three best features have been extracted from the26

timeseries in contrast to other signal classification studies Wenner et al. (2021). However, the calculation27

of feature importance can be biased when considering continuous or high-cardinality categorical variables28

or when inputs features are co-linear. To assess the input features correlations within our CID dataset, we29

show in Figure S2 the R2 cross correlations. Co-linearity is present in our input dataset between spectral30

and time-series features which indicates a potential bias in variable importance results.31
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Table S1: List of attributes. Nyf = 0.0165 Hz is the Nyquist frequency. These attributes are commonly-used
in signal-classification studies. We refer the reader to the following references for more details: (Bessason
et al., 2007; Curilem et al., 2009; Hammer et al., 2012; Hibert et al., 2014; Provost et al., 2017; Wenner et al.,
2021)

Short name Description

W0 Ratio of the mean over the maximum of the envelope signal
W1 Ratio of the median over the maximum of the envelope signal
W2 Kurtosis of the raw signal (peakness of the signal)
W3 Kurtosis of the envelope
W4 Skewness of the raw signal
W5 Skewness of the envelope
W6 Number of peaks in the autocorrelation function
W7 Energy in the first third part of the autocorrelation function
W8 Energy in the remaining part of the autocorrelation function
W9 W7/W8
W10 Maximum of the envelope signal
W11 Energy of the signal filtered in 0.001-0.005 Hz
W12 Energy of the signal filtered in 0.005-0.015 Hz
W13 Kurtosis of the signal filtered in 0.001-0.005 Hz
W14 Kurtosis of the signal filtered in 0.005-0.015 Hz
S0 Mean of the Fourier transform (FT)
S1 Maximum of the FT
S2 Frequency at the FT maximum
S3 Frequency at the FT centroid
S4 Frequency at the FT 1st quartile
S5 Frequency at the FT 2nd quartile
S6 Median of the normalized FT
S7 Variance of the normalized FT
S8 Number of Fourier transform peaks (> 0.75 FT max.)
S9 Mean of FT peaks (S8)
S10 Gyration radius
S11 Energy up to 0.5Nyf Hz
S12 Energy up to 0.75Nyf Hz
S14 Energy up to 1.0Nyf Hz
FT0 Kurtosis of the maximum of all Fourier transforms (FTs) as a function of time
FT1 Kurtosis of the maximum of all FTs as a function of frequency
FT2 Mean ratio between the maximum and the mean of all FTs
FT3 Mean ratio between the maximum and the median of all FTs
FT4 Number of peaks in the curve showing the temporal evolution of the FTs maximum
FT5 Number of peaks in the curve showing the temporal evolution of the FTs mean
FT6 Number of peaks in the curve showing the temporal evolution of the FTs median
FT7 ratio of FT4 over FT5
FT8 ratio of FT4 over FT6
FT9 Number of peaks in the curve of the temporal evolution of the FTs central frequency
FT10 Number of peaks in the curve of the temporal evolution of the FTs maximum frequency
FT11 FT9/FT10

FT12
Mean distance between the curves of the temporal evolution of the FTs maximum
and mean frequency

FT13
Mean distance between the curves of the temporal evolution of the FTs maximum
and median frequency

FT14 Mean distance between the 1st quartile and the median of all FTs as a function of time
FT15 Mean distance between the 3rd quartile and the median of all FTs as a function of time
FT16 Mean distance between the 3rd quartile and the 1st quartile of all FTs as a function of time
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Additionally, the significant overlap between distributions in Figure 4b motivates the choice of a large32

number of features to properly discriminate between each class. However, multidimensional clusters in33

input data are difficult to represent in 2d which prevents human interpretation. Two standard methods34

to facilitate the visualization of clusters in data are called Principal Component Analysis (PCA), and T-35

Distributed Stochastic Neighbor Embedding (TSNE, Van der Maaten and Hinton (2008)). PCA consists36

in project the input features in onto a space with orthogonal, i.e., uncorrelated, vector basis such that the37

greatest variance of the data comes to lie on the first coordinate. TSNE builds probability distributions38

over pairs of high-dimensional vectors so that similar data points have a higher probability while dissimilar39

data points are assigned a lower probability. Then, TSNE constructs a similar probability distribution over40

the points in the low-dimensional space, and it minimizes the Kullback–Leibler divergence between the two41

distributions with respect to the locations of the points in the map. No obvious clusters can be identified in42

the two first components of the PCA (Figure S3a) which indicates that only complex nonlinear relationships43

can help discriminating signals between noise and CID classes. TNSE non-linear mapping suggests two44

clusters (Figure S3b). These clusters are particularly visible for events showing strong CID amplitudes such45

as Sanriku. However, events with low signal-to-noise ratio CIDs, such as Kii, do not show a significant overlap46

between noise and arrival clusters. This further highlights the complexity of this classification problem.47

S3 Sensitivity of classification accuracy to number of validation48

points49

The heuristic model presented in Section 3.4 relies on a single parameter to confirm a detection: the number50

of consecutive time steps with a detection probability > 50%, referred to as Nd. To determine the optimal51

value of Nd we varied this parameter between 2 and 5, and computed the true and false positive and negative52

rates over our true-arrival dataset, i.e., 2000 s waveforms centered on each true arrival. In Figure S4, we53

observe that the variations in Nd (Nb points trigger) do not affect significantly the true and false positive54

rates. Because we observe a slight decrease in False positive rate with an increase in Nd, we select Nd = 355

as a trade-off between false alerts and time delay to confirm a detection.56

S4 Arrival time picking optimization57

The arrival time picking procedure is based on a RF model. This model takes vTEC time derivatives as an58

input and gives a time shift from the window central time as an output. The RF will therefore be sensitive59

to the window size, as larger windows increase the number of inputs and tend to complicate the picking60

procedure while small time windows lack data points to regularize the time picking problem. Additionally,61

the range of window overlap with the true wavetrain used for training plays a significant role on the RF62

performances. Using small overlaps will train the machine to pick arrivals on incomplete waveforms and63

therefore makes the problem more difficult. However this will enable the machine to more efficiently pick64

arrival times over the first detection time windows of a given wavetrain. We show in Figure S5, the variations65

in time picking accuracy with window size and overlap (called deviation). As a trade-off between errors and66

the ability of our RF model to pick arrival times over incomplete waveforms, we choose a window size similar67

to the RF classifier (see Section 3.2) and an overlap of 30%.68

S5 Time evolution of detected arrivals69

A requirement for NRT applications is to obtain alerts within 20mn after the event. Therefore, our detection70

and association procedure should trigger a valid alert as soon as possible in addition to providing accurate71

arrival times. In Figure S6, we show the evolution of the distribution of arrival times with time since the72

event for the earthquake Tohoku. We observe that after 12mn, we already observe a specific trend in arrival-73

time values highlighting that the acoustic energy is propagating from East to West. After 15mn, almost all74

hand-picked arrival times have been correctly determined by our model.75
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S6 Detection of CIDs at higher sampling rates76

A machine learning model trained with data sampled at 30s might learn patterns that are invariant with77

frequency. To assess how our classification model performs on 1s data, we extracted features in each time78

window without downsampling waveforms. In addition, we used a 1s time shift between two consecutive time79

windows. Detection probability and picked arrival times are shown in Figure S7. Detection probabilities are80

always over 50%, i.e., RF classified the whole timeseries as a CID with the use of a detection threshold at81

50%. Yet, we observe a significant increase in detection probability around 2.85 UT, from 60% to 95%,82

that matches the arrival of the CID. Jumps in detection probabilities indicates that using a larger detection83

threshold, such as ≥ 70% instead of ≥ 50%, could enable the processing of higher sampling-rate data with of84

our algorithm. These larger probabilities owe to the additional noise introduced by higher frequencies when85

extracting input features. The higher-frequency spectral content can lead to substantial variations in certain86

input features. For example, energy peaks at higher frequencies, that would normally be smoothed out at87

lower frequencies, can drastically alter the envelope kurtosis and skewness, which are critical parameters for88

discrimination between noise and arrival windows. Nonetheless, the ability of our model to recover the true89

arrival time is extremely promising for near-real-time applications.90

S7 Impact of Hion on association classes91

The position of ionospheric detection points is dependent on the altitude of detection Hion, which could92

impact the association classes. To assess the sensitivity of the association classes on Hion, we changed the93

altitude of the ionospheric points for the Tohoku event from 180 to 250 km. The location of the center of the94

main association class (light purple in Figure S8c) tends to shift towards the South-East with the increase95

in Hion. While the location of the ionospheric points changes with Hion, the true arrival times (Figure S8a)96

are still correctly associated in the same class (light purple in Figure S8c).97

S8 Detection of ionospheric signal from volcanic eruptions and98

Rayleigh waves99

Other low-frequency acoustic sources, such as volcanoes or surface Rayleigh waves can generate transient100

ionospheric perturbations. In particular, volcanic eruptions generate both infrasonic and gravito-acoustic101

signals in the 0.1-10 mHz frequency range known as Co-Volcanic Ionospheric Disturbances (CVID). While102

gravity waves show a much lower frequency content Hines (1960), near-epicentral CVID can show short-103

period signals with significant energy below 5 minutes Shestakov et al. (2021). We therefore first assessed104

the sensitivity of our RF model to travelling volcanic-induced ionospheric propagation using the example of105

the Calbuco volcanic eruption on April 22, 2015 Shults et al. (2016). In figure S9, we observe that the entire106

volcanic-induced gravito-acoustic wavetrain is classified as CID. This can be explained by the similarity107

of CIDs and CVIDs in the feature space due to significant energy at high frequencies corresponding to108

infrasound signals mixed with the graviy wavefield.109

The atmospheric perturbations generated by seismic Rayleigh waves can also propagate to the ionosphere110

and be observed on TEC data (Rolland et al., 2011). Such signals typically show energy between XXX s and111

XXX s, similar to epicentral infrasound. Testing our method on a Rayleigh-wave signal observed after the112

XXX event, we observe that the transient signal is well captured and its arrival time accurately predicted113

(see Figure S10). This indicates that both epicentral and Rayleigh-wave infrasound can be observed and114

associated by our detection method.115
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Figure S1: Probability density of each input features over our training and testing datasets. The short name
of feature for each plot is shown above the plot. The description of each feature is given in Table table S1
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feature is given in Table table S1.
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Figure S3: First versus second component of (a,c) a Principal Component Analysis (PCA) and (b,d) a
T-Distributed Stochastic Neighbor Embedding (TNSE, Van der Maaten and Hinton (2008)). Points are
colorcoded with (a,b) the detection class, and (c,d) the event name for the arrival class.
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Negative Rate (FNR) with the choice of number of time steps for validation in the heuristic model presented
in Section 3.4
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Figure S5: Performance of RF arrival time picker. (a) Root Mean Square Error (RMSE) vs minimum true-
wavetrain overlap (deviation) and window size (s). The minimum true-wavetrain overlap corresponds to
the minimum fraction of the wavetrain that has to be included in a window to be considered for training.
(b) R2 error vs minimum true-wavetrain overlap (deviation) and window size (s). Bottom Distribution of
arrival-time picking errors (s) vs true time shift from central time (s) over (c) the testing dataset, and (d)
the training dataset.
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Figure S6: Ionospheric maps after the 2011 Tohoku earthquake generated at various times since the event.
(a) to (c) Distribution of detected arrival times after (a) 7 minutes, (b) 11 minutes, and (c) 15 minutes since
the event. CID coordinates were calculated at the intersection point between the LOS and the ionospheric
layer using Hion = 250 km. The colorcode corresponds to the predicted arrival time at each ionospheric
point. Grey dots correspond to the location of ionospheric points where there is no detection yet but with
detections after 20 mn.
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Figure S7: Tohoku’s ionospheric arrival-time maps computed 14 minutes after the event for (d) hand-picked
arrival times along with the epicenter location (yellow star), and surface projection of the fault slip (in m) as
green to yellow patches, (e) RF-based arrival-time predictions, and (f) association classes determined from
predicted arrival times.. CID coordinates were calculated at the intersection point between the LOS and the
ionospheric layer using Hion = 180 km.
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Figure S8: Performance assessment of RF detection and arrival-time picking at a higher sampling rate of
1s. 2-h vTEC waveform for the Sanriku event, satellite G07, station 0048 along with detection probabilities
predicted by our RF detection model (bottom). The true arrival is shown as a red vertical line.
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Figure S9: vTEC waveform for the Calbuco eruption, satellite G03, station antc along with detection
probabilities predicted by our detection procedure (see Section 3) using a window size w = 720 s. Volcano-
associated ionospheric perturbations are present between 21.3 and 22.5UT. The RF-predicted arrival time
as a dark grey vertical line. The detected wavetrain using the RF is highlighted with a grey background.
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Figure S10: vTEC waveform from seismic Rayleigh waves recorded after the 1994 earthquake in Kuril
Islands (Astafyeva et al., 2009), satellite G06, station tskb along with detection probabilities predicted by
our detection procedure using a window size w = 720 s. Rayleigh-wave-associated ionospheric perturbations
are present between 13.6UT and 13.8UT. The RF-predicted arrival time as a dark grey vertical line. The
detected wavetrain using the RF is highlighted with a grey background.
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