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Abstract

Key Points: * Ecological and evapotranspiration characteristics of ten typical vegetation communities in semi-arid steppe were

refined and decomposed. * Sensitive parameters of dynamic evapotranspiration improve the regional simulation effect. * Deep

learning was used to downscale regional evapotranspiration at the 3-hour scale. Abstract Reports on ecohydrological models

for semi-arid steppe basins with scarce historical data are rare. To fully understand the ecohydrological processes in such

areas and accurately describe the coupling and mutual feedback between ecological and hydrological processes, a distributed

ecohydrological model was constructed , which integrates multi-source information into the MY Ecohydrology (MYEH) model.

This paper mainly describes the evapotranspiration module (Eva module) based on sensitive parameters and deep learning.

Based on multi-source meteorological, soil, vegetation, and remote sensing data, the historical dynamic characteristics of ten

typical vegetation communities in the semi-arid steppe are refined in this study and seven evaporation (ET) components in

the Xilin River Basin (XRB) from 1980 to 2018 are simulated. The results show that the Naive Bayesian model constructed

based on the temperature and three types of surface reflectance can clearly distinguish between snow-covered or-free conditions.

Based on the refinement of typical vegetation communities, the ET process characteristics of different vegetation communities in

response to climate change can be determined. Dynamic sensitive parameters significantly improve the regional ET simulation.

Based on the validation with the Global Land Evaporation Amsterdam Model product and multiple models in multiple time

scales (year, quarter, day, 3 h), a relatively consistent and reliable ET process 1 was obtained for the XRB at the 3-hour scale.

The uncertainties of adding and dynamizing more ET process parameters and adjusting the algorithm structure must be further

studied.
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Key Points: 

• Ecological and evapotranspiration characteristics of ten typical vegetation 

communities in semi-arid steppe were refined and decomposed. 

• Sensitive parameters of dynamic evapotranspiration improve the regional 

simulation effect. 

• Deep learning was used to downscale regional evapotranspiration at the 3-hour 

scale. 
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Abstract 

Reports on ecohydrological models for semi-arid steppe basins with scarce historical 

data are rare. To fully understand the ecohydrological processes in such areas and 

accurately describe the coupling and mutual feedback between ecological and 

hydrological processes, a distributed ecohydrological model was constructed, which 

integrates multi-source information into the MY Ecohydrology (MYEH) model. This 

paper mainly describes the evapotranspiration module (Eva module) based on 

sensitive parameters and deep learning. Based on multi-source meteorological, soil, 

vegetation, and remote sensing data, the historical dynamic characteristics of ten 

typical vegetation communities in the semi-arid steppe are refined in this study and 

seven evaporation (ET) components in the Xilin River Basin (XRB) from 1980 to 

2018 are simulated. The results show that the Naive Bayesian model constructed 

based on the temperature and three types of surface reflectance can clearly distinguish 

between snow-covered or -free conditions. Based on the refinement of typical 

vegetation communities, the ET process characteristics of different vegetation 

communities in response to climate change can be determined. Dynamic sensitive 

parameters significantly improve the regional ET simulation. Based on the validation 

with the Global Land Evaporation Amsterdam Model product and multiple models in 

multiple time scales (year, quarter, day, 3 h), a relatively consistent and reliable ET 

process was obtained for the XRB at the 3-hour scale. The uncertainties of adding and 

dynamizing more ET process parameters and adjusting the algorithm structure must 

be further studied. 

 

1 Introduction 

An ecohydrological model is a generalized expression of ecohydrological 

phenomena and processes using mathematical language and physical processes 

(Svoray et al., 2015), which helps to describe the interaction between ecology and 

hydrology (Geng et al., 2020) and reveal the succession of ecological patterns and the 

synergy mechanism of hydrological cycle in ecological processes (Wu et al., 2021a). 

In recent years, models based on different conservation laws (e.g., water balance, 

energy balance) and different coupling mechanisms of ecohydrology (one-way 

transfer or two-way feedback) have been proposed (Grover et al., 2020; Melsen & 

Guse, 2021) such as the conceptual Hydrologiska Byrans Vattenbalansavdelning 

(HBV) model (Tong et al., 2021), Xin'anjiang model (Flamig et al., 2020), semi-

distributed Topmodel (Beven et al., 2021), distributed Soil and Water Assessment 

Tool (SWAT) model (Li & Fang, 2021), the distributed hydrological soil vegetation 

model (DHSVM) (Yan et al., 2021a), Variable Infiltration Capacity (VIC) (Melsen & 

Guse, 2021), the distributed time variant gain model (DTVGM) (Ma et al., 2019b) 

and land surface process model Community Land Model (CLM) (Yan et al., 2021b). 

The results of many studies showed that, based on design and improvement, 

ecohydrological models exhibit better simulation performances at their respective 

target scales and ecosystems (Sun et al., 2020a; Yan et al., 2021a). 
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China's temperate grassland area covers 1.68 × 106 km2, which accounts for 

11.2% of the world total grassland area and is concentrated in the semi-humid and 

semi-arid areas of the northeastern of China (Wu et al., 2021b). Grassland ecosystems 

have been degraded due to climate change, excessive grazing, and irrational 

development (Goenster-Jordan et al., 2021; Yin et al., 2018). Based on ecohydrology, 

suitable model have been established for ecosystems with abundant water in humid 

and sub-humid areas (Zha et al., 2020), alpine mountains (Tong et al., 2021), wetlands 

(Lou et al., 2019), and deserts (Yin et al., 2021). However, ecohydrological models 

specifically applicable to arid and semi-arid steppe have been rarely reported. The 

semi-arid grassland ecosystem is relatively barren, although vegetation communities 

are rich and diverse. The evolution of ecohydrological processes, coupling 

mechanism, and mutual feedback have strong regional characteristics, which cannot 

be accurately described with existing models. Therefore, in the context of global 

ecological governance and protection, it is of great scientific significance to develop 

and debug an ecohydrological model that is specifically applicable to arid and semi-

arid steppe (Ma et al., 2019b). 

Evaporation (ET) is important for the water cycle and energy balance as well 

as for the matter and energy flow between the land and atmosphere (Widmoser & 

Michel, 2021). The accurate quantification of ET and determination of its spatial and 

temporal pattern are crucial for understanding the water and energy balance in arid 

and semi-arid regions in which water is scarce (Varmaghani et al., 2021), 

physiological characteristics of typical grassland community succession processes, 

and improving the model accuracy and local water resource management (Dong et al., 

2021). Due to the gradual improvement of satellite remote sensing technology, many 

surface-scale and long-time series ET datasets and models are constantly being 

introduced (Martens et al., 2017; Miralles et al., 2011; Varmaghani et al., 2021). They 

can be roughly divided into three categories: ET based on land surface energy balance 

calculations (Norman et al., 1995), ET based on vegetation index–land surface 

temperature (LST) triangle/trapezoid model calculations (Long & Singh, 2012), and 

ET calculated based on Penman–Monteith (P–M) or Priestley–Taylor models (Bao et 

al., 2020). The above-mentioned methods are also commonly used to calculate the ET 

in ecohydrological models. For example, Zhang et al. (2021) coupled the VIC model 

with the crop growth model and introduced an improved ET model based on the soil 

water stress method to improve the two water stress errors of the Environmental 

Policy Integrated Climate Model. Bechtold et al. (2019) proposed a set of peatland-

specific land surface hydrological modules that significantly improved the 

performance of peatlands in the global Earth system modeling framework. Based on 

the situation of different research regions, appropriate ET calculation methods can be 

selected to improve the requirements with respect to the simulation accuracy of the 

ecohydrological model (Zhang et al., 2020). 

Due to the instantaneity of the remote sensing satellite during data acquisition, 

there is an uncertainty in the transit gap period between two intervals (Ryu et al., 

2012). The model based on the Food and Agriculture Organization (FAO) ET 

algorithm uses meteorological data-driven and vegetation parameters to calculate the 
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plant transpiration (Et), snow evaporation (Es), soil evaporation (Eb), and canopy 

interception evaporation (I), which has a high priority in the ET module of the 

ecohydrological model equal to or longer than the daily time scale (Hu et al., 2015; 

Long et al., 2014; Vinukollu et al., 2011; Zhang et al., 2008). However, in the semi-

arid grassland watershed lacking historical measured data, the use of a single ET 

algorithm is insufficient to meet the accuracies of both time and space estimations 

(Hadria et al., 2021; Young et al., 2021). Most ecohydrological models lack surface 

parameters with high temporal change rates for detailed classification of grassland 

communities and are also insufficient to distinguish the ET characteristics of multiple 

vegetation communities in typical grassland in detail (Hulsman et al., 2020; Richards 

et al., 2020; Sun et al., 2020b). Therefore, in today's widespread application of the 

Internet of Things and big data, it is of great significance to explore and establish a set 

of models and methods that include the advantages of various models and data (Yan 

et al., 2021b) to accurately grasp the ecohydrological process. 

The computational model of deep learning is composed of multiple processing 

layers, and data features on multiple levels of abstraction can be learned through 

training. After adjusting the model structure and relevant parameters, the model can 

effectively simulate the real data, thus greatly reducing the workload and time cost, 

and realizing automatic management of complex transactions (Kratzert et al., 2019). 

Ecohydrological simulation based on physical and conceptual models requires a grasp 

of the principles of hydrological processes. However, due to the very complex laws of 

hydrological phenomena and the difficulty in obtaining many parameters, it is 

difficult to achieve a good simulation effect (Sit et al., 2020). At this point, the data-

driven black box model will show its advantages. By entering long series of data and 

learning layer by layer inside the model, the eco-hydrological series can be extended 

well to meet the needs of hydrological work (Shen et al., 2018; Wagener et al., 2010). 

Based on the above-mentioned analysis, the MY ecohydrology (MYEH) 

model was proposed and developed in the study area, that is, the Xilin River Basin 

(XRB) in the semi-arid steppe, which lacks historical measured data. In this paper, the 

ET module (in short Eva module) is introduced. The aims of this study were to: (1) 

establish a downscaling model for the intraday 3-hour snow cover change and 

determine the compositions of the ET component types; (2) carefully divide typical 

vegetation communities in the semi-arid steppe and determine corresponding process 

parameters; 3) analyze dynamic ET-sensitive parameters and optimize ET time series 

characteristics in the study area; and (4) downscale expanded ET data in combination 

with multi-source and long-series data and verify existing products and models at 

multiple scales to ensure the feasibility of the model and expanded data. 

 

2 Materials and Methods 

2.1 Study area 

The study area is located in the XRB in the Inner Mongolia Autonomous 

Region, China (43°30”–44°4″ N, 115°37″–117°30″ E), which is characterized by 
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continental climate in the middle temperate zone. The annual average temperature is 

2.6 ℃, the annual ET is significant, and the sunshine is intense (Figure S1). Overall, 

the terrain is high in the southeast and low in the north, with an elevation ranging 

from 977 to 1620 m (Figure 1a). In the southeast of the study area, there is a multi-

level platform with a high elevation and significant number of gullies. Many fixed 

dunes are distributed in the middle of the tributary and mainstream. Several of them 

are semi-fixed dunes with notable wind erosion. More than 90% of the vegetation is 

natural forage including Leymus chinensis Tzvel., Stipa grandis P. Smirn., and Stipa 

krylovii Roshev. (Li et al., 2021). A certain amount of Achnatherum splendens Nevski 

can be found in degraded wetlands and surrounding valleys. Many shrubs, such as 

Stipa baicalensis Roshev. and Caragana microphylla Lam., can be found in the 

higher arid steppe. The desert landscape in the central part of the study area is mainly 

composed of Ulmus pumila Linn., whereas Picea asperata Mast. and Betula 

platyphylla Suk. are distributed in the northeast (Figure 1b). 

According to incomplete statistics, the historical measured data of XRB are 

relatively scarce. There were only one China's National Hydrological Station (Figure 

1b) built in 1964 and one Chinese National Meteorological Station, which was located 

in the urban area and had little significance to reflect the meteorological conditions of 

the grassland, in the historical period. 

 

Figure 1. Location, vegetation types (a), and topography (b) of the Xilin River Basin 

(XRB). SBG: Stipa baicalensis Roshev. grassland; LCG: Leymus chinensis (Trin.) 

Tzvel. grassland; SKG: Stipa krylovii Roshev. grassland; SGG: Stipa grandis P.A. 

Smirn. grassland; ASG: Achnatherum splendens (Trin.) Nevski grassland; CMG: 

Caragana microphylla Lam grassland; AFG: Artemisia frigida Willd. grassland; PAG: 

Picea asperata Mast. grassland; FSG: Filifolium sibiricum (L.) Kitam. grassland; and 

WCG: weed community grassland. 

 

2.2 Method 

MYEH model is a bidirectional coupling eco-hydrological model for steppe 

inland river basins in arid and semi-arid regions, which is driven by meteorological 

data and developed by Dr. Mingyang Li and Prof. Tingxi Liu. In order to get more 

support from researchers and better improve the model, the model will be released as 

open source and gradually optimized and updated. The MYEH model mainly includes 

evapotranspiration, runoff, confluence, grazing disturbance, carbon and nitrogen 

cycle, etc. It absorbs the advantages of various existing ecological models, 

hydrological models, as well as the framework and algorithm of eco-hydrological 

models. 

The MYEH-Eva module can be divided into three parts (Figure 2a): judgment, 

simulation, and validation. The judgment part is used to distinguish the specific types 

contained in ET. The simulation part is to simulate ET of 3hr scale. The inspection 
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part is to use the existing products and measured data to test the downscaling ET 

results. 

2.2.1 Eva module judgment part 

The judgment part mainly includes three aspects: open waterbody, snow 

cover, and vegetation–bare soil differentiation. We used historical remote sensing 

image data (every 5 years) to determine whether a grid contains an open waterbody. If 

it does, the ET component includes open water surface evaporation (Ew). For the 

specific waterbody extraction process, area of statistics, and results, please see Zhou 

et al. (2020). In the area with snow cover, sublimation (Es) is the main form of ET, 

whereas ET can be decomposed into bare soil evaporation (Eb), evapotranspiration 

(Et) and flow closure loss (I) in areas without snow cover. Especially in the intraday 

study on the hourly scale, the snow cover may change depending on factors such as 

the intraday temperature and radiation. It is particularly important to accurately 

determine whether there the area is covered by snow. 

We used temperature, visible light radiation (VIS), near-infrared radiation 

(NIR), and short-wave radiation (SW) data as input for training the Naive Bayes 

classifier to judge the snow cover. The detailed model construction and results are 

provided in Sections 2.3.1 and 4.1. For areas without snow cover, we used Fractional 

vegetation coverage (FVC) to define Eb or Et and I, that is, the area with FVC 

proportion in the grid point is Et and I and the other area (1-FVC) is Eb. The specific 

downscaling simulation module is introduced in detail in Section 2.3.2. The actual 

evapotranspiration (E) in the calculated region of the EVA module of the MYEH 

model can be decomposed as follows (Figure 2b): 

𝐸 = {

𝐸𝑠, 𝑆𝐶
𝐸𝑡 + 𝐼 + 𝐸𝑏 , 𝑁𝑜𝑛 𝑆𝐶, 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑂𝑊

𝐸𝑡 + 𝐼 + 𝐸𝑏 + 𝐸𝑤, 𝑁𝑜𝑛 𝑆𝐶, 𝑤𝑖𝑡ℎ 𝑂𝑊
,             (1) 

where 𝑆𝐶 and 𝑂𝑊 represent snow cover and open water, respectively. 

 

Figure 2. Determination process (a) and decomposition diagram of evaporation (b). 

VIS: visible radiation; NIR: near-infrared radiation; SW: shortwave radiation; RS: 

remote sensing; Mete.: meteorological data; Veg.: vegetation data; Alb.: albedo data; 

FVC: fractional vegetation coverage; E: actual evaporation; Es: snow sublimation; Ew: 

open-water evaporation; Et: transpiration; I: interception loss; and Eb: soil 

evaporation. 

 

The Naive Bayes classifier is a classification method based on the Bayes 

theorem and an independent assumption of characteristic conditions (Rahmati et al., 

2019). Due to the relatively independent events of snow cover or not, the temperature 

of the China Meteorological Forcing Dataset (CMFD) and VIS, NIR, and SW of the 

Global Land Surface Satellite (GLASS) dataset within the scope of the research area 
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were used as input data and Es of Global Land Evaporation Amsterdam Model 

(GLEAM) was used as output for the training judgment. 

We established the sample data set 𝐷 = {𝑑1, 𝑑2, ⋯ , 𝑑𝑛}. The corresponding 

characteristic attribute set of the sample data is 𝑋 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} and the class 

variable is 𝑌 = {𝑦1, 𝑦2}, that is, snow cover and non-snow cover. In this case, 𝐷 can 

be divided into two categories, where 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 are independent of each other and 

random, 𝑌 of the prior data 𝑃𝑝𝑟𝑖𝑜𝑟 = 𝑃(𝑌), 𝑌 of the posterior data 𝑃𝑝𝑜𝑠𝑡 = 𝑃(𝑌|𝑋), by 

the Naive Bayes algorithm, a posteriori probability can be made by prior probability 

𝑃(𝑌), 𝑃(𝑋) of evidence, the type of conditional probability 𝑃(𝑋|𝑌) calculated: 

𝑃(𝑌|𝑋) =
𝑃(𝑌)𝑃(𝑋|𝑌)

𝑃(𝑋)
                            (2) 

Because the magnitude of 𝑃(𝑋) is fixed, only the molecular part of the above-

mentioned equation can be considered during comparisons of posterior probabilities. 

Therefore, a Naive Bayesian calculation of sample data belonging to category 𝑦𝑖 can 

be carried out as follows: 

𝑃(𝑦𝑖|𝑥1, 𝑥2, ⋯ , 𝑥𝑑) =
𝑃(𝑦𝑖) ∏ 𝑃(𝑥𝑗|𝑦𝑖)𝑑

𝑗=1

∏ 𝑃(𝑥𝑗)𝑑
𝑗=1

                    (3) 

 

2.2.2 Eva module simulation part 

The simulation part of the MYEH-Eva module is scaled down by deep 

learning. In this study, 26 input layers, 7 output layers, and 15 hidden layers were set 

up for training and the two processes between each layer were the forward 

propagation of the signal and the backpropagation of the error. This means that the 

error output is calculated in the direction from input to output, whereas the adjustment 

weights and thresholds are adjusted in the direction from output to input (Ardabili et 

al., 2020; Liu et al., 2018b). The number of hidden layers is determined by several 

simulation tests. Appropriate addition of hidden layers can improve the simulation 

accuracy and increase the computing load. When the number of hidden layers is 

greater than or equal to 15, the increase of computing load is much greater than the 

improvement of simulation accuracy. 

A batch gradient descent algorithm was selected as the loss function. Because 

the objective function to be optimized is very complex, the traditional one-

dimensional search method was not used in this study to identify the step size of each 

iteration. Instead, the update rules of the step size are given to the network in advance 

to avoid an inefficient algorithm (Hussain et al., 2020; Zhang et al., 2018). The input 

and output sets of the MYEH-Eva module are shown in Table 2. Based on the 

description of the Eva module, we first set up a simple model: 

𝑌𝑖
𝑙 = 𝑓(𝑤1𝑖

𝑙 𝑥1
𝑙−1 + 𝑤2𝑖

𝑙 𝑥2
𝑙−1 + ⋯ + 𝑤𝑛𝑖

𝑙 𝑥𝑛
𝑙−1 + 𝑏𝑖

𝑙) = ∑ 𝑤𝑗𝑖
𝑙 𝑥𝑗

𝑙−1 +𝑛
𝑗=1

𝑏𝑖
𝑙 , 𝑤ℎ𝑒𝑟𝑒 𝑓(𝑥) =

1

1+𝑒−𝑥
, (4) 
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where the model can be understood as the activation value 𝑌𝑖
𝑙 of neuron 𝑖 =

1 𝑡𝑜 26 in layer 𝑙 = 1 𝑡𝑜 15, which is equal to each neuron connected to it in the 

upper layer 𝑥𝑛
𝑙−1 multiplied by a weight 𝑤𝑛𝑖

𝑙 . Subsequently, each product is added 

together, plus a bias quantity 𝑏𝑖
𝑙, and the resulting value is output through a logistic 

function 𝑓 in layer 𝑙. The parameter 𝑌 can be changed into seven ET types. The 

following concrete models are obtained: 

𝑌𝑖
𝑙 =

1

1+𝑒
−(∑ 𝑤𝑗𝑖

𝑙 𝑥𝑗
𝑙−1+𝑏𝑖

𝑙𝑛
𝑗=1 )

                          (5) 

Based on the backpropagation relationship, we set the loss function: 

𝐽(𝑥) =
1

2
∑ (𝑂𝑝 − 𝑇𝑝)

2
𝑝∈𝐾 ,                        (6) 

where 𝐾 = {1,2, ⋯ ,6,7} corresponds to the training results of the seven ET 

types and 𝑂𝑝 and 𝑇𝑝 are model outputs and labels of training data, respectively. Our 

goal was to train the weight values (𝑊) and 𝑏 at all levels to minimize the loss 

function 𝐽(𝑥). For example, take the partial derivative of the output layer 𝑊𝑗𝑘: 

𝜕𝐽(𝑥)

𝑊𝑗𝑘
=

𝜕
1

2
∑ (𝑂𝑝−𝑇𝑝)

2
𝑝∈𝐾

𝜕𝑊𝑗𝑘
=

1

2
∑ (𝑂𝑘 − 𝑇𝑘)

𝜕𝑂𝑘

𝜕𝑊𝑗𝑘
𝑝∈𝐾 =

1

2
∑ (𝑂𝑘 − 𝑇𝑘)

𝜕𝑆(𝑥𝑘)

𝜕𝑊𝑗𝑘
𝑝∈𝐾     

(7) 

= ∑ (𝑂𝑘 − 𝑇𝑘)𝑝∈𝐾 𝑆(𝑥𝑘)(1 − 𝑆(𝑥𝑘))
𝜕𝑥𝑘

𝜕𝑊𝑗𝑘
= ∑ (𝑂𝑘 − 𝑇𝑘)𝑝∈𝐾 𝑂(𝑥𝑘)(1 −

𝑂(𝑥𝑘))
𝜕𝑥𝑘

𝜕𝑊𝑗𝑘
,   (8) 

where 𝑆(𝑥) is sigmod function, which is similar to 𝑓(𝑥). In the above-

mentioned equation, 𝑂𝑘 = 𝑆(𝑥𝑘). Therefore, 
𝜕𝑆(𝑥𝑘)

𝜕𝑊𝑗𝑘
= 𝑆(𝑥𝑘)(1 − 𝑆(𝑥𝑘)) and 𝑥𝑘 =

𝑂𝑗𝑊𝑗𝑘. We then obtain: 

𝜕𝑥𝑘

𝜕𝑊𝑗𝑘
= 𝑂𝑗                                (9) 

Based on the combination of Eq.(8) and (9), we obtain: 

𝜕𝐽(𝑥)

𝑊𝑗𝑘
= ∑ (𝑂𝑘 − 𝑇𝑘)𝑝∈𝐾 𝑂(𝑥𝑘)(1 − 𝑂(𝑥𝑘))𝑂𝑗              (10) 

If 𝛿𝑘 = (𝑂𝑘 − 𝑇𝑘)𝑂(𝑥𝑘)(1 − 𝑂(𝑥𝑘)), then 

𝜕𝐽(𝑥)

𝑊𝑗𝑘
= ∑ 𝛿𝑘𝑂𝑗𝑝∈𝐾 ,                           (11) 

where 𝛿𝑘 is residual, that is, the partial derivative of 𝑊𝑗𝑘
𝑙  corresponding to the 

𝑘 node of the 𝑙 layer and the 𝑗 node of the 𝑙 − 1 layer is equal to the residual of the 

layer 𝛿𝑘
𝑙  times the corresponding input value 𝑂𝑗 of the 𝑗 node of the layer above. 
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Table 2. Input and output variables of the MYEH-Eva module during the training 

stage. 

 

The 26 input layers of the MYEH-Eva simulation include meteorological, soil, 

vegetation, and radiation data at the scale of one day. The data can be divided into 

dynamic and static inputs. Dynamic inputs are time-series variables. Dynamic input in 

the model corresponds to a set of parameters (English letter in Table 2) and static 

input is associated with the geographical features of the computing grid, mainly the 

soil physical and chemical properties of the region. We used eight types of static data 

corresponding to a set of input parameters (j1 to j8) in Table 2. The model training 

output layer corresponds to 7 ET data at the 1-day scale. In the 3-hour downscaling 

simulation, we selected 3-hour scale data as input for the model to obtain 3-hour scale 

ET data. Missing 3-hour scale data were replaced with 1-day scale data of that day. 

The calculated ET data at the 3-hour scale were combined with the determination of 

the open waterbody and snow cover and a corresponding zeroing correction was 

carried out. 

 

2.2.3 EVA module validation part 

2.2.3.1 Monthly static parameter simulation 

To ensure the accuracy and reliability of the model and its prepared ET data, 

we used the ET data product, ET employed in the monthly static parameter 

calculation of the VIC model, and two models utilized for the measured data to carry 

out a verification at the multi-temporal scale. To describe the growth process of the 

vegetation according to the general growth regulation of XRB vegetation, we defined 

April to early June as the beginning of the growing season, mid-June to mid-August 

as the middle of the growing season, and late August to October as the end of the 

growing season. 

The VIC model is a conceptual distributed hydrological model based on the 

water and heat balance and a physical dynamic mechanism (Hamman et al., 2018; Lei 

et al., 2014; Liang et al., 1994; Zhou et al., 2006). To study the effect and sensitivity 

of dynamic vegetation and albedo parameters on the ET simulation in semi-arid 

steppe, the monthly static parameters of the VIC model with static vegetation 

parameters were used as an example in this study to calculate the MYEH-Eva module. 

The importance of dynamic sensitive parameters for the ecohydrological model was 

discussed. We decomposed the regional ET method for the VIC model calculation 

(Eqs 12 to 16). The results show that FVC, leaf area index (LAI), and other variables 

are important and sensitive parameters of the ET simulation (Fan et al., 2011; Melsen 

& Guse, 2021). Based on the refinement and dynamization of these parameters, the 

role of sensitive vegetation parameters in ecohydrological processes and the ET 
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characteristics of typical vegetation in semi-arid areas under different conditions can 

be better understood. 

𝐸 = 𝐸𝑝 {∫ 𝑑𝐴
𝐴𝑠

0
+ ∫

𝑖0

𝑖𝑚[1−(1−𝐴)1 𝑏𝑖⁄ ]

1

𝐴𝑠
𝑑𝐴}                   (12) 

𝐸𝑝 =
∆𝑅𝑠 + 𝜌𝐶𝑏𝑉𝑃𝐷 𝑟𝑎⁄

𝜆(Δ + 𝜆)
                          (13) 

𝐸𝑡 = [1 − (
𝑊𝑖

𝑊𝑖𝑚
)

2 3⁄

]
𝑟𝑤

𝑟𝑤 + 𝑟0 + 𝑟𝑐
𝐸𝑝                     (14) 

𝑟𝑐 =
𝑟0𝑐g𝑠𝑚

𝐿𝐴𝐼
                             (15) 

𝐸𝑏 = 𝛼𝐸𝑝,                             (16) 

where 𝐴𝑠 is the saturated area; 𝑅𝑠 is shortwave radiation; 𝑟𝑎 is the 

aerodynamic resistance (s m-1); 𝑊𝑖 and 𝑊𝑖𝑚 are the total canopy interception and 

maximum canopy interception, respectively; 𝑟𝑤 and 𝑟0 are the spatial dynamic 

impedance of water transport and surface evaporation impedance due to the leaf and 

atmospheric humidity gradient difference, respectively; 𝑟0𝑐 and g𝑠𝑚 are the minimum 

stomatal impedance of foliage and soil moisture pressure coefficient, respectively; 𝛼 

is the reduction factor; and (1 − 𝐹𝑉𝐶) was used to express the area weight for 

clumped. Definitions of other process parameters can be found in Liang et al. (1994) 

and Hamman et al. (2018). 

 

2.2.3.2 P–M model 

The P–M model is based on the principle of energy balance, principle of water 

vapor diffusion, and thermal conductivity law of air (Hu et al., 2015; Long et al., 

2014). Due to its accuracy and ease of operation, it provides a rigorous and 

standardized new method for the calculation of the reference crop transpiration (ET0; 

(Zhang et al., 2008). The FAO-56 rerecommended the P–M model as the new 

standard method for calculating ET0. It has become the mainstream of ET0 

calculations at home and abroad (Hadria et al., 2021; Vinukollu et al., 2011). We put 

the data measured at weather stations into the P–M model to verify the simulation 

results at the 1-day and 3-hour scale, respectively. The P–M model can be described 

as follows (Penman, 1948): 

𝐸𝑇0 =
0.408∆(𝑅𝑛− 𝐺) + 𝛾

900

𝑇 + 273
𝑢2(𝑒𝑠−𝑒𝑎)

∆ + 𝛾(1 + 0.34𝑢2)
                      (17) 

𝐸 = (𝐾𝑐𝑏 + 𝐾𝑒) × 𝐸𝑇0,                          (18) 

where 𝐸𝑇0 is the reference evapotranspiration (mm day-1); 𝑅𝑛 is the net 

radiation (MJ m-2 day-1); 𝐺 is the soil heat flux density (MJ m-2 day-1); 𝑇 is the mean 

daily air temperature at 2 m height (°C), 𝑢2 is the wind speed at 2 m height (m s-1); 𝑒𝑠 

and 𝑒𝑎 are the saturation vapor pressure and actual vapor pressure (kPa), respectively; 
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𝑒𝑠 − 𝑒𝑎 represents the saturation vapor pressure deficit (kPa); ∆ is the slope vapor 

pressure curve (kPa °C-1); 𝛾 is the psychrometric constant (kPa °C-1); and 𝐾𝑐𝑏 and 𝐾𝑒 

are the base crop coefficient and soil moisture evaporation coefficient, respectively. 

 

2.2.3.3 Bowen Ratio-Energy Balance system 

The Bowen Ratio-Energy Balance (BREB) method can be used to estimate the 

latent heat flux to validate the model. The accuracies of the calculated latent and 

sensible heat fluxes depend on the accuracy of the Bowen ratio (β). The failure of 

BREB, leading to inconsistent results, has been previously analyzed (Angus & Watts, 

1984; Perez et al., 1999). In this study, the selection criteria proposed by Perez et al. 

(1999) were adopted. The methods are as follows: 

𝜆𝐸𝑇 =
𝑅𝑛 − 𝐺

1 + 𝛽
,                               (19) 

where 𝜆𝐸𝑇 is the latent heat flux (W m-2), 𝜆 is the heat of water vaporization 

(J kg-1), ET is the evapotranspiration (mm), 𝑅𝑛 is the net radiation (W m-2), and G is 

the ground heat flux (W m-2). The Bowen ratio (𝛽) is defined as follows: 

𝛽 = 𝛾
∆𝑇

∆𝑒
,                                (20) 

where ∆𝑇 and ∆𝑒 are the temperature (℃) and vapor pressure (kPa) difference 

between the two measurement levels, respectively, and 𝛾 is the psychrometric 

constant (kPa °C-1). 

 

2.3 Evaluation system 

The refinement of vegetation communities and optimization of models using 

sensitive parameters both require a goodness of fit to show the uncertainties and 

errors of the simulation (Li et al., 2020; Zhang et al., 2019). To more 

comprehensively evaluate the ET simulation of the MYEH-Eva module in the semi-

arid steppe, several evaluation indexes were used in this study. The Taylor diagram 

(Taylor, 2001) was utilized to plot the modeling situation. Each point represents the 

vegetation community, type of simulated evapotranspiration, and correlation 

coefficient and normalized standard deviation of the model. We used the coefficient 

of determination (R2), Nash–Sutcliffe efficiency coefficient (NSE; (Nash & Sutcliffe, 

1970), model slope, Bias, root-mean-square error (RMSE), mean absolute error 

(MAE), and Kling-Gupta efficiency (KGE) to quantify the mismatch between the 

simulation and test data. These parameters can be expressed as: 

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑛−𝑃𝑛)2𝑁

𝑛=1

∑ (𝑂𝑛−�̅�)2𝑁
𝑛=1

                         (21) 

𝐵𝑖𝑎𝑠 =
1

𝑁
∑ �̅� − 𝐸(𝑂)𝑁

𝑛=1                          (22) 
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RMSE = √∑ (𝑃𝑛−𝑂𝑛)2𝑁
𝑛=1

𝑁
                          (23) 

𝑀𝐴𝐸 =
1

𝑁
∑ 𝑂𝑛 − 𝑃𝑛

𝑁
𝑛=1                          (24) 

𝐾𝐺𝐸 = √(1 − 𝛾)2 + (1 − 𝛼)2 + (1 − 𝛽)2                         (25) 

where �̅� and �̅� are the mean of the observed and predicted data, respectively. 

The NSE compares the predicted values to the 1:1 line between the measured and 

predicted values rather than the best regression line through the points. The 

parameter 𝐸(𝑂) represents the expected observed value. 𝛾, 𝛼, and 𝛽 are the linear 

correlation coefficients, the ratio of their standard deviations and the ratio of their 

mean values of the simulated and measured values, respectively. In addition, P values 

were used to test the sample variance of the measured and simulated values and the 

significance level was set to 0.05. When the p value was less than 0.01, the statistical 

difference was highly significant. 

 

3 Data 

The data used in this paper can be divided into product and measured data, 

mainly including meteorological, soil, remote sensing satellite, evapotranspiration, 

vegetation, and reflectivity data. The spatial accuracy and time span of the data are 

shown in Table 1. 

 

Table 1. Characteristics of the datasets used for the downscaling evapotranspiration 

comparison. 

 

3.1 Meteorological and soil data 

The meteorological data include CMFD and Bowen Ratio meteorological 

station data obtained in the Shimen Wetland, XRB. The CMFD includes 2 m 

temperature (T), precipitation (P), relative humidity, 10 m wind speed, short and long 

wave radiation, and air pressure (Yang et al., 2010). The Bowen Ratio meteorological 

station is located in the flat wetland before the confluence of the mainstream of the 

Xilin River and first tributary (Figure 1). I was built in July 2015 and is used to 

monitor the precipitation, net radiation, air temperature and humidity, wind speed and 

direction, air pressure, and other meteorological data at heights of 2, 3.5, 5, and 10 m. 

The collection interval was 5 min and the data collection terminal was a CR1000 data 

collector (Campbell Scientific Inc., Logan, UT, USA). 

The physical and chemical properties of the surface soil in the study area were 

extracted from the Global Soil Dataset Earth System Modeling (GSDE) dataset 

(Shangguan & Dai, 2014). The data included the soil particle size, bulk density, soil 
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moisture characteristics obtained with the negative pressure gauge method, and 

organic matter content (Shangguan et al., 2014). 

 

3.2 GLEAM 

The GLEAM is a set of algorithms that can be used to estimate the ET of 

different terrestrial components: E, Et, Eb, I, Ew, Es, and potential evaporation (Ep). In 

addition, GLEAM provides the surface and root zone soil moisture and ET stress 

conditions (Martens et al., 2017). GLEAM calculates the potential evaporation based 

on the observed net surface radiation and near-surface air temperature. Based on the 

observed microwave vegetation optical depth (VOD) and estimated root zone soil 

moisture, the Ep of bare land, high canopy, and short canopy was converted to E by 

using the multiplier ET stress factor. 

 

3.3 Remote sensing data and GLASS 

Landsat TM and OLI images in different historical periods were mainly used 

for remote sensing satellite data. Because the river course changes were relatively 

insignificant, one scene was selected for processing every five years during the 

research period. The GLASS products have been expanded from the original 5 to 14 

(Liang et al., 2013a; Liang et al., 2013b). The advantage is that many products have 

been used for 35 years, that is, from 1981 to the present, which makes it particularly 

valuable for long-term environmental change research. Radiation products have a 

spatial resolution of 5 km, which is much finer than common products (such as 

CERES and GEWEX). All products are continuous in space and time, without gaps or 

missing values. The wideband longwave emissivity product is the world's first 

product with an 8-day time resolution and 1 km spatial resolution (Liang et al., 2020). 

 

4 Results 

4.1 Determination of snow cover 

Based on the snow cover scenario data of more than 4.77 million groups 

obtained in 39 yr in the study area, Naive Bayes was used to decompose the presence 

or absence of Es. The differentiation degree of the four input variables with or without 

snow cover is shown in Figure 3. A clear snow cover boundary was detected between 

-10 and 0 ℃ (Friesen et al., 2021; Lin et al., 2021). Three reflectivity indexes use 

digital number (DN) = 1 as the dividing line; there are overlapping parts on both sides 

(Usha et al., 2021). The snow cover zone corresponding to the DN value of VIS 

ranges from 0.15 to 0.6 and 1.25 to 1.5. The bands of the DN values of NIR and SW 

are close to each other, within the range of 0.25 to 0.5 and 1.35 to 1.5, respectively. 

Due to the relatively simple ground features in semi-arid steppe, the reflectance of the 
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three types of steppe has a good regionalization (Chen et al., 2021b; Usha et al., 

2021). 

 

Figure 3. Distribution and rug of the temperature (a) and three albedo index 

parameters (b–d) distinguishing whether the land is covered with snow or not using 

the Naive Bayesian classifier. In Figure 3a, Ture density = Coordinate axis scale × 

Scale factor. 

 

4.2 Sensitive parameter analysis 

Figure 4 describes the median and 95% confidence interval of the distribution 

of five sensitive parameters for the dynamic MYEH-Eva module. Two sensitive 

vegetation parameters (FVC and LAI) were respectively refined in ten typical 

vegetation communities in the semi-arid steppe and compared with the monthly static 

parameters based on the VIC model. The results show that there is a large gap 

between the monthly static values of the two sensitive vegetation parameters and 

actual historical values obtained from remote sensing (Figures 4a–b). Especially in the 

middle of the growing season best reflecting the difference between vegetation 

communities (Anwar, 2021; Tang et al., 2012), the static monthly value of FVC is 

low, whereas the static monthly value of LAI is high (Lei et al., 2014; Zhai & Tao, 

2021). From May to November, the dynamic mean reflectivity is basically consistent 

with the monthly static values, mainly showing that the dynamic VIS is slightly lower 

and the other two are slightly higher (Figure 4c). The dispersion degree of the three 

types of dynamic reflectivity started to increase in November and the dispersion 

degree increased from December to April. The dynamic mean value is much higher 

than the monthly static value. Overall, the dynamic mean increases in November and 

December, peaks in January and February of the following year, and begins to decline 

in March and April, gradually becoming static on a monthly basis. 

Based on the vegetation characteristics of ten typical vegetation communities, 

three types of common ecohydrological model vegetation types can be classified, that 

is, open shrub (Achnatherum splendens (Trin.) Nevski grassland (ASG) and 

Caragana microphylla Lam grassland (CMG)), closed shrub (Picea asperata Mast. 

grassland (PAG)), and steppe (the other seven vegetation communities). The FVC of 

the Stipa baicalensis Roshev. grassland (SBG) and the four shrub communities 

growing in the upper reaches of the river basin are always higher than the monthly 

static values of the grassland types (Figure 4a). The LAI in the study area is low and 

slowly changes from October to April. In the growing season from May to September, 

the LAI first increases and then decreases, reaching a peak in July (Tang et al., 2020). 

The monthly static LAI of the two communities belonging to the open shrub in the 

growing season is slightly lower than the dynamic average, whereas the values of the 

other vegetation communities are higher than the dynamic average (Figure 4b). 
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Figure 4. Distributions of the FVC (a), LAI (b), and albedo (c) data to which the 

evaporation module of the VIC model was most sensitive for the different individual 

biomes. The boxes represent the 95% confidence interval and the vertical line 

represents the median. Gray points and dash-dotted lines represent the original values 

of the five parameters in the VIC model. LAI: leaf area index. VIC model: Variable 

Infiltration Capacity model. 

 

4.3 Parameter calibration of Eva module 

We input the 1-day scale data shown in Table 2 into Eq. (5) to calculate the 

weight parameters of the model. Based on the snow cover, open water, and FVC, the 

existence of ET was determined and the simulation results of the training period were 

output. Figure 5 compares the performance of six evapotranspiration types in the 

training period for ten typical vegetation communities. The two axes represent the 

normalized standard deviation (σ) of the simulated values and the curve represents 

Pearson’s correlation coefficient. Table 3 shows the average weight parameters of 

each hidden layer of the Eva module. 

 

Figure 5. Taylor diagram comparing the MYEH-Eva module performance in the 

training stage for six types of evaporation for ten individual biomes. MYEH-Eva 

module: MY ecohydrology model evaporation module. 

 

Table 3. Weight values of the hidden, input, and output layers in the actual 

evaporation simulation of the MYEH-Eva module of semi-arid grassland. 

 

The results show that the performance of the algorithm varies with different 

ET types. For different ET types, the model's correlation coefficient of the simulation 

of E, Et, Eb, and Ew is close to 1, whereas the correlation coefficient of Es is slightly 

lower, ranging from 0.7–0.8. The differences in the vegetation communities are also 

reflected in the model simulations. On one hand, the simulated value σ of ET varies 

according to different vegetation communities and σ of SBG is the highest overall, 

whereas that of Stipa krylovii Roshev. grassland (SKG) is the lowest. On the other 

hand, the vegetation community also affects the simulation accuracy of E and ET 

(Figure 5a). 

 

4.4 Scale expansion and validation 

By substituting the prepared 3-hour scale input data, seven types of 3-hour 

scale ET data were obtained for the XRB from 1980 to 2018. The evaluation results of 

the downscaling model using various evaluation indexes are shown in Table 4. We 
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used Eq. (1) to calculate the E value of the study area. To verify the accuracy of the 

data simulation and availability of the model, the GLEAM products and P–M and 

BREB models were used in this study, respectively, to substitute the measured data 

and the data were tested at two scales (1-day and 3-hour). 

The 1-day scale modeling evaluation results show that the overall quality of 

the Eva module with respect to the simulation of ET in the XRB is good, with a high 

model reliability, R2 and NSE between 0.57–0.98, and the lowest ASG accuracy along 

the river (Table 4). The results show that the simulation performance of E, Ep, Es, and 

Et was better for the ten typical vegetation types in the study area, with R2 and NSE 

higher than 0.85 and 0.65, respectively, whereas Eb and I of some vegetation types are 

slightly lower than the average. In particular, the NSE of Eb and I under SBG, LCG, 

AFG, and PAG ranges from 0.42–0.56 (Figures 6a and c). In terms of errors, the 

absolute errors of E, Ep, and Et are slightly higher than those of the other three 

evapotranspiration types, ranging from 0.2–0.4 mm. However, the overall error 

dispersion of the model is small. All errors are below 0.1 mm, that is, the RMSE is at 

a relatively low level (Figures 6b and d). Regardless of the classification of typical 

vegetation, in the surface scale E simulation test, the simulation in the area near 43°34 

"N is poor, which is mainly represented by the low R2 and NSE (Figures 6e and f) and 

slightly higher MAE (Figure 6h) of these grid points. The RMSE of the whole region 

remains at a good level (Figure 6g). 

 

Table 4. Summary statistics for the performance of the MYEH-Eva module in the 

training and simulation stages for ten individual biomes in semi-arid grassland. 

 

Figure 6. Results of the evaporation simulation with the MYEH-Eva module. (a–b) 

Accuracy and error of the evaporation simulation for ten individual biomes. (c–d) 

Mean precision and error of the simulation results for different evapotranspiration 

types. (e–h) Simulation results for the actual evaporation in the XRB. Statistical 

indicators: R2 and Rsq: regression goodness of fit; NSE: Nash–Sutcliffe efficiency 

coefficient; RMSE: root-mean-square error; MAE: mean absolute error. 

 

The downscaling results of the ET and Eva modules were simulated by using 

the ET product data GLEAM and the two ET models (P-M and BREB model) brought 

in the measured meteorological data, respectively. The results show that the 

downscaled ET data maintain a high correlation with GLEAM (Figures 7a and b), 

with an R2 value of 0.83. The E calculated by the FAO P–M and BREB models is 

overall consistent with the value obtained from the Eva module simulation, but there 

is a certain degree of overestimation in the spring and summer (Figures 7c and d). As 

expected, the peak value of E calculated by using the monthly static parameters of the 
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VIC model is observed nearly one month earlier (Figure 7a) and the interannual 

characteristics of the ET in the basin are lost. 

 

Figure 7. Comparison of the daily actual evaporation obtained with the MYEH-Eva 

module and four types of validation data from 1980 to 2018 in the XRB. The actual 

daily evaporation of the MYEH-Eva and BREB models were converted from 3-hour 

data. (a–b) Comparison between the values obtained from the Eva, VIC model, and 

GLEAM; (c–d) Comparison between the Eva module result and values obtained with 

the FAO Penman–Monteith (P–M) and BREB models. GLEAM: Global Land 

Evaporation Amsterdam Model; BREB: Bowen Ratio-Energy balance method.  

 

The intraday simulated E obtained with the Eva and FAO P–M models 

insignificantly differ. The intraday trend of the latent heat flux (λET) calculated with 

the BREB model from January to August is basically consistent with that of the EVA 

and FAO P–M models. In the case of constant coordinate size, the intraday variation 

in the λET from September to December is significantly higher than that of the above-

mentioned two models (Figure 8a). The results of the correlation analysis show that 

the R2 of the Eva and FAO P–M models are both higher than 0.7 from January to 

April and from May to August, but slightly lower from September to December 

(Figure 8b). The R2 of the BREB model λET after the Eva module and unit 

conversion is higher than 0.8 from January to April and from September to December 

and the fitting performance is poor from May to August (Figure 8c). 

 

Figure 8. Comparison of the 3-hourly evapotranspiration simulated using three 

models, that is, the MYEH-Eva, P–M, and BREB models. The actual evaporation (E) 

in (a) was calculated with the MYEH-Eva and P–M models. The latent heat flux 

(λET) was calculated using the BREB model. Validation data used in this figure 

includes the period from October 2015 to October 2016. 

 

5 Discussion 

5.1 The discriminant system of ET type 

The Naive Bayesian model performs well with respect to the determination of 

snow cover in semi-arid steppe (Cordeiro et al., 2021) and the four indicators selected 

in this study exhibit a good degree of differentiation. The maximum temperature with 

snow cover in the study area is 12–15 ℃ (Figure 3a), which generally occurs during 

sunny winter days, whereas the minimum temperature without snow cover is -30 ℃ 

(Figure 3a). At this time, the temperature is no longer a decisive factor. The reality is 

that there is no snow in the area (Lin et al., 2021). This also shows that the importance 

of snow cover can be determined by combining the multi-index system of the surface 
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reflectance (Usha et al., 2021). It is difficult to describe the complex and changeable 

hydrological process in detail with a single index (Chen et al., 2021b; Fu et al., 2021). 

Compared with the air temperature, the DN values of the three surface 

reflectance indexes are relatively concentrated and approximate to the normal 

distribution (Figures 3b–d), which is also the consistency characteristic of the surface 

reflectance of snow cover in different regions (Chen et al., 2021b; Fu et al., 2021; 

Usha et al., 2021). In the absence of snow cover, the distribution of NIR in the range 

of its DN value less than 0.5 is more uniform than that of VIS and SW (Figure 3b), 

which also indicates that NIR yields a better resolution in the mixed pixels of 

vegetation, soil, and snow (Liu et al., 2013). Qu et al. (2016) showed that the surface 

reflectance of the GLASS dataset better reflects the snow particle size. In our snow 

cover decision module, the DN values of the three types of surface reflectance all 

show subwave peaks between 0.5–0.7 and 1.15–1.3. The results of previous studies 

suggested that this is due to surface ice–water mixing during snow melt (Feng et al., 

2016; Qu et al., 2014). 

 

5.2 Dynamic sensitive parameters 

Ecohydrological models that use monthly static parameters to simulate the ET 

have a considerable uncertainty over time (Anwar, 2021; Lei et al., 2014; Liu et al., 

2018a; Zhai & Tao, 2021). To simulate ET datasets that are more consistent with 

regional characteristics, researchers have established optimal parameters representing 

the heterogeneity of the land surface and vegetation (Anwar, 2021; Bennett et al., 

2018; Jimenez-Gutierrez et al., 2019). Due to the low degree of vegetation refinement 

in most current ecohydrological models (Hulsman et al., 2020; Richards et al., 2020; 

Sun et al., 2020b), it is of great significance to identify and understand the key 

parameters in the ET algorithm of the ecohydrological model and analyze their 

interactions for further optimization (Lei et al., 2014; Liu et al., 2018a). The 

comparison of the ET results calculated by monthly static parameters and dynamic 

sensitive parameters shows that the interannual distribution of E calculated by static 

parameters is significantly advanced (Figure 7a), which is directly related to the 

inconsistent peak time of vegetation sensitive parameters observed in the results in the 

middle of the growing season (Figures 4a–b). 

The FVC is a sensitive parameter that can be used to determine the ET type 

(Dash et al., 2021; Tesemma et al., 2015). It directly determines the composition ratio 

of Eb, Et, and I (Fan et al., 2011). The results of parameter sensitivity analysis showed 

that the FVC of typical vegetation communities in semi-arid steppe is 5% at the 

beginning and end of the growing season and on average 15%–30% in the middle of 

the growing season (Li et al., 2021), which is higher than the monthly static value 

(Figure 4a). The average LAI (Eq. 9) in the growing season, which directly affects the 

resistance coefficient of the vegetation canopy in the ET simulation, is only between 

0.8–2, that is, much lower than the monthly static index (Figure 4b). The notable 

difference between the two planting parameters of typical vegetation communities is 
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due to the unique vegetation characteristics of semi-arid steppe (Hu et al., 2021), 

which are mainly related to the physiological and ecological characteristics of typical 

vegetation in semi-arid steppe with small leaves and many clusters (Tang et al., 2020). 

To adapt to the dry and water-deficient environment, plants have to reduce their leaf 

area to reduce the water loss (Hu et al., 2021; Niu et al., 2016; Qin et al., 2014). For 

example, Caragana microphylla, a typical plant of CMG, grows in Horqin Sandy 

Land, a semi-arid area with slightly humid climate. The LAI in the growing season of 

Caragana microphylla in this area is 2 to 4 times that observed in the XRB (Bao et al., 

2021). 

In addition to the numerical differences every month, the annual 

characteristics of the two sensitive vegetation parameters also differ (Zhou et al., 

2006). In the XRB, the spring temperature rises slowly and the vegetation FVC and 

LAI have a low growth range from April to June, whereas the peak value lags one 

month behind (Figures 4a and b;(Guo et al., 2019). This is clearly reflected in the ET 

simulation, that is, the E simulated with monthly static parameters is observed 

approximately one month earlier than other model waveforms (Figures 7a and c). 

Another advantage of using dynamically sensitive parameters is that they can more 

accurately simulate the ecohydrological response process in the context of climate 

change (Shiklomanov et al., 2021; Zhang et al., 2019). For example, in the three wet 

seasons of 1992–1994, 1998–1999, and 2012–2013, the vegetation growth status in 

the XRB was significantly better than that of the static parameters, resulting in the 

simulation of a significantly lower E based on static parameters. 

In the simulation of regional ecohydrological processes, the refinement of 

typical vegetation communities is beneficial for a more accurate description of the ET 

and seasonal characteristics of different vegetation communities (Dzikiti et al., 2014; 

Everwand et al., 2014; Ma et al., 2019a). The spatial heterogeneity of nature can be 

better expressed. In the modeling process, the simulated σ value of ET and the 

simulation accuracy of E and Et change with the vegetation community (Figure 5). On 

one hand, the ET law of a vegetation day and growing season differs and the ET 

dispersion degree significantly differs. This is also the reason why only E and Et, 

which are closely related to the vegetation characteristics, show heterogeneous 

simulation accuracies (Dzikiti et al., 2014; Rubert et al., 2018). On the other hand, the 

ET simulation results of FSG and WCG show a certain degree of difference, that is, 

the simulation accuracy of one part is slightly lower than that of the other part (Figure 

5a), which is due to the performance of the same vegetation community in different 

geographical locations and ecological environments (Carmona et al., 2016). The 

results of previous studies showed that grids with a slightly lower simulation accuracy 

in WCG are located closer to rivers and the ecohydrological interaction becomes more 

complex in wet environments, leading to a slight decrease in the correlation (Ahmad 

et al., 2020; Hwang et al., 2020). 

The XRB glaciation period lasts for five months. In the study area, the actual 

surface reflectance from December to April of the next year is 2 to 4 times of the 

calibrated value due to the effects of snow and ice coverage (Figure 4c). To simplify 
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the operation of most ecohydrological models, only the reflectance of vegetation is 

used as a parameter (Lei et al., 2014; Tesemma et al., 2015; Zhai & Tao, 2021). Such 

a generalization will cause huge errors in simulations in cold and arid regions (Di 

Stefano et al., 2019; Samadi et al., 2020). Furthermore, in areas with a low FVC, the 

vegetation reflectance is used to replace the actual surface reflectance, which is not 

representative in complex mixed pixels (Lyu et al., 2020). In general, the sensitive 

parameters of the vegetation community and dynamic ET simulation are refined and 

the ecological characteristics and environmental realities of vegetation community are 

considered (Nietupski et al., 2021). It is helpful to clarify the coupling mechanism and 

threshold system of the ecohydrological process in the grassland watershed and to 

reshape the historical evolution of the ecohydrological process (Gregory et al., 2019; 

Jautzy et al., 2021) to quantitatively assess the response and mutual feedbacks 

between ecohydrological processes in grassland catchments under climate change. 

 

5.3 Intraday ET expansion analysis 

During the test of the intraday ET expansion, multiple indicator tests 

objectively described the performance of the downscaling simulation of the Eva 

module in which the R2 of E, Eb, Ep, and Et was higher while the NSE was slightly 

decreased (Figure 6a). The NSE is very sensitive to extreme values and a small 

number of outliers in the simulation results leads to a decline in the NSE (Moriasi et 

al., 2007; Nash & Sutcliffe, 1970). Daily ET values of semi-arid steppe tend to be 

small. For example, E, Ep, and Et differ by an order of magnitude from ET 

components of other types. Therefore, the MAE of the three parameters will be 

relatively high (Figure 6d), but this does not mean that the model has a large error 

(Baik et al., 2018). To improve the accuracy of the simulation, the Eva module uses 

data scaling during training and simulation. The order of magnitude of the input 

dataset is enlarged before training the data and the order of magnitude is reduced 

according to the original proportion after simulating the output dataset. 

In the surface scale E simulation test, a relatively notable simulation 

misjudgment zone appeared in the middle of the XRB and several grid points of this 

misjudgment zone showed a low NSE (Figure 6f) and high MAE (Figure 6h) for the 

same vegetation type. This is similar to the results obtained by Satge et al. (2019) who 

used a GLEAM dataset to test the ET in the arid Andean Plateau. They suggested that 

the GLEAM dataset may be more suitable for spatial ET tests. It does not conform to 

local ET dynamics at a small number of lattice points (Baik et al., 2018; Huang et al., 

2019; Satge et al., 2019). 

The use of a GLEAM dataset yielded a high degree of consistency in the test 

of EVA module (Figures 7a and b), indicating that the Eva module has a good ET 

simulation capability. Compared with the GLEAM model driven by remote sensing 

data, the MYEH-Eva module driven by meteorological, soil, vegetation, and remote 

sensing data also has a stronger adaptability to climate change. In the summer of 

1998–1999 with excessive precipitation, E simulated by the Eva module significantly 
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improved compared with that in adjacent years (Figure 7a). Generally speaking, the 

P–M model, as a single leaf model, does not consider Eb and I. In spring and autumn 

with less vegetation, Et should be lower than that obtained with the MYEH model 

considering Eb and I (Bao et al., 2021; Bao et al., 2020; Hadria et al., 2021; Lin et al., 

2021). However, our actual test results in the XRB differ (Figure 7c), which is due to 

the slight discrepancy between the measured meteorological data used in the P–M 

model and the CMFD. The BREB test results have a good control of the ET peak 

value (Perez et al., 1999). The above-mentioned analysis also shows that the 

precipitation is the main factor affecting the multi-year ET peak transformation in the 

semi-arid steppe basin (Acharya & Sharma, 2021; Yang et al., 2021). 

 

5.4 Uncertainty analysis 

Although the MYEH-Eva module yields a high fit in the ET downscaling 

simulation in the XRB, there is room for further improvement. The continuous 

transport process of water in the soil–plant–atmosphere continuum should be 

considered and the height of vegetation and resistance coefficient of the typical 

vegetation canopy should be added to the model to describe ET (Chen et al., 2021a; 

Lee et al., 2021; Nyolei et al., 2021). Even after optimization, the EVA module still 

has shortcomings. The Eva module should be optimized with respect to two aspects: 

underfitting and overfitting. 

To address underfitting problems, training can be continued by increasing the 

number of iterations, changing algorithms, increasing the number of parameters and 

complexity of the model, or using Boosting and other integration methods (Bennett & 

Nijssen, 2021; Vulova et al., 2021). To address the overfitting problem, we can 

indirectly reduce the number of neuron layers and use different Sigmoid functions 

(Eqs 7 and 8) to fit from different aspect and learn from each other. In addition, ET 

with different types of components also causes a significant uncertainty. The Eva 

module parameters can be further optimized by adding field flux data and other 

available observation data (e.g., eddy correlation, LAS, lysimeter) to improve the 

simulation accuracy. 

 

6 Conclusion 

Based on multi-source meteorological, soil, vegetation, and surface reflectance 

data, we subdivided ten typical vegetation communities in semi-arid steppe in this 

study, constructed a MYEH-Eva module, and established a discrimination system 

composed of ET components using Naive Bayes, FVC, and remote sensing images. 

The performances of dynamic sensitive parameters and monthly static parameters in 

ten typical vegetation communities were compared. The downscale simulation of 

seven ET components at the regional 3-hour scale was carried out and multiple 

spatiotemporal scales were used to verify the results obtained from various models. 

The results show that the dynamic sensitive parameters reflect the ecological 
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characteristics of different typical vegetation communities and truly describe the 

evolution of the regional ET under climate change. The E of the downscaling 

simulation has passed the test of various models at the annual, seasonal, daily, and 3-

hour scales, respectively, and has a good accuracy and availability, which is beneficial 

for the application of the MYEH model in the simulation of ecohydrological 

processes in semi-arid steppe. The module has several shortcomings with respect to 

the parameter configuration and internal model and thus must be further optimized 

and adjusted to improve the simulation accuracy. 
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Figures 

 

 

 

Figure 1. Location, vegetation types (a), and topography (b) of the Xilin River Basin 

(XRB). SBG: Stipa baicalensis Roshev. grassland; LCG: Leymus chinensis (Trin.) 

Tzvel. grassland; SKG: Stipa krylovii Roshev. grassland; SGG: Stipa grandis P.A. 

Smirn. grassland; ASG: Achnatherum splendens (Trin.) Nevski grassland; CMG: 

Caragana microphylla Lam grassland; AFG: Artemisia frigida Willd. grassland; PAG: 

Picea asperata Mast. grassland; FSG: Filifolium sibiricum (L.) Kitam. grassland; and 

WCG: weed community grassland. 
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(a) (b) 

Figure 2. Determination process (a) and decomposition diagram of evaporation (b). 

VIS: visible radiation; NIR: near-infrared radiation; SW: shortwave radiation; RS: 

remote sensing; Mete.: meteorological data; Veg.: vegetation data; Alb.: albedo data; 

FVC: fractional vegetation coverage; E: actual evaporation; Es: snow sublimation; Ew: 

open-water evaporation; Et: transpiration; I: interception loss; and Eb: soil 

evaporation. 
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Figure 3. Distribution and rug of the temperature (a) and three albedo index 

parameters (b–d) distinguishing whether the land is covered with snow or not using 

the Naive Bayesian classifier. In Figure 3a, Ture density = Coordinate axis scale × 

Scale factor. 
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Figure 4. Distributions of the FVC (a), LAI (b), and albedo (c) data to which the 

evaporation module of the VIC model was most sensitive for the different individual 

biomes. The boxes represent the 95% confidence interval and the vertical line 

represents the median. Gray points and dash-dotted lines represent the original values 

of the five parameters in the VIC model. LAI: leaf area index. VIC model: Variable 

Infiltration Capacity model. 
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Figure 5. Taylor diagram comparing the MYEH-Eva module performance in the 

training stage for six types of evaporation for ten individual biomes. MYEH-Eva 

module: MY ecohydrology model evaporation module. 
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Figure 6. Results of the evaporation simulation with the MYEH-Eva module. (a–b) 

Accuracy and error of the evaporation simulation for ten individual biomes. (c–d) 

Mean precision and error of the simulation results for different evapotranspiration 

types. (e–h) Simulation results for the actual evaporation in the XRB. Statistical 

indicators: R2 and Rsq: regression goodness of fit; NSE: Nash–Sutcliffe efficiency 

coefficient; RMSE: root-mean-square error; MAE: mean absolute error. 
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(c) (d) 

Figure 7. Comparison of the daily actual evaporation obtained with the MYEH-Eva 

module and four types of validation data from 1980 to 2018 in the XRB. The actual 

daily evaporation of the MYEH-Eva and BREB models were converted from 3-hour 

data. (a–b) Comparison between the values obtained from the Eva, VIC model, and 

GLEAM; (c–d) Comparison between the Eva module result and values obtained with 

the FAO Penman–Monteith (P–M) and BREB models. GLEAM: Global Land 

Evaporation Amsterdam Model; BREB: Bowen Ratio-Energy balance method.  
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Figure 8. Comparison of the 3-hourly evapotranspiration simulated using three 

models, that is, the MYEH-Eva, P–M, and BREB models. The actual evaporation (E) 

in (a) was calculated with the MYEH-Eva and P–M models. The latent heat flux 

(λET) was calculated using the BREB model. Validation data used in this figure 

includes the period from October 2015 to October 2016. 
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Tables 

Table 1. Characteristics of the datasets used for the downscaling evapotranspiration 

comparison. 

Dataset Spatial 

resolution 

Version Date used in 

study 

Number of Data 

(Temporal resolution) 

CMFD 0.1° to 0.05° 01.05.0016 1980.01.01-

2018.12.31 
335*14245*7 (1-day); 

335*113960*7 (3-hour) 

GLEAM 0.25° to 

0.05° 

V3.5a 1980.01.01-

2018.12.31 

335*14245*10 (1-day) 

GSDE 0.083333° to 

0.05° 

2014 - 335*9 (-) 

FVC 0.05° V40 1981.01-

2018.12 

335*1748*1 (8-day) 

LAI 0.05° V50 1981.01-

2018.12 

335*1748*1 (8-day) 

NPP 0.05° V50 1982.01-

2018.12 

335*1702*1 (8-day) 

Albedo 0.05° V42 1981.01-

2018.12 

335*1748*6 (8-day) 

Note: CMFD: China meteorological forcing dataset, in which the temperature, 

pressure, specific humidity, wind speed, downward shortwave radiation, downward 

longwave radiation, and precipitation rate data are used in the study. GLEAM: Global 

Land Evaporation Amsterdam Model (Martens et al. 2017), in which the actual 

evaporation, soil evaporation, interception loss, potential evaporation, snow 

sublimation, transpiration, open-water evaporation, root-zone soil moisture, surface 

soil moisture data are used to validate in the study. GSDE: The Global Soil Dataset 

for Earth System Modeling, in which the soil particle size, bulk density, and 

volumetric water content at 10/33/1500 KPa are used in the study. FVC: Fractional 

Vegetation Coverage. LAI: Leaf area index. NPP: Net Primary Production. Albedo: 

Broadband Albedo, include three spectral ranges: total shortwave, visible and near-IR 

under actual atmospheric conditions (so-called blue-sky albedos). FVC, LAI, NPP, 

and Albedo data are all from The Global Land Surface Satellite (GLASS) Product. In 

the table, number of data = grid number × time sequence × variable number. 
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Table 2. Input and output variables of MYEH-Eva module evaporation simulation module during training stage. 1 

Layer Dataset Symbol Variable name Unit Dataset Symbol Variable name Unit 

Input 

CMFD 

a Precipitation rate mm hr-1 

GSDE 

j5 Volumetric water content at -10 kPa % 

b Temperature K j6 Volumetric water content at -33 kPa % 

c 
Downward longwave 

radiation 
W m-2 j7 

Volumetric water content at -1500 

kPa 

% 

d 
Downward shortwave 

radiation 
W m-2 j8 

organic carbon of weight 

e Specific humidity kg kg-1 

GLASS 

k FVC % 

f Wind speed m s-1 l LAI km2 km-2 

g Pressure Pa m NPP kg km-2 

GLEAM 
h Root-zone soil moisture m3 m-3 i VIS_BSA - 

i Surface soil moisture; 0-10 m3 m-3 n VIS_WSA - 

GSDE 

j1 Bulk density g cm-3 o NIR_BSA - 

j2 Sand content % p NIR_WSA - 

j3 Silt content % q SW_BSA - 

j4 Clay content % r SW_WSA - 

Output GLEAM 

E Actual evaporation mm dy-1 

GLEAM 

Es Snow sublimation mm dy-1 

Eb Bare-soil evaporation mm dy-1 Et Transpiration mm dy-1 

I Interception loss mm dy-1 Ew Open-water evaporation mm dy-1 

Ep Potential evaporation mm dy-1    

Note: Due to the lack of temporal sequence of soil data, the model combines it into a group of variables to extract feature vectors for 2 

processing. VIS: Visible spectrum. NIR: Near-Infrared Reflectance. SW: Shortwave. BSA: Black sky albedo. WSA: White sky 3 

albedo. 4 
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Table 3. Weight values of the hidden, input, and output layers in the actual evaporation simulation of the MYEH-Eva module of semi-6 

arid grassland. 7 

Layer x / y wm1 wm2 wm3 wm4 wm5 wm6 wm7 wm8 wm9 wm10 wm11 wm12 wm13 wm14 wm15 

Input hidden 

a -3.57β 7.32γ -8.79γ 8.18α -1.21δ -4.32 5.30γ 1.07 8.90γ -2.31 -1.19β -0.74 2.90β -1.69γ -3.55 

b 2.69γ -1.86γ -6.79β 1.01α 2.88γ 5.75 -3.01β -0.07 5.92γ 2.72 -1.86α 0.86 -9.42γ -1.83γ 0.56 

c 2.33γ -8.39γ -1.65γ -5.52α -6.24γ 1.21 2.76γ 1.44 1.21δ -6.55 -9.70α 4.17 3.75γ 5.11γ -1.81 

d -2.22γ -1.74δ -6.70β -1.66β 8.95γ 6.81 8.57γ 2.91 1.34δ -5.99 -2.26α 4.55 2.38γ -2.63γ -1.49 

e -6.49β 1.34δ -1.56β 3.67α 6.60γ 1.13 -7.29γ -1.06 5.48γ 1.80 -3.46α 0.57 -5.21β -4.02β 1.68 

f -2.31γ -4.62γ 1.69γ -8.98α 7.19γ -0.67 2.57γ -0.96 1.12γ 1.99 -1.50α -1.44 -1.82γ 1.64γ 1.73 

g -5.35γ 9.30γ 5.54γ -7.41α -2.22γ -0.41 -6.00γ 0.82 9.71α -0.42 1.09β 0.47 4.10γ 1.62δ -0.49 

h 6.94γ 1.90γ -1.38δ 1.39α -1.20δ -1.83 -1.12γ -0.74 1.09β 1.08 2.88α -2.95 7.68γ -9.92γ -0.35 

i 6.41γ 2.18δ -6.89γ 1.26β -2.76δ 8.07 -8.44γ 4.94 -2.20δ -7.75 1.96α 1.37α 3.85γ -2.09δ -6.44 

j 4.25γ -1.68γ -4.71γ 4.35α 5.73γ 0.65 4.30γ 0.86 3.42γ -0.81 6.56α 0.47 9.96γ -1.19γ -1.41 

k 3.44γ 6.11γ 5.98β 4.38α 8.33γ 0.98 2.27γ 1.39 -2.70γ -5.19 1.43β 1.86 -1.09γ 2.38γ 0.86 

l -1.58γ 6.38γ 3.33γ -3.46α -3.19γ 0.97 -5.04γ -0.45 3.25γ 3.55 -1.98α -1.29 -6.07γ 3.23γ 0.34 

m 8.18γ 6.17γ -1.01δ -5.45β 1.42δ -1.74α 4.70γ -4.55 2.10γ 8.56 1.17β -1.61α -2.83γ 1.03γ 6.63 

n -8.99γ -6.13γ -2.51γ 4.58β 7.08γ 0.51 6.24γ -2.17 7.42γ 0.50 -5.85α 1.44α 6.64γ -3.40γ 3.92 

o 1.03γ -3.29γ 6.43β -2.16α 8.01γ -6.56 -1.29γ -1.64 -2.23γ 9.16 -1.23β -3.64 1.37δ 2.09γ 1.67α 

p 1.70β -1.76δ -2.01γ -1.43α 2.83γ 6.44 -6.61β 1.12 -4.18γ -2.99 6.23α -2.81α -1.37γ 2.09γ -4.29 

q -7.33γ -1.62δ 3.73γ 2.68β -4.75β 5.64 1.38γ 3.70 -5.43γ -2.10α -1.61α 2.64α 1.06δ 3.20γ -1.78α 

r 5.10γ 1.80δ 5.85γ -1.58β 2.66γ 5.23 1.70γ 3.22 1.30γ 2.44 -2.33 2.01 9.17β -2.82γ -6.04 

Output hidden E -5.99α -1.51 4.08 -3.66β -5.11 -4.72α 8.00 2.66 -2.67 6.90α -1.59α -4.27α 2.36 4.71α 4.04α 

Note: In the table, wmi (i represents 1 to 15) is used to connect or transfer information from the input layer to the hidden layer or from 8 

the hidden layer to the output layer; parameter m represents a to r and y, the input parameters and output parameters. α, β, γ, and δ 9 

represent model weight parameters multiplied by 10, 100, 1000 and 10000, respectively. 10 
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Table 4. Summary statistics for the performance of the MYEH-Eva module in the training and simulation stages for ten individual 12 

biomes in semi-arid grassland. 13 

 Bias R2 Slope NSE RMSE MAE KGE 

 Tr. Sim. Tr. Sim. Tr. Sim. Tr. Sim. Tr. Sim. Tr. Sim. Tr. Sim. 

SBG 0.41  0.27a  0.88  0.98  0.87  0.97  0.88  0.72  0.20b  0.23b 0.22  0.37  0.17  0.02  

LCG 0.36  0.43a  0.86  0.98  0.85  0.97  0.86  0.73  0.15b  0.19b 0.21  0.32  0.31  0.02  

SKG 0.18  0.24a 0.87  0.98  0.86  0.97  0.87  0.77  0.07b  0.11b 0.19  0.27  0.37  0.02  

SGG 0.33  0.51a 0.86  0.98  0.85  0.97  0.85  0.72  0.25b 0.25b 0.22  0.34  0.29  0.02  

ASG 0.21  0.29a 0.86  0.95  0.85  0.94  0.85  0.57  0.09b 0.18b 0.22  0.39  0.34  0.18  

CMG 0.29  0.22a 0.87  0.98  0.86  0.97  0.87  0.73  0.11b 0.27b 0.22  0.34  0.28  0.05  

AFG 0.27  0.42a 0.87  0.97  0.86  0.96  0.87  0.69  0.05b 0.08b 0.20  0.32  0.33  0.02  

PAG 0.44  0.23a 0.86  0.97  0.85  0.96  0.86  0.72  0.49b 0.19b 0.23  0.35  0.26  0.02  

FSG 0.46  0.85a 0.84  0.97  0.83  0.96  0.84  0.72  0.11b 0.22b 0.25  0.37  0.24  0.02  

WCG 0.26  0.32a 0.87  0.98  0.86  0.97  0.87  0.77  0.07b 0.11b 0.19  0.28  0.33  0.03  

Note: Tr. and Sim. represent training stage and simulation stage. Statistical indicators: R2: regression goodness of fit; NSE: Nash-Sutcliffe efficiency coefficient; 14 

RMSE: root-mean-square error; MAE, mean absolute error. RMSE and MAE are measured in mm dy-1. The better value of each pair of values is boldfaced. a and 15 
b mean the statistics have the scale factor = 0.001 or 0.1. 16 
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