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Abstract

Forest and vegetation fires, used as tools for agriculture and deforestation, are a major source of air pollutants and can cause

serious air quality issues in many parts of Asia. Actions to reduce fire may offer considerable, yet largely unrecognised, options

for rapid improvements in air quality. In this study, we used a combination of regional and global air quality models and

observations to examine the impact of forest and vegetation fires on air quality degradation and public health in Southeast

Asia (including Mainland Southeast Asia and south-eastern China). We found that eliminating fire could substantially improve

regional air quality across Southeast Asia by reducing the population exposure to fine particulate matter (PM2.5) concentrations

by 7% and surface ozone concentrations by 5%. These reductions in PM2.5 exposures would yield a considerable public health

benefit across the region; averting 59,000 (95% uncertainty interval (95UI): 55,200-62,900) premature deaths annually. Analysis

of subnational infant mortality rate data and PM2.5 exposure suggested that PM2.5 from fires disproportionately impacts poorer

populations across Southeast Asia. We identified two key regions in northern Laos and western Myanmar where particularly

high levels of poverty coincide with exposure to relatively high levels of PM2.5 from fires. Our results show that reducing forest

and vegetation fires should be a public health priority for the Southeast Asia region.
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Key Points: 10 

• Eliminating forest and vegetation fires could substantially improve regional air quality in 11 
Mainland Southeast Asia. 12 

• Reducing exposure to particulate and ozone pollution from fires would yield a 13 
considerable public health benefit across Southeast Asia. 14 

• Particulate air pollution from fires disproportionately impacts poorer populations across 15 
Southeast Asia. 16 

Abstract 17 
Forest and vegetation fires, used as tools for agriculture and deforestation, are a major source of 18 
air pollutants and can cause serious air quality issues in many parts of Asia. Actions to reduce 19 
fire may offer considerable, yet largely unrecognised, options for rapid improvements in air 20 
quality. In this study, we used a combination of regional and global air quality models and 21 
observations to examine the impact of forest and vegetation fires on air quality degradation and 22 
public health in Southeast Asia (including Mainland Southeast Asia and south-eastern China). 23 
We found that eliminating fire could substantially improve regional air quality across Southeast 24 
Asia by reducing the population exposure to fine particulate matter (PM2.5) concentrations by 7% 25 
and surface ozone concentrations by 5%. These reductions in PM2.5 exposures would yield a 26 
considerable public health benefit across the region; averting 59,000 (95% uncertainty interval 27 
(95UI): 55,200-62,900) premature deaths annually. Analysis of subnational infant mortality rate 28 
data and PM2.5 exposure suggested that PM2.5 from fires disproportionately impacts poorer 29 
populations across Southeast Asia. We identified two key regions in northern Laos and western 30 
Myanmar where particularly high levels of poverty coincide with exposure to relatively high 31 
levels of PM2.5 from fires. Our results show that reducing forest and vegetation fires should be a 32 
public health priority for the Southeast Asia region. 33 

1 Introduction 34 
Forest and vegetation fires, also referred to as open biomass burning, are a major source 35 

of particulate matter (PM) (Chen et al., 2017), ozone (Jaffe and Wigder, 2012), and other air 36 
pollutants to the atmosphere and can cause serious air quality issues in many parts of East Asia 37 
(Marlier et al., 2012; Reddington et al., 2014; Koplitz et al., 2016; Crippa et al., 2016; Lee et al., 38 
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2018; Kiely et al., 2020; Bruni Zani et al., 2020). Observations show that emissions from these 39 
fires, which include agricultural residue burning and deforestation fires, influence pollutant 40 
concentrations in both rural and urban regions (Janjai et al., 2009; Pengchai et al., 2009; Tsai et 41 
al., 2013; Zhu et al., 2016; Lasko et al., 2018; Nguyen et al., 2019). Exposure to smoke from 42 
fires is associated with adverse health outcomes including morbidity and mortality 43 
(Jayachandran, 2009; Jacobson et al., 2014; Pongpiachan & Paowa, 2015; Reid et al., 2016; de 44 
Oliveira Alves et al., 2017; Pienkowski et al., 2017; Johnston et al., 2019; Vajanapoom et al., 45 
2020). Most previous work has focussed on the air quality impacts of fires in Indonesia 46 
(Equatorial Asia) (Marlier et al., 2012; Reddington et al., 2014; Crippa et al., 2016; Koplitz et al., 47 
2016; Kiely et al., 2020; Bruni Zani et al., 2020) and the Amazon (Reddington et al., 2015; Butt 48 
et al., 2020; Nawaz and Henze, 2020). In this study, we focus on the air quality impacts of fires 49 
in Mainland Southeast Asia (Myanmar, Thailand, Cambodia, Lao People's Democratic Republic 50 
(hereafter Laos), and Vietnam; also referred to as the Indochina Peninsula or Peninsula Southeast 51 
Asia) and south-eastern China, which have been much less studied. 52 

In Southeast Asia, fires are used as a tool for agricultural management e.g., to remove 53 
agricultural residues (mainly from rice and sugarcane cultivation) and weeds, and for forest 54 
clearance for agricultural purposes (Biswas et al., 2015; Chen et al., 2017; Phairuang et al., 55 
2017). Fires in Mainland Southeast Asia mainly occur during the pre-monsoon season (roughly 56 
February to April), due to widespread forest fires and crop residue burning in preparation for 57 
planting at the Asian summer monsoon onset (Huang et al., 2016; Phairuang et al., 2017). The 58 
increased fire activity coincides with a widespread stable temperature inversion layer over 59 
Thailand, Vietnam, Laos and Southern China (Nodzu et al., 2006) with hot, dry and stagnant air 60 
over northern Thailand (Kim Oanh & Leelasakultum, 2011) promoting haze conditions. During 61 
the burning season, long-range transport of smoke from fires in Mainland Southeast Asia has 62 
been observed in Southwest China (Zhu et al., 2016), south-eastern Tibetan Plateau (Sang et al., 63 
2013), Southern China, Taiwan, and Hong Kong (Huang et al., 2013). Fires reduce substantially 64 
after the onset of the summer monsoon rainfall (in late April) and are minimal until around the 65 
start of the dry season (in November). Fires in this region display a degree of interannual 66 
variability linked to changes in atmospheric circulation features, such as the India‐Burma Trough 67 
(Huang et al., 2016).  68 

Several studies have used a mix of models and observations to explore the impacts of fire 69 
on atmospheric aerosol properties, visibility, and/or air quality in Mainland Southeast Asia (Lin 70 
et al., 2013; Huang et al., 2013; Duc et al., 2016; Lee et al., 2017; 2018; Li et al., 2017; Yin et 71 
al., 2019; Vongruang & Pimonsree, 2020). However, studies quantifying the contribution of fire 72 
to particulate air pollution, population exposure and public health are lacking in this region 73 
(Yadav et al., 2017; Johnston et al., 2019), compared in particular to the large number of studies 74 
focussed on Equatorial Asia (e.g., Marlier et al., 2012; Koplitz et al., 2016; Crippa et al., 2016; 75 
Kiely et al., 2020). Recent studies show that fire is the dominant cause of the variation of local 76 
ambient air quality in Mainland Southeast Asia (Yin et al., 2019); contributing 49% of ambient 77 
PM10 (particulate matter with aerodynamic diameter ≤ 10 µm) concentrations during peak open 78 
burning in March 2012 (Vongruang & Pimonsree, 2020) and 70%-80% to aerosol optical depth 79 
in source regions during March-April 2013 (Li et al., 2017). Preventing fire could yield 80 
substantial reductions in population-weighted PM2.5 (particulate matter with aerodynamic 81 
diameter ≤ 2.5 µm) concentrations across Mainland Southeast Asia (Reddington et al., 2019a). 82 
There are large uncertainties associated with quantifying and simulating particulate emissions 83 
from fire in tropical regions (Reddington et al., 2016). In Mainland Southeast Asia, there is a 84 
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large range in emissions estimates (Wiedinmyer et al., 2011; Kaiser et al., 2012; Shi & 85 
Yamaguchi, 2014; Sornpoon et al, 2014; Lasko et al., 2017; van der Werf et al., 2017; Phairuang 86 
et al., 2017) and varying performance when tested in models against observations (Fu et al., 87 
2012; Reddington et al., 2014; 2016; Lee et al., 2017; Vongruang et al., 2017; Pimonsree et al., 88 
2018; Takami et al., 2020). Emissions from the Fire Inventory from NCAR (FINN; Wiedinmyer 89 
et al., 2011) have been used widely in models over this region; with simulated PM 90 
concentrations showing good agreement against observations in some studies (Reddington et al., 91 
2014; 2016; Takami et al., 2020), but overestimation by a factor of ~2 in others (Vongruang et 92 
al, 2017; Li et al., 2017; Pimonsree et al., 2018). Fires also impact ozone concentrations, being a 93 
source of ozone precursors and altering photochemistry, impacting ozone production (Jaffe and 94 
Wigder, 2012). The efficacy of photochemical ozone production in fire plumes is highly variable 95 
and uncertain, and is affected by non-linear ozone dependence on changes in precursor 96 
concentrations, and high particulate loadings, which affect photochemistry (Jaffe and Wigder, 97 
2012). Fires have been shown to enhance regional ozone concentrations in Mainland Southeast 98 
Asia (Pochanart et al., 2001) and aloft over southern China (Chan et al., 2000; Chan et al., 2003; 99 
Kondo et al., 2004), although fires have also been implicated in suppressed ozone in some 100 
situations (Deng et al., 2008). 101 

Links between socioeconomic factors, population exposure to ambient air pollution, and 102 
associated health effects have been well documented in parts of North America and Europe (e.g., 103 
Hajat et al., 2015; Fairburn et al., 2019). However, few studies have focussed on countries in 104 
Southeast Asia, with some demonstrating strong connections between ambient air pollution and 105 
poverty e.g., in urban areas of Laos (Dasgupta et al., 2005), rural areas of Vietnam (Narloch & 106 
Bangalore, 2018) and Ho Chi Minh City (Mehta et al., 2014); and others finding only weak 107 
connections e.g., in Cambodia and Vietnam (Dasgupta et al., 2005) or no connection e.g., in 108 
Laos (Pasanen et al., 2017). The majority of these studies explored links between poverty and 109 
multiple environmental risks, including ambient air pollution from all sources. To our 110 
knowledge, no previous studies have examined the poverty levels of populations exposed to air 111 
pollution from fires in this region. 112 

In this work, we use a combination of satellite-derived datasets of fire emissions, models 113 
and observations to quantify the contribution of forest and vegetation fires to air quality 114 
degradation and disease burden in Mainland Southeast Asia and south-eastern China. We also 115 
examine the poverty levels of the Southeast Asian population exposed to PM2.5 pollution derived 116 
specifically from fire emissions. 117 

2 Materials and Methods  118 
Model GLOMAP (v7) WRF-Chem (v3.7.1) 
Domain Global Regional: East Asia 
Horizontal 
resolution 

2.8° x 2.8 30 km x 30 km (~0.3° x 0.3°) 
 

Vertical levels 30 (up to 10 hPa) 33 (up to 10 hPa) 
Anthropogenic 
emissions 

MACCity (Granier et al., 2011) for 
2003-2010 

EDGAR-HTAP2 (Janssens-Maenhout et al., 
2015) for 2010 

Fire emissions FINN1.5, GFAS1.2, GFED4 FINN1.5 
Meteorology Driven by ECMWF fields Nudged to NCEP GFS fields (NCEP, 2000; 

2007) 
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Aerosol size 
distribution 

Modal scheme (7 log-normal 
modes) 

Sectional scheme (MOSAIC 4-bin; Zaveri et al., 
2008) 

Gas-phase 
chemistry 

TOMCAT (Chipperfield, 2006) MOZART-4 (Emmons et al., 2010) 

Simulation 
year(s) 

2003 - 2015 2014 

Simulations 1) GLOMAP_nofire: fire 
emissions excluded. 

2) GLOMAP_FINN: with FINN 
fire emissions. 

3) GLOMAP_GFAS: with GFAS 
fire emissions. 

4) GLOMAP_GFED: with GFED 
fire emissions. 

1) WRFChem_nofire: fire emissions excluded. 
2) WRFChem_FINN: FINN fire emissions. 
3) WRFChem_FINNx1.5: FINN fire emissions 

scaled upwards by a factor 1.5. 

Table 1. Summary of the model setups for the GLOMAP global model and WRF-Chem regional model. 119 

2.1 Description of the GLOMAP global aerosol model 120 
We used the Global Model of Aerosol Processes (GLOMAP; Spracklen et al., 2005; 121 

Mann et al., 2010) to simulate multi-year (2003-2015) PM concentrations and evaluate the 122 
performance of three fire emissions datasets against observations. Table 1 summarises the model 123 
setup used for this study; see Sect. S1.1 and Reddington et al. (2016; 2019b) for further details.   124 

2.1.1 Fire emissions in GLOMAP 125 
Fire emissions of sulphur dioxide (SO2), black carbon (BC) and organic carbon (OC) 126 

were specified using three different datasets: the National Centre for Atmospheric Research Fire 127 
Inventory version 1.5 (FINNv1.5) (Wiedinmyer et al., 2011), the Global Fire Emissions Dataset 128 
version 4.1 with small fires (GFED4s) (van der Werf et al., 2010; van der Werf et al., 2017) and 129 
the Global Fire Assimilation System versions 1.0 and 1.2 (GFASv1.0 and GFASv1.2) (Kaiser et 130 
al., 2012); hereafter referred to as FINN, GFED, and GFAS, respectively. The different fire 131 
emission estimation methodologies of these datasets are described in detail in their references 132 
given above and in our previous work (Reddington et al., 2016; 2019b). We use daily fire 133 
emissions from all three datasets (daily GFED emissions are available from 2003 onwards (Mu 134 
et al., 2011)). Fire emissions were distributed vertically over six ecosystem-dependent altitudes 135 
between the surface and 6 km according to Dentener et al. (2006). Over Mainland Southeast 136 
Asia, all emissions were injected below 3 km elevation, which is consistent with satellite 137 
observations of the vertical distribution of smoke in this region (Gautam et al., 2013). 138 

2.1.2 GLOMAP model simulations 139 
We performed four model simulations with GLOMAP: one simulation excluding fire 140 

emissions (“GLOMAP_nofire”); and three simulations each including a different fire emissions 141 
dataset (“GLOMAP_FINN”, “GLOMAP_GFED” and “GLOMAP_GFAS”). Simulations were 142 
run from 1st January 2003 to 31st December 2015 (after a 92-day spin-up), driven by ECMWF 143 
ERA-Interim global reanalyses (Dee et al., 2011) that correspond to the simulation date/time.  144 

2.2 Description of the WRF-Chem regional model 145 
We used the Weather Research and Forecasting model coupled with Chemistry (WRF-146 

Chem; Grell et al., 2005) version 3.7.1, a high-resolution regional model, to simulate air 147 
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pollutant concentrations for one year (2014) and quantify the public health impacts of long-term 148 
exposure to fire-derived PM2.5 and ozone (O3) concentrations. Table 1 summarises the model 149 
setup used for this study; see Sect. S1.2 for further details. 150 

2.2.1 Fire emissions in WRF-Chem 151 
Fire emissions were taken from FINN version 1.5 (Wiedinmyer et al., 2011), with a 152 

spatial resolution of 1 km x 1 km for the year 2014. Fire emissions were included for BC, OC, 153 
PM2.5, PM10, carbon monoxide, ammonia, nitrogen oxides, SO2, and non-methane volatile 154 
organic compounds (speciated according to the Model for Ozone and Related Chemical Tracers 155 
(MOZART); Emmons et al., 2010). We applied a diurnal factor (Western Regional Air 156 
Partnership, 2005) to the daily emissions, which assumes greater emissions during the day 157 
(between 10:00 and 19:00 local time, peaking at 15:00-16:00 local time) and minimal emissions 158 
during the night. The injection heights of the fire emissions were calculated online in the model 159 
using the Freitas et al. (2007) plume-rise parameterisation. The plume-rise parameterisation 160 
applies a 1-D cloud-parcel model to each grid-column within the WRF-Chem model domain that 161 
contains a fire.  162 

2.2.2 WRF-Chem model simulations 163 
The model domain is located over East Asia, using a Lambert conformal conical 164 

projection with a horizontal resolution of 30 km x 30 km (covering a 130x124 grid) and 33 165 
vertical levels up to a minimum pressure of 10 hPa. We re-gridded the model output, using linear 166 
interpolation, onto a regular latitude-longitude grid at 0.25° × 0.25° resolution. We performed 167 
three model simulations with WRF-Chem: one simulation excluding fire emissions 168 
(“WRChem_nofire”); one simulation including FINN fire emissions (“WRFChem_FINN”); and 169 
one simulation where FINN fire emissions of OC and BC were scaled upwards by a factor 1.5 170 
(“WRFChem_FINNx1.5”). The simulation period was for one year from 9 January 2014 to 9 171 
January 2015, with the first eight days of January 2014 run as spin-up. We selected 2014 for our 172 
simulation year since both PM and O3 measurements are available for this year (Sect. 2.5). 173 

2.3 Public health impact assessment 174 
We estimated the disease burden attributable to ambient PM2.5 exposure (simulated by 175 

WRF-Chem) using population attributable fractions of relative risk. The relative risk of disease 176 
at a specific ambient PM2.5 exposure was estimated through the Global Exposure Mortality 177 
Model (GEMM) (Burnett et al., 2018). We calculated the disease burden due to long-term 178 
exposure to ambient O3 (simulated by WRF-Chem) using the exposure-response function from 179 
Turner et al., (2016). Uncertainty intervals at the 95% confidence level (95UI) were estimated 180 
through using the derived uncertainty intervals from the exposure-outcome functions, baseline 181 
mortality and morbidity rates, and population age fractions. See Sect. S1.3 for further details. 182 

The mortality due to fire emissions (MFIRE) was calculated using the “subtraction” 183 
method (Conibear et al., 2018); calculating the difference between the premature mortality from 184 
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all sources (MALL) and the premature mortality when fire emissions have been removed 185 
(MFIRE_OFF) as in Eq. 1: 186 

MFIRE = MALL – MFIRE_OFF     (1) 187 

2.4 Poverty proxy data 188 
As a proxy for population poverty levels, we used gridded subnational Infant Mortality 189 

Rate (IMR) estimates from NASA Socioeconomic Data and Applications Center for 2015 190 
(Center for International Earth Science Information Network (CIESIN), 2018a). For further 191 
details see Sect. S1.5 and Fig. S8.  192 

The IMR is defined as the number of children who die before their first birthday for every 193 
1,000 live births in a given year. For context, previous studies have defined populations with 194 
IMR <15 to be not poor; 15 £ IMR < 32 to be moderately poor; 32 £ IMR < 65 to be poor; and 195 
65 £ IMR < 100 to be very poor (De Sherbinin, 2008); and populations with a high IMR as 196 
having > 32 deaths per 1,000 live births (Barbier & Hochard, 2019). 197 
 Subnational IMR estimates have been used as a proxy for poverty indicators in a range of 198 
previous studies (De Sherbinin, 2008; Barlow et al., 2016; Barbier & Hochard, 2018; 2019; 199 
Hauenstein et al., 2019). A strong correlation between IMR and other poverty-related metrics, 200 
including population income, education and health (Reidpath & Allotey, 2003; De Sherbinin, 201 
2008; O’Hare et al., 2013; Fritzell et al., 2015; Sartorius & Sartorius, 2014), justifies the use of 202 
IMR as a proxy for overall poverty levels. In addition, it is difficult to obtain alternative poverty 203 
measures at sub-national levels for mutilple countries (Dasgupta, 1993; CIESIN, 2018b). Other 204 
advantages of this dataset over alternative poverty measures include its highly standardised 205 
nature and availability for ³90% of medium- and low-income country populations (Balk et al., 206 
2006; CIESIN, 2018b).  207 

2.5 Particulate matter and ozone measurements 208 
We used 2003-2015 monthly mean PM10 concentrations measured at air quality 209 

monitoring stations located in fire-influenced regions of Thailand (Fig. S1a) from the Pollution 210 
Control Department (PCD) of the Thailand Government Ministry of Natural Resources and 211 
Environment. The fire-influenced stations were selected using GLOMAP or WRF-Chem model 212 
data where fire emissions contributed 20% or greater to the simulated annual mean PM10. We 213 
used surface O3 concentration measurements from air quality monitoring stations located in 214 
China and surrounding countries (Fig. S1b) from the Berkley Earth China Air Quality Data Set 215 
(Rohde & Muller, 2015). See Sect. S1.4 for further details on the measurements. 216 

To evaluate model-simulated surface PM10 concentrations due only to the influence of 217 
fire, we calculated and compared simulated and measured fire-derived (smoke) PM10 218 
concentrations. The simulated and measured fire-derived PM10 concentrations were estimated for 219 
each year separately, by subtracting the minimum monthly mean PM10 concentration from all 220 
monthly mean concentrations for that year. A similar approach has been used in previous 221 
modelling studies (e.g., Kiely et al., 2020) to isolate enhancements in surface PM concentrations 222 
due only to fires. 223 

To quantify the agreement between model and observations, we used the Pearson 224 
correlation coefficient (r) and normalised mean bias factor (NMBF) as defined by Yu et al. 225 
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(2006). A positive NMBF indicates the model overestimates the observations by a factor of 226 
NMBF+1. A negative NMBF indicates the model underestimates the observations by a factor of 227 
1–NMBF. 228 

3 Results 229 

3.1 Analysis of fire emissions over Southeast Asia  230 
Figure 1 shows the 2003-2015 average spatial distribution of OC emissions from fire over 231 

Southeast Asia from GFAS, FINN and GFED. In all datasets greatest emissions occur in the 232 
northern regions of Laos, Cambodia, and Thailand, eastern and western Myanmar and southern 233 
Bangladesh, and lower emissions in central regions of Myanmar and Thailand, northern Vietnam 234 
and south-eastern China. The regions of greatest OC emissions are dominated by deforestation 235 
and degradation fires (as classified by GFED4; van der Werf et al., 2017; Fig. 1d). FINN 236 
generally estimates greatest OC emissions of the three emission datasets across the region, with 237 
lowest OC emissions estimated by GFED.  238 

 239 
Figure 1. (a-c) Annual total organic carbon (OC) emissions from fire across Southeast Asia, averaged over the 240 
period (2003-2015) from three fire emission datasets: (a) GFAS version 1.0 (and version 1.2 from 2012 241 
onwards), (b) FINN version 1.5 and (c) GFED version 4.1s (GFED4). Fire emissions are all re-gridded to 0.5° 242 
x 0.5° resolution for comparison.  (d) Spatial distribution of the dominant fire types for fire emissions of OC for 243 
2003-2015. Data is from GFED4 (van der Werf et al., 2010) re-gridded to 0.5° x 0.5° resolution. Fires are 244 
characterised into six types: Deforestation and degradation fires (DEFO); Peatland fires (PEAT); Savanna, 245 
grassland, and shrubland fires (SAVA); Temperate forest fires (TEMF); Agricultural waste burning (AGRI); and 246 



manuscript submitted to GeoHealth 

 

Boreal forest fires (BORF). The dominant fire type was derived by calculating the maximum GFED4 OC 247 
emissions flux for each fire type in each 0.5°x0.5° grid cell over the period 2003-2015. 248 

Figure 2 shows the 2003-2015 average annual OC emissions at the country scale with the 249 
greatest emissions from Myanmar and lowest from Vietnam. Countrywide FINN OC emissions 250 
are a factor 2-7 greater than GFED and a factor 3-5 greater than GFAS. Annual OC emissions 251 
summed across the region vary by a factor of 4 (GFAS: 0.90 Tg a-1; FINN: 3.67 Tg a-1; GFED: 252 
0.87 Tg a-1) and contribute between 5% (GFAS) and 18% (FINN) of 2003-2015 average global 253 
fire OC emissions. The importance of particulate fire emissions in this region depends on the fire 254 
emissions dataset used. In the FINN dataset, domain-wide fire OC emissions (3.7 Tg a-1) are 255 
comparable to long-term average annual fire OC emissions in northern South America (3.1 Tg a-256 
1; Butt et al., 2020).   257 

 258 
Figure 2. (a) Annual total organic carbon (OC) emissions from fire for countries/regions in Southeast Asia. 259 
Bars show annual total emissions averaged over the period (2003-2015) with error bars showing the standard 260 
deviation; circles show annual total emissions for 2014. OC emissions are shown from three fire emission 261 
datasets: GFAS version 1.0 (and version 1.2 from 2012 onwards), FINN version 1.5 and GFED version 4.1s 262 
(GFED4). “SE China” is defined as south of 30°N and east of 98°W. (b) Fire type fraction of GFED4 annual 263 
total OC emissions for four different fire types: Deforestation and degradation fires (DEFO); Savanna, 264 
grassland, and shrubland fires (SAVA); Agricultural waste burning (AGRI); and Temperate forest fires 265 
(TEMF) (van der Werf et al., 2010). Bars show fire type fractions averaged over the period (2003-2015) with 266 
error bars showing the standard deviation; circles show fire type fractions for 2014. 267 

Differences in the magnitude of OC emissions estimated by the three datasets arise from 268 
multiple factors involved in the different fire detection and emission estimation methods used 269 
e.g., differences in the land use/land cover classifications used and the emissions factors assumed 270 
for various fire types and aerosol species (Liu et al., 2020); and possible biases in regions of 271 
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agricultural residue burning and small savanna/grassland fires (Randerson et al., 2012; T. Zhang 272 
et al., 2018).  273 

Across Mainland Southeast Asia, fire emissions are predominantly from 274 
deforestation/degradation fires (accounting for 31-57%) and savanna type fires (accounting for 275 
35-55%) (Fig. 2b). A detailed analysis of forest fires in Myanmar confirms that most are of 276 
anthropogenic origin (Biswas et al., 2015). Vadrevu et al. (2019) found that most fires occurred 277 
in forests as opposed to cropland across much of Mainland Southeast Asia including Myanmar, 278 
Laos, Cambodia and Vietnam. In regions with both deforestation and savanna fires, deforestation 279 
fires emit a greater amount of particulate emissions, due to a combination of larger fuel 280 
loads/biomass consumption and emission factors, and thus tend to dominate emissions (Fig. 1d). 281 
However, savanna fires are more prevalent across the region and so the accumulated emissions 282 
from this fire type per country are generally comparable to or greater than deforestation fires. In 283 
south-eastern China, OC emissions arise predominantly from fires classified as temperate forest 284 
fires (67%). Agricultural fires make up a relatively small fraction of fire OC emissions across the 285 
region (1-14%), but the occurrence of these fires may be underestimated or misrepresented both 286 
in GFED (Reddington et al., 2016; T. Zhang et al., 2018), and more widely by satellite-based 287 
estimates (Zhang et al., 2016; Stavrakou et al., 2016; Lasko et al., 2017; Shen et al., 2019; Zhang 288 
et al., 2020).  289 

3.2 Model evaluation  290 

3.2.1 Evaluation of fire emissions datasets 291 
Figure 3 compares three fire emissions datasets in GLOMAP against long-term surface 292 

measurements of PM10 from 12 fire-influenced stations in Thailand. The measurements show a 293 
consistent peak in monthly mean fire-derived PM10 concentrations of ~60-130 mg m-3 during the 294 
pre-monsoon season (roughly between January and May) across all years. Annual peak 295 
concentrations show a moderate degree of interannual variability, with relatively low peaks 296 
measured during 2003, 2008 and 2011 (and relatively high in 2004, 2007 and 2012). The multi-297 
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year GLOMAP simulations demonstrate that fires consistently make a substantial contribution to 298 
surface PM10 concentrations in northern Thailand over a 13-year period. 299 

 300 
Figure 3. Evaluation of GLOMAP-simulated PM10 over Thailand. (a) Left: time-series of simulated and 301 
measured monthly mean fire-derived PM10 concentrations between 2003 and 2015, averaged over 12 fire-302 
influenced stations (shown in Fig. S1a); Right: simulated versus measured annual mean fire-derived PM10. (b) 303 
Left: time-series of simulated and measured multi-annual average seasonal cycle of fire-derived PM10 304 
concentrations, averaged over the same stations as the upper panel; Right: simulated versus measured multi-305 
annual monthly mean fire-derived PM10. The model bias (NMBF) and correlation (r2) between modelled and 306 
measured values are given at the top of the righthand figures. Simulated concentrations are shown for the 307 
model with FINN1.5 (GLOMAP_FINN), GFAS1.2 (GLOMAP_GFAS), GFED4 (GLOMAP_GFED) 308 
emissions, and without fire emissions (GLOMAP_nofire). 309 

Figure 3a shows GLOMAP generally captures the measured interannual variability in 310 
fire-derived PM10 when fire emissions are included in the model (r2=0.47-0.57, depending on the 311 
emission dataset) but underestimates the magnitude of the measurements in all simulations 312 
(NMBF=-1.8 to -0.5), particularly in 2005, 2014 and 2015. The smallest model bias in annual 313 
mean fire-derived PM10 across all years (NMBF=-0.5) is achieved with FINN emissions.  314 

Figure 3b shows the strong seasonal variability in measured fire-derived PM10 315 
concentrations, with average concentrations peaking in March and then decreasing to very low 316 
values between May and September. The measured seasonal variation is captured well in the 317 
simulations with fire emissions (r2=0.82-0.90, depending on the emission dataset). However, the 318 
magnitude of fire-derived PM10 concentrations is best captured by the model with FINN 319 
emissions (Fig. 3b; NMBF=-0.4; see further analysis in Sect. S2.1 and Fig. S2). This result is 320 
consistent with our previous work (Reddington et al., 2016) that used AERONET aerosol optical 321 
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depth to evaluate the GLOMAP model over Southeast Asia. Therefore, we use the FINN 322 
emissions in our high-resolution regional model simulations in the following sections. 323 

3.2.2 Evaluation of WRF-Chem particulate matter concentrations 324 
Figure 4 compares WRF-Chem simulated and measured regional-average seasonal cycles 325 

in fire-derived PM10 for 12 fire-influenced stations in Thailand during 2014. We note that annual 326 
fire emissions in FINN for 2014 are comparable to or lower than the 2003-2015 average (Fig. 327 
2a). The model with FINN emissions well simulates the monthly mean variation in measured 328 
fire-derived PM10 concentrations (r2=0.89) but underestimates the magnitude of the observations 329 
(NMBF=-0.28) predominantly during January to July. This is consistent with total PM10 330 
concentrations (Fig. S3). 331 

 332 
Figure 4. Evaluation of WRF-Chem-simulated PM10 over Thailand. Left: Time-series of simulated and 333 
measured monthly mean fire-derived PM10 concentrations during 2014 averaged over 12 fire-influencd 334 
stations (shown in Fig. S1a). Right: simulated versus measured annual mean fire-derived PM10. The model bias 335 
(NMBF) and correlation (r2) between modelled and measured values are given at the top of the righthand 336 
figure. Simulated concentrations are shown for the model without fire emissions (WRFChem_nofire), and for 337 
the model with FINN emissions (WRFChem_FINN) and with FINN emissions scaled upwards by a factor 1.5 338 
(WRFChem_FINNx1.5). 339 

Increasing the particulate fire emissions by a factor 1.5 improves the overall agreement 340 
with measured fire-derived PM10 (Fig. 4; r2=0.94, NMBF=-0.10). Specifically, the FINNx1.5 341 
simulation better captures the measured seasonal variation and magnitude of fire-derived PM10 at 342 
11 out of 12 stations (Fig. S4; FINN: normalised standard deviation (NSD)=0.55-1.21; 343 
FINNx1.5: NSD=0.64-1.74), with little change in the strong temporal correlation (FINN: r=0.83-344 
0.97; FINNx1.5: r=0.87-0.98). The FINNx1.5 simulation also agrees well with PM2.5 345 
measurements (see Sect. S2.2 and Fig. S5). Previous studies have used similar or larger scaling 346 
factors to increase fire emissions in models to better match observations (see Reddington et al. 347 
(2016) and references therein). In the following sections, we show results from the FINNx1.5 348 
simulation as it gives the best match to PM observations. 349 

3.2.3 Evaluation of WRF-Chem surface ozone concentrations 350 
Figure 5 compares simulated and measured daily mean surface O3 mixing ratios averaged 351 

over two regions in Southeast Asia during April to July 2014. Regional-average measured O3 352 
mixing ratios range from ~10 to ~60 ppbv. Variability in surface O3 concentrations over 353 
Southeast Asia is driven by a complex mix of factors, including varying precursor gas emissions 354 
and concentrations, photochemical production, and meteorological effects (causing 355 
accumulation, transport and removal). We evaluate the model against total O3 rather than fire-356 
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derived O3, as for total PM2.5 in Sect. S2.2, because these quantities are used for the health 357 
impact assessment in Sect. 3.4. 358 

  359 
Figure 5. Evaluation of WRF-Chem-simulated ozone (O3) over Thailand and South-eastern (SE) China. Left: 360 
Time-series of simulated and measured daily mean surface O3 mixing ratios during 2014; Right: simulated 361 
versus measured daily mean O3. Regional averages are shown for: (a) Thailand (9 air quality monitoring 362 
stations); and (b) SE China (368 stations in south-eastern Mainland China, 72 stations in Taiwan/Republic of 363 
China, and 12 stations in Hong Kong Special Administrative Region). O3 measurements are available from 364 
April to July 2014. The model bias (NMBF) and correlation (r2) between modelled and measured values are 365 
given at the top of the righthand figures. Simulated values are shown for three model simulations: without fire 366 
emissions (WRFChem_nofire); with FINN fire emissions (WRFChem_FINN); and with FINN emissions 367 
scaled upwards by a factor 1.5 (WRFChem_FINNx1.5). 368 

Measured surface O3 mixing ratios in Thailand show a peak during April (Fig. 5a), which 369 
has been reported to be due to regional scale O3 production triggered by fires (Pochanart et al., 370 
2001, Chen et al., 2017). The FINNx1.5 simulation captures this peak and reproduces the general 371 
daily variability in measured O3 concentrations (r2=0.81), while slightly overestimating the 372 
magnitude of the measurements (NMBF=0.19). In south-eastern China (Fig. 5b), the model 373 
simulates the magnitude and temporal variability of the measured O3 mixing ratios reasonably 374 
well (r2=0.46, NMBF=0.11). Model-measurement comparisons are shown for separate 375 
provinces/regions in south-eastern China in Fig. S6. Previous studies have reported increased 376 
ozone concentrations aloft (~2-6 km altitude) over southern China due to fires in Mainland 377 
Southeast Asia but show little enhancement at the surface (Chan et al., 2000; Chan et al., 2003; 378 
Kondo et al., 2004), consistent with the model results. Reductions in photochemical ozone 379 
production as a result of PM from fires can also act to reduce ozone concentrations (Deng et al., 380 
2008). 381 

3.3 Impacts of forest and vegetation fires on air quality 382 
Figure 6a shows the relative change in simulated surface annual (2014) mean PM2.5 383 

concentration when fire emissions are excluded in WRF-Chem (see Fig. S7 for simulated annual 384 
mean surface concentrations). Eliminating fire emissions reduces simulated annual mean surface 385 
PM2.5 concentrations by ~40-70% in northern Thailand, Myanmar, Cambodia and Laos, with 386 



manuscript submitted to GeoHealth 

 

reductions in south-eastern China ranging from ~10-40% in the region of Mainland Southeast 387 
Asia and in Taiwan, to ≤10% in the provinces further east. Population-weighted annual mean 388 
PM2.5 concentrations across Southeast Asia are reduced by 7%, with reductions of 20% in 389 
Cambodia, 41% in Laos, 31% in Myanmar, 23% in Thailand, and 7% in Vietnam. 390 

 391 
Figure 6. The air quality effects of eliminating fire across Southeast Asia. Shown are the percentage changes in 392 
WRF-Chem-simulated annual (2014) mean (a) PM2.5 and (b) ozone concentrations at ground level when fire 393 
emissions are excluded in the model. Results are shown for the high fire emissions scenario 394 
(WRFChem_FINNx1.5). Regions in grey are outside the model domain. 395 

Simulated PM2.5 concentrations suggest that for 2014, the World Health Organization 396 
(WHO) Air Quality Guideline for PM2.5 (an annual mean of 10 µg m-3; WHO (2006)) is 397 
exceeded in almost every location in Southeast Asia even when fires are excluded (see Fig. S7a 398 
and S7b). However, excluding fires substantially reduces the population exposed to levels of 399 
PM2.5 above the WHO Air Quality Interim Target 2 (annual mean of 25 µg m-3) in Thailand (by 400 
64%), Myanmar (by 100%), Laos (by 92%) and Cambodia (by 44%), with smaller reductions in 401 
Vietnam (by 9%) and south-eastern China (by 3%).  402 

Figures 6b shows the relative change in simulated surface annual mean O3 concentration 403 
when fire emissions are excluded from the model (see Fig. S7c and S7d for absolute 404 
concentrations). The spatial pattern of relative changes in surface O3 is fairly consistent with the 405 
peak and minimum relative changes in surface PM2.5 concentrations, with largest reductions over 406 
northern Thailand, Myanmar, Cambodia and Laos (up to 20%) and smaller reductions over most 407 
of south-eastern China (<15%). When fires are excluded from the model, the annual average 408 
daily maximum 8-hour (ADM8h) O3 concentration is reduced by 5% across Southeast Asia, with 409 
reductions of 10% in Cambodia, 12% in Myanmar and Laos, 8% in Thailand, 5% in Vietnam, 410 
and 2% in south-eastern China. 411 

3.4 Impacts of forest and vegetation fires on public health 412 
Table 2 shows the averted disease burden due to changes in long-term exposure to 413 

ambient PM2.5 and O3 from eliminating fire emissions. Eliminating fire emissions reduces the 414 
annual disease burden from ambient PM2.5 exposure by 12% in Mainland Southeast Asia 415 
(ranging from 5% in Vietnam to 28% in Laos), averting a total of 27,500 (95UI: 24,700-30,400) 416 
premature deaths. In south-eastern China, the disease burden is reduced by 3%, averting 31,400 417 
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(95UI: 30,500-32,400) premature deaths. Assuming a low fire scenario (FINN) decreases the 418 
averted annual PM2.5 disease burden from eliminating fire emissions by a factor of 1.3 (Table 419 
S2).  420 

Country/ 
region 

Reduction 
in PM2.5 

exposure 

Reduction 
in PM2.5 
MORT 

PM2.5 
MORT (yr-1) 

PM2.5 DALYs 
(yr-1) 

Reduction 
in O3 

exposure 

Reduction 
in O3 
MORT 

O3 
MORT 
(yr-1) 

Cambodia 20% 13% 
1,500 

(1,300-
1,700) 

59,500 
(49,100-
71,700) 

10% 15% 
140 

(130-
160) 

Laos 41% 28% 
1,600 

(1,300-
1,800) 

63,600 
(49,400-
77,400) 

12% 16% 80 (70-
80) 

Myanmar 31% 21% 
10,800 
(9,500-
12,000) 

393,100 
(326,200-
467,300) 

12% 20% 
1,070 
(940-

1,190) 

Thailand 23% 15% 
8,500 

(7,900-
9,100) 

344,500 
(288,600-
405,700) 

8% 7% 
600 

(550-
650) 

Vietnam 7% 5% 
5,100 

(4,600-
5,700) 

186,800 
(145,100-
225,400) 

5% 4% 
360 

(310-
390)  

SE China 5% 3% 
31,400 

(30,500-
32,400) 

1,042,900 
(919,200-

1,184,800) 
2% 1% 

1,530 
(1,380-
1,660) 

Total 
Mainland 
SE Asia 

16% 12% 
27,500 

(24,700-
30,400) 

1,047,500 
(867,500-

1,247,300) 
9% 10% 

2,250 
(2,000-
2,470) 

Total SE 
Asia 
domain 

7% 5% 
59,000 

(55,200-
62,900 

2,090,300 
(1,786,700-
2,432,200) 

5% 3% 
3,790 

(3,380-
4,130) 

Table 2. Averted public health effects due to changes in long-term exposure to ambient PM2.5 and ozone (O3) 421 
from eliminating fire emissions. Shown are the percentage reductions in population weighted annual mean 422 
PM2.5 concentration (PM2.5 exposure), annual mean daily maximum 8-hour (ADM8h) O3 concentration (O3 423 
exposure), and annual disease burden; and the numbers of averted annual premature mortalities (MORT) and 424 
disability-adjusted life years (DALYs) per country for the higher fire emissions scenario (FINNx1.5). Values 425 
in parentheses represent the 95% uncertainty intervals (95UI). PM2.5 mortality values are rounded to the 426 
nearest 100 and O3 mortality values are rounded to the nearest 10. “SE China” is defined as south of 30°N and 427 
east of 98°W, and includes Hong Kong SAR, Macau SAR and Taiwan. “Mainland SE Asia” includes 428 
Cambodia, Laos, Myanmar, Thailand, and Vietnam.  429 
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Figure 7 shows the averted annual premature mortalities and mortality rate by country 430 
from eliminating fire emissions. Whilst the number of avoided total premature mortalities is 431 
much higher in south-eastern China, due to the high population, the averted mortality rate in this 432 
region is smaller than the other countries, due to the more moderate impact of fire on air quality 433 
(Sect. 3.3). The greatest impact per capita is in Laos and Myanmar where 25 (95UI: 21-29) and 434 
26 (95UI: 23-29) premature deaths per 100,000 head of population are averted per year, 435 
respectively. In Cambodia, Thailand, Vietnam and south-eastern China, the averted mortality 436 
rate ranges from 10 to 17 (95UI: 9-18) premature deaths per 100,000 people per year.  437 

  438 
Figure 7. The number of averted annual premature mortalities across Southeast Asia due to changes in long-439 
term exposure to ambient PM2.5 from eliminating fire emissions. The total annual premature mortality 440 
estimates are shown for each country by the red bars; the annual premature mortality rate estimates (mortalities 441 
per 100,000 head of population) are shown for each country by the blue bars. Error bars represent the 95% 442 
uncertainty intervals. 443 

Eliminating fire emissions reduces the annual disease burden due to long-term exposure 444 
to ambient O3 by 10% in Mainland Southeast Asia (ranging from 4% in Vietnam to 20% in 445 
Myanmar), averting a total of 2,250 (95UI: 2,000-2,470) premature deaths (Table 2). In south-446 
eastern China, the annual disease burden is reduced by 1%, averting 1,530 (95UI: 1,380-1,660) 447 
premature deaths. In the FINNx1.5 scenario, the reduction in surface O3 by country is slightly 448 
smaller than for the FINN scenario due to non-linear effects driving O3 concentrations, resulting 449 
in smaller averted disease burdens (Table S2). 450 

3.5 Poverty and smoke exposure 451 

In this section, we examine the poverty levels of the Southeast Asian population exposed 452 
to fire-derived PM2.5 pollution. Figure 8 shows WRF-Chem simulated annual mean fire-derived 453 
(smoke) PM2.5 and non-fire PM2.5 concentrations plotted against gridded poverty proxy (IMR) 454 
data for the Southeast Asian domain. Populations in regions with relatively high IMRs (>60 455 
deaths per 1,000 births) are generally exposed to higher annual mean PM2.5 concentrations from 456 
fire than populations with relatively low IMRs (<40 deaths per 1,000 births). In areas with IMR 457 
≥ 60, the mean fire-derived PM2.5 exposure (10.6 µg m-3) is significantly greater (at the 99% 458 
confidence level) than the mean fire-derived PM2.5 exposure in areas with IMR ≤ 20 (3.5 µg m-459 
3). At the national scale, countries with higher IMRs (Laos, Cambodia, and Myanmar; Fig. S8) 460 
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also experience greater particulate emissions from fires (Fig. 1b) and greater exposure to fire-461 
derived PM2.5 (Fig. 6a) than other countries in Southeast Asia. Also, this result may reflect that 462 
rural populations in Southeast Asia, which are generally located closer to forest and vegetation 463 
fires, often experience greater IMRs (e.g., Myanmar Ministry of Health, 2003).  464 

 465 
Figure 8. WRF-Chem simulated annual mean (a) fire-derived PM2.5 and (b) non-fire-derived PM2.5 466 
concentrations versus binned subnational Infant Mortality Rate (IMR) values across the Southeast Asian 467 
domain. Shown are the simulated PM2.5 anomalies i.e., the difference of the PM2.5 concentration in each IMR 468 
bin from the mean PM2.5 concentration across all IMR bins. Boxes enclose the interquartile range; filled circles 469 
show the mean; error bars extend to 1.5 times the 25th and 75th percentiles; grey open circles show outliers. 470 
Prior to analysis IMR values were regridded to the WRF-Chem grid by taking the mean gridded IMR value per 471 
0.25°x0.25° grid cell. 472 

When we consider PM2.5 from all sources other than fires (Fig. 8b), we obtain the 473 
opposite result, where populations in regions with relatively high IMRs (>60 deaths per 1,000 474 
births) are generally exposed to lower annual mean non-fire PM2.5 concentrations than 475 
populations with relatively low IMRs (<40 deaths per 1000 births). In areas with IMR ≥ 60, the 476 
mean non-fire PM2.5 exposure (15.1 µg m-3) is significantly lower (at the 99% confidence level) 477 
than the mean non-fire PM2.5 exposure in areas with IMR ≤ 20 (35.3 µg m-3).  478 

Considering PM2.5 from all sources (Fig. S9), we find that on average, ‘not poor’ and 479 
‘moderately poor’ populations (with IMR < 32) are exposed to annual mean PM2.5 480 
concentrations derived predominantly (88%) from non-fire sources. However, for ‘very poor’ 481 
populations (with 65 £ IMR < 100), fire-derived PM2.5 makes up a more substantial fraction 482 
(41%) of the total PM2.5 exposure, with 59% from non-fire sources. 483 
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Figure 9 shows the spatial distribution of relative poverty levels (IMR) and fire-derived 484 
PM2.5 exposure (WRF-Chem-simulated annual mean fire-derived PM2.5 concentrations) across 485 
Southeast Asia. This figure indicates a large region in Southeast Asia (including northern Laos, 486 
north-west Vietnam, northern Cambodia, northern and eastern Myanmar, and Yunnan province 487 
in China) where populations with medium or high levels of poverty are exposed to medium or 488 
high levels of PM2.5 pollution from fires. In particular, two areas in northern Laos and western 489 
Myanmar show relatively high levels of both poverty and PM2.5 exposure, suggesting 490 
populations in these regions may be particularly at risk to health impacts from fires. 491 

 492 
Figure 9. Spatial distribution of poverty proxy data (infant mortality rate (IMR) estimates) and WRF-Chem-493 
simulated annual mean fire-derived PM2.5 concentrations across Southeast Asia. Poverty proxy (IMR) ranges 494 
are: Low: 0-20; Med=20-60; High=60-100 deaths per 1,000 live births. PM2.5 concentration ranges are: Low=0-495 
5 µg m-3; Med=5-15 µg m-3; High=15-30 µg m-3. 496 

Overall, these results suggest that populations with greater levels of poverty are 497 
disproportionally exposed to PM2.5 from vegetation and forest fires in Southeast Asia. For very 498 
poor populations, fire-derived PM2.5 concentrations contribute over a third to the total PM2.5 499 
exposure. 500 

4 Discussion of public health impacts and policy 501 
To put our estimated public health impacts into context, we compare disease burdens due 502 

to fire-derived PM2.5 exposure calculated for other fire-intensive regions. Previous studies have 503 
estimated that preventing forest and vegetation fires would avert ~5,000-16,800 annual 504 
premature deaths across South America (Johnston et al., 2012; Reddington et al., 2015; Butt et 505 
al., 2020; Nawaz & Henze, 2020) and ~6,000-100,300 annual premature deaths across Equatorial 506 
Asia (Marlier et al., 2012; Crippa et al., 2016; Koplitz et al., 2016; Kiely et al., 2020). The wide 507 
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range in estimates reflects differences in the experimental design/methods e.g., time periods 508 
(with strong interannual variability in fire emissions in these regions), atmospheric models, and, 509 
in particular, exposure-outcome associations (as discussed by Conibear et al., 2018; Reddington 510 
et al., 2019a; Butt et al., 2020; Kiely et al., 2020; Giani et al., 2020). 511 

Using similar WRF-Chem setups and exposure-outcome association (the GEMM) as used 512 
in this study, previous studies found that eliminating fire would avert 16,800 (95UI: 16,300-513 
17,400) premature deaths across South America in 2012 (Butt et al., 2020) and 44,000 (34,700-514 
53,900) premature deaths across Equatorial Asia in 2015 (Kiely et al., 2020). The total averted 515 
disease burden for our Southeast Asian domain, 59,000 (95UI: 55,200-62,900) premature deaths, 516 
is greater than estimated for the other two fire-influenced regions, despite there being a major 517 
drought-induced haze event across Equatorial Asia in 2015. Removing the population size 518 
dependence, the per capita averted disease burden estimates for countries in Southeast Asia (10-519 
26 (95UI: 9-29) deaths per 100,000 people) are comparable to those estimated for Bolivia, Brazil 520 
and Peru (11-22 (95UI: 10-26) deaths per 100,000 people) in 2012 (Butt et al., 2020) and for 521 
Singapore, Brunei and Malaysia (20-33 (95UI: 16-41) deaths per 100,000 people) in 2015 (Kiely 522 
et al., 2020). These comparisons indicate that populations in Mainland Southeast Asia, suffer 523 
from substantial exposure to smoke from fires with adverse impacts on public health that are 524 
comparable to other major fire regions in the tropics. 525 

There is considerable uncertainty associated with deriving fire emissions from satellite 526 
retrievals (e.g., Reddington et al., 2016; Pan et al., 2020), and previous studies have reported that 527 
these emissions, particularly from agricultural fires, may be underestimated in Mainland 528 
Southeast Asia (Sornpoon et al., 2014; Reddington et al., 2016; Lasko et al., 2017) and China 529 
(Zhang et al., 2016; Stavrakou et al., 2016; Shen et al., 2019; Zhang et al., 2020). The 530 
underestimation of emissions from these fires is likely due to multiple factors, but particularly 531 
their small size (difficult for burned area products to detect) and short duration of active burning 532 
(a high potential to be missed by polar-orbiting satellites with detection frequencies of only a few 533 
times per day) (e.g., T. Zhang et al., 2018). Applying a simple scaling factor to the fire emissions 534 
will partly compensate for emissions underestimation, but emissions estimates are still likely to 535 
be conservative in regions with a high number of missed detections. 536 

We compared the averted disease burden from eliminating fire to those that would be 537 
achieved by eliminating other emissions sectors, estimated in Reddington et al. (2019a). Using 538 
the same health impact calculation method as Reddington et al. (2019a) (the Integrated 539 
Exposure-Response function (GBD 2015 Risk Factors Collaborators, 2016)), the avoided PM2.5 540 
disease burdens in Mainland Southeast Asia due to eliminating fire emissions (12,200 (95UI: 541 
6,500-19,000) premature deaths) are lower than calculated with the GEMM (Table 2). These 542 
values are comparable to eliminating all industrial emissions; a factor 6 greater than eliminating 543 
electricity generation emissions; and a factor 10 greater than eliminating land transport across 544 
Mainland Southeast Asia. We note that we do not account for toxicity variation within PM2.5 545 
exposure as it is currently unknown; with disagreement in the literature regarding the toxicity of 546 
fire-derived PM relative to ambient PM (Wegesser et al., 2009; Pongpiachan, 2016; Johnston et 547 
al., 2019; Aguilera et al., 2021). The health effects of different sources and components of PM 548 
exposure is an ongoing area of research (Naeher et al., 2007; Adetona et al., 2016; Liu et al., 549 
2015; Reid et al., 2016). 550 

Our analysis shows that a reduction of fire across southeast Asia would have substantial 551 
health benefits. Successful fire management requires information about the main types and 552 
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causes of fire. Across Mainland Southeast Asia, emissions are dominated by forest fires 553 
(deforestation, savanna, and temperate forest classes in GFED) which account for 96% of 554 
particulate emissions across our domain, with greater contributions in Cambodia, Laos and 555 
Myanmar. A detailed analysis of fires confirms that most fires in the region occur in forest land 556 
covers (Vadrevu et al, 2019). A close association between fire and deforestation has also been 557 
shown in other tropical regions including the Brazilian Amazon (Reddington et al., 2015) and 558 
Indonesia (Adrianto et al., 2019; 2020). In Southeast Asia, fires are lit in forests to clear the land 559 
for agriculture (slash and burn, deforestation fires), to induce growth of grass for grazing, and for 560 
collection of forest products (Vadrevu et al., 2019). The large contribution of forest fires to 561 
particulate emissions suggests that reducing deforestation and associated fires should be a public 562 
health priority for the region. In Cambodia, deforestation has been linked to increased incidence 563 
of acute respiratory infection in children, likely due to increased exposure to smoke from 564 
deforestation fires (Pienkowski et al. 2017). Future work exploring the relative contributions of 565 
different fire types to air pollution in Mainland Southeast Asia would be useful to inform policy 566 
options to improve air quality. 567 

Several policies have already been implemented to reduce agricultural fires in Southeast 568 
Asia e.g., an Alternative Energy Development Plan and a zero-burning policy for sugarcane in 569 
Thailand (Kumar et al., 2020). However, challenges remain with regards to the enforcement of 570 
these policies and their practicality, particularly for farmers that rely on manual harvesting 571 
practices (Adeleke et al., 2017; Kumar et al., 2020). Recent research shows the most effective 572 
solutions for reducing agricultural residue burning and its associated air pollution, are to 573 
encourage residue use for other purposes e.g., bioenergy, livestock feed/bedding, composting, 574 
green harvesting etc. (Kumar et al., 2020) and to apply coherent policies across multiple 575 
provinces and countries in Southeast Asia (Moran et al., 2019). 576 

Discussion of the implementation and benefits of policies addressing deforestation and/or 577 
savanna-type fires in Southeast Asia are lacking in the literature. However, a number of policies 578 
and projects have been developed and implemented to address forest loss and conversion, many 579 
of which are related to UNFCCC REDD+ (reducing emissions from deforestation and forest 580 
degradation and the role of conservation, sustainable management of forest and enhancement of 581 
forest carbon stocks) (e.g., Kissinger, 2020). Key drivers of deforestation are expansion of 582 
cropland and commercial agriculture (Lim et al., 2017; Y. Zhang et al., 2018) e.g., conversion of 583 
forest to coffee and/or rubber plantations (Fox & Castella, 2013; Kissinger, 2020). There is 584 
evidence that protected areas and community-protected forests can play an important role in 585 
protecting forests from large-scale burning and deforestation fires (Biswas et al., 2015; Singh et 586 
al., 2018). 587 

5 Conclusions 588 
In this study we explored the impact of forest and vegetation fires on air quality and 589 

public health across Southeast Asia. We used a combination of two air quality models: a global 590 
aerosol model, GLOMAP, to test three different satellite-derived fire emission datasets (FINN, 591 
GFED, GFAS); and a high-resolution, regional air quality model, WRF-Chem, to quantify the air 592 
quality and public health benefits of eliminating fire emissions. Simulating the elimination of all 593 
fires across the region, rather than fires specifically identified to be human-caused, illustrates the 594 
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maximum possible public health benefit achievable (within uncertainties) and provides an upper 595 
bound for policy makers. 596 

We found that GLOMAP was better able to reproduce measurements of fire-derived PM 597 
in Thailand across multiple years with the FINN dataset compared to the GFAS or GFED 598 
datasets. This result is consistent with findings in our previous work (Reddington et al., 2016). 599 
PM emissions across Southeast Asia in FINN are a factor 4 greater than GFED or GFAS. WRF-600 
Chem using FINN best simulated measured PM concentrations when particulate fire emissions 601 
were scaled upwards by a factor 1.5. Our analysis suggests fire emissions in this region are 602 
underestimated, particularly in the GFED and GFAS datasets.   603 

Overall, we found that preventing fire could substantially improve regional air quality in 604 
Mainland Southeast Asia with a more limited benefit to air quality in south-eastern China. 605 
Population-weighted annual mean PM2.5 concentrations were reduced by 16% in Mainland 606 
Southeast Asia and by 2% in south-eastern China. ADM8h O3 concentrations were reduced by 607 
9% in Mainland Southeast Asia and by 2% in south-eastern China. Eliminating fire emissions 608 
substantially reduced populations exposed to PM2.5 concentrations above WHO AQ Interim 609 
Target 2 in Thailand, Myanmar, Laos and Cambodia (by 44-100%). 610 

We found a considerable public health benefit of eliminating fire emissions across the 611 
region, largely due to reductions in PM2.5 exposures. The annual disease burden due to PM2.5 612 
exposure was reduced by 12% in Mainland Southeast Asia, averting 27,500 (95UI: 24,700-613 
30,400) premature deaths, and by 3% in south-eastern China, averting 31,400 (95UI: 30,500-614 
32,400) premature deaths. The annual disease burden due to O3 exposure was reduced by 10% in 615 
Mainland Southeast Asia, averting 2,250 (95UI: 2,000-2,470) premature deaths, and by 1% in 616 
south-eastern China, averting 1,530 (95UI: 1,380-1,660) premature deaths.  617 

Using subnational poverty-proxy data, we found that poorer populations in Southeast 618 
Asia are disproportionally exposed to PM2.5 from vegetation and forest fires; with significantly 619 
higher average fire-derived PM2.5 exposure for populations with relatively high infant mortality 620 
rates. 621 

Our analysis suggests that exposure to fire-derived PM2.5 is associated with a greater 622 
annual disease burden in Southeast Asia than in both the Amazon region in 2012 and Equatorial 623 
Asia in 2015, with similar per capita averted disease burdens to those estimated for heavily fire-624 
impacted countries in South America. Furthermore, preventing fires across Mainland Southeast 625 
Asia would yield a public health benefit comparable to that achieved by eliminating all industrial 626 
emissions across the region, and considerably larger than achieved by eliminating emissions 627 
from either the electricity generation or land transport sectors.  628 

In summary, forest and vegetation fires are important to consider in addition to more 629 
traditional emission sectors (e.g., industry, transport and residential solid-fuel combustion) when 630 
assessing causes of air quality degradation in Southeast Asia and for developing emission control 631 
policies to improve air quality across this region. These policies should focus on reducing 632 
deforestation and savanna type fires in addition to agricultural fires in order to effectively 633 
address the regional air quality issues. Previous work in Equatorial Asia (Reddington et al., 634 
2014) demonstrates the need to understand the effectiveness of regional emission control 635 
strategies and how they will reduce population exposure. Future work is required to identify the 636 
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regions where emission controls would most effectively reduce exposure, especially for the 637 
poorest populations.   638 
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S1. Methods 
S1.1 Description of the GLOMAP global aerosol model 

The Global Model of Aerosol Processes (GLOMAP) (Spracklen et al., 2005; Mann et 
al., 2010) is an extension of the TOMCAT global 3-D offline chemical transport model 
(Chipperfield, 2006), resolving aerosol chemistry and microphysics. The GLOMAP 
aerosol model has a horizontal resolution of 2.8°×2.8° with 31 vertical model levels 
between the surface and 10 hPa. Large-scale atmospheric transport and meteorology in are 
specified from European Centre for Medium-Range Weather Forecasting (ECMWF) ERA-
Interim global reanalysis data (Dee et al., 2011), updated every six hours and linearly 
interpolated onto the model time step. The aerosol size distribution is represented by a two-
moment modal aerosol scheme (Mann et al., 2010). GLOMAP includes black carbon (BC), 
primary and secondary organic aerosol, sulfate (SO4), sea spray and mineral dust. 
Concentrations of oxidants are specified using monthly mean 3-D fields at 6-hourly 
intervals from a TOMCAT simulation with detailed tropospheric chemistry (Arnold et al., 
2005) linearly interpolated onto the model time step. 
Anthropogenic emissions of sulfur dioxide (SO2), BC and organic carbon (OC) were 
specified using annually varying MACCity emissions inventory for the years 2002-2010 
(Granier et al., 2011). For simulations in 2011 and beyond, we used MACCity 
anthropogenic emissions from 2010. Monthly mean emissions of biogenic monoterpenes 
are taken from the Global Emissions InitiAtive (GEIA) database (Guenther et al., 1995). 
Monoterpenes are oxidised to form a product that condenses irreversibly in the particle 
phase to form secondary organic aerosol (Scott et al., 2014). Size-resolved emissions of 
mineral dust are prescribed from daily varying emissions fluxes provided for AEROCOM 
(Dentener et al., 2006). 

S1.2 Description of the WRF-Chem regional model 
In the version of WRF-Chem used in this study, aerosol physics and chemistry are treated 
using the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC; Zaveri et 
al., 2008) scheme, using chemistry option 201, with an extended treatment of organic 
aerosol (Hodzic and Jimenez, 2011; Hodzic and Knote, 2014). The MOSAIC scheme treats 
major aerosol species including SO4, nitrate, chloride, ammonium, sodium, BC, primary 
and secondary organic aerosol (formed from biogenic, anthropogenic and biomass burning 
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precursors), and other inorganics (including crustal and dust particles and residual primary 
PM2.5). Four discrete size bins are used within MOSAIC to represent the aerosol size 
distribution (with the following dry particle diameter ranges: 0.039–0.156 μm, 0.156–0.625 
μm, 0.625–2.5 μm, and 2.5–10 μm). Gas-phase chemical reactions are calculated using the 
extended Model for Ozone and Related Chemical Tracers (MOZART) (Emmons et al., 
2010) chemical mechanism, with several updates to photochemistry of aromatics, biogenic 
hydrocarbons and other species relevant to regional air quality (Hodzic and Jimenez, 2011; 
Knote et al., 2014). 
Simulated mesoscale meteorology is kept in line with analysed meteorology through grid 
nudging to the National Centre for Environmental Prediction (NCEP) Global Forecast 
System (GFS) analyses to limit errors in mesoscale transport (NCEP, 2000; 2007). The 
model meteorology was reinitialised every month to avoid drifting of WRF-Chem and spun 
up for 12 hours, while chemistry and aerosol fields were retained to allow for pollution 
build-up and mesoscale pollutant transport phenomena to be captured. MOZART-
4/Goddard Earth Observing System Model version 5 (GEOS5) 6-hourly simulation data 
(NCAR, 2016) were used for chemical and aerosol boundary conditions.  
Anthropogenic emissions were taken from the Emission Database for Global Atmospheric 
Research with Task Force on Hemispheric Transport of Air Pollution (EDGAR-HTAP) 
version 2.2 at 0.1°×0.1° horizontal resolution (Janssens-Maenhout et al., 2015). Biogenic 
emissions were calculated online by the Model of Emissions of Gases and Aerosol from 
Nature (MEGAN; Guenther et al., 2006). Dust emissions were calculated online through 
the Georgia Institute of Technology-Goddard Global Ozone Chemistry Aerosol Radiation 
and Transport (GOCART) model with Air Force Weather Agency (AFWA) modifications 
(LeGrand et al., 2019). 

S1.3 Calculation of public health impacts 

The relative risk of disease at a specific ambient PM2.5 exposure was estimated through the 
Global Exposure Mortality Model (GEMM) (Burnett et al., 2018). The population 
attributable fraction (PAF) was estimated per grid cell as a function of population (P) and 
the relative risk (RR) of exposure following Equation 1. We used the GEMM for non–
accidental mortality (non–communicable disease, NCD, plus lower respiratory infections, 
LRI), using parameters including the China cohort (Yin et al., 2017), with age–specific 
modifiers for adults over 25 years of age in 5–year intervals. The GEMM functions have 
mean, lower, and upper uncertainty intervals. The minimum-risk exposure for the GEMM 
functions is 2.4 µg m–3. 

𝑃𝐴𝐹 = 𝑃 × (𝑅𝑅!"# − 1 𝑅𝑅!"#⁄ )                                             (1) 
For ambient ozone (O3) exposure, the PAF was estimated as a function of the summary 
hazard ratio (HR) for chronic obstructive pulmonary disease (COPD) only and the change 
in annual average, daily maximum, 8–hour, O3 concentrations (ADM8h) relative to the 
minimum–risk exposure (ΔX) as shown by Equation 2. The HR for COPD was 1.14 (95UI: 
1.08–1.21) (Turner et al., 2016). The minimum-risk exposure followed the minimum 
percentiles of 26.7 ppb. 

𝑃𝐴𝐹 = 𝑃 × ,1 − 𝑒$"×&'()*) ,-⁄ .                                             (2) 
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Premature mortality (MORT), years of life lost (YLL), and years lived with disability 
(YLD) per health outcome, age bracket, and grid cell were estimated as a function of the 
PAF and corresponding baseline mortality (I) following Equations 3, 4, and 5, respectively. 
Disability–adjusted life years (DALYs), i.e., the total loss of healthy life, were estimated 
as the total of YLL and YLD following Equation 6. Mean estimates were quantified in 
addition to upper and lower uncertainty intervals at the 95% confidence level. The rates of 
MORT, YLL, YLD, and DALYs were calculated per 100,000 population. 

𝑀𝑂𝑅𝑇 = 𝑃𝐴𝐹 × 𝐼/0*1                                                      (3) 

𝑌𝐿𝐿 = 𝑃𝐴𝐹 × 𝐼233                                                         (4) 

𝑌𝐿𝐷 = 𝑃𝐴𝐹 × 𝐼234                                                        (5) 

𝐷𝐴𝐿𝑌𝑠 = 𝑌𝐿𝐿 + 𝑌𝐿𝐷                                                      (6) 
The United Nations adjusted population count dataset for 2015 at 0.25° × 0.25° resolution 
was obtained from the Gridded Population of the World, Version 4 (GPWv4) (Center for 
International Earth Science Information Network (CIESIN), 2016a). Population age 
composition for 2015 for adults 25 to 80 years in 5–year intervals, and 80 years plus, was 
taken from the Global Burden of Disease (GBD) Study 2017 (GBD 2017 Risk Factors 
Collaborators, 2018). Cause–specific (NCD, LRI, and COPD) baseline mortality and 
morbidity rates for 2015 for MORT, YLL, and YLD for each age bracket were also taken 
from the GBD Study 2017 (Institute for Health Metrics and Evaluation, 2019). Shapefiles 
were used to aggregate results at the country and state level (Hijmans et al., 2016).  

S1.4 Measurements of particulate matter and ozone concentrations 
To evaluate model-simulated monthly mean surface PM10 concentrations (Sects. 3.2.1 and 
3.2.2), we used data from the Pollution Control Department (PCD) of the Thailand 
Government Ministry of Natural Resources and Environment 
(http://www.pcd.go.th/index.cfm). The PCD air quality database (available at: 
http://air4thai.pcd.go.th/webV2/history/) contains historical monthly mean PM10 
concentrations measured at ground-based air quality monitoring stations located across 
Thailand (see Fig. S1a). To evaluate the GLOMAP model we used measurements from 
stations with data available between January 2003 and December 2015 (inclusive). To 
evaluate the WRF-Chem model we used measurements from stations with data available 
between January 2014 and December 2014 (inclusive). 
To evaluate WRF-Chem-simulated surface ozone concentrations (Sect. 3.2.3), we used 
data from the Berkley Earth China Air Quality Data Set (available at: 
http://berkeleyearth.lbl.gov/manual/china_air_quality/) (Rohde and Muller, 2015). This 
dataset consists of hourly real-time ozone data recorded at surface air quality monitoring 
stations located in urban areas in China and surrounding countries (see Fig. S1b). The 
ozone data was downloaded by Rohde and Muller (2015) from https://aqicn.org/ between 
5th April and 18th July 2014. Some quality control and validation checks were applied to 
the raw data prior to incorporation into the Berkley Earth China Air Quality Data Set (see 
further details in Rohde and Muller (2015)).  We calculated daily mean values from the 
hourly data. 
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To evaluate WRF-Chem-simulated surface PM2.5 concentrations (Sect. S2.2), we used a 
subset of measured annual mean PM2.5 concentrations from the World Health Organization 
(WHO) Global Ambient Air Quality Database (WHO, 2018). The database consists of city-
average annual mean PM2.5 concentrations obtained from multiple ground station 
measurements across different years. To compare with the model concentrations, we 
selected measurement years to match or to be as close as possible to the simulation year of 
2014. For some locations, PM2.5 concentrations have been calculated by the WHO from 
the measured PM10 concentration using national conversion factors (PM2.5/PM10 ratio) 
either provided by the country or estimated as population‐weighted averages of urban‐
specific conversion factors (estimated as the mean PM2.5/PM10 ratio of stations for the same 
year) for the country (WHO, 2016; 2018). 
Prior to all model-measurement comparisons, simulated surface PM/ozone concentrations 
were linearly interpolated to the location (longitude and latitude) of the individual air 
quality monitoring stations; averaged over the corresponding time period (daily, monthly 
or annual); and simulated data corresponding to time periods of missing measurement data 
was removed. 

S1.5 Global Subnational Infant Mortality Rates 
We used the Global Subnational Infant Mortality Rates (IMR), Version 2, dataset from 
NASA Socioeconomic Data and Applications Center (SEDAC) (CIESIN, 2018a; Fig. S8), 
which is benchmarked to the year 2015. We selected the year 2015 (from two years 
available: 2000 and 2015) to be as close as possible to the WRF-Chem model simulation 
year (2014) and to be consistent with the 2015 population count dataset used to calculate 
public health impacts (Sect. S1.3). National median estimates of IMR show little change 
between 2014 and 2015 (ranging from a 1% change in Vietnam to an 8% change in China) 
(United Nations Inter-agency Group for Child Mortality Estimation, 2020). 
The dataset includes IMR data for the lowest administrative units available for each country 
as of June 2017 (CIESIN, 2018b) at a spatial resolution of 30 arc-seconds (~1 km). The 
data were drawn from national offices, Demographic and Health Surveys (DHS), Multiple 
Indicator Cluster Surveys (MICS), and other sources from 2006 to 2014 (CIESIN, 2018b), 
with boundary inputs from the GPWv4 (CIESIN, 2016a; CIESIN, 2016b). 

S2. Extended model evaluation 

S2.1 Extended evaluation of GLOMAP fire-derived PM10 
Figure S2 summarises the agreement between the average seasonal cycles in GLOMAP-
simulated and measured fire-derived PM10 concentrations at each of the 12 fire-influenced 
monitoring stations. The temporal correlation at each station is similar between the model 
simulations with fire (GFED: r=0.90-0.97; GFAS: r=0.80-0.93; FINN: r=0.80-0.99), but 
the observed magnitude and variability in monthly mean PM10 concentrations are captured 
best in the simulation with FINN emissions (GFED: normalised standard deviation 
(NSD)=0.25-0.37; GFAS: NSD=0.29-0.42; FINN: NSD=0.73-1.06). 
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S2.2 Evaluation of WRF-Chem PM2.5 

We evaluate annual mean PM2.5 concentrations simulated by WRF-Chem because the 
estimated public health impacts of fire-derived PM (Sect. 3.4) are calculated using this 
quantity. Figure S5 compares annual mean surface PM2.5 concentrations from the 
FINNx1.5 simulation against PM2.5 measurements from the WHO Global Air Quality 
Database. The model captures the spatial distribution of measured annual mean PM2.5 
concentrations reasonably well across the region, with greatest concentrations in southern 
China and north-eastern India and comparatively lower concentrations over Mainland 
Southeast Asia (Fig. S5a). We find that the spatial agreement between the model and 
measurements (Fig 5b; r=0.47) is improved with 2014-only measurements (r=0.85) or only 
using direct measurements of PM2.5, removing those converted from PM10 (r=0.86). 
Simulated annual mean PM2.5 concentrations are unbiased when compared against all the 
WHO measurements available within the model domain (Fig. S5b; NMBF=0.05). Table 
S1 summarises the agreement between model and measurements by country. The model 
captures the magnitude concentrations within a factor 1.5 in Vietnam, north-east India, 
southern China and Thailand. The model underestimates measured annual mean PM2.5 
concentrations in Myanmar by a factor 2 (NMBF=-1.01), likely due to a combination of 
underestimating anthropogenic and fire emissions, underestimating or missing outflow of 
PM from India, and mismatching measurement and simulation years. We also note that the 
WHO PM2.5 concentrations reported for Myanmar are converted from PM10, which can be 
associated with large uncertainties. 
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Supporting Tables 

 

Country No. of 
stations 

Year(s) of 
measurements 

Measured/ 
converted 
PM2.5 

Model 
(FINN) 
NMBF; r 

Model 
(FINNx1.5) 
NMBF; r 

South-eastern 
China 

58 2014 Measured +0.19;  0.86 +0.20;  0.86 

North-eastern 
India 

17 2012, 2014, 
2015 

Measured: 3 
Converted: 14 

+0.03;  0.26 +0.07;  0.28 

Myanmar 16 2009, 2012, 
2013, 2015 

Converted -1.23;  0.35 -1.01;  0.36 

Thailand 22 2014 Converted +0.09;  0.41 +0.16;  0.40 

Vietnam 2 2016 Measured  +0.47;  - +0.50;  - 

Table S1. Summary of annual mean PM2.5 measurements from the World Health Organization 
(WHO) Ambient Air Quality Database (WHO, 2018). The table shows the number of stations with 
available data, the year(s) the measurements were conducted and the number of reported PM2.5 
concentrations that were converted from PM10 measurements. The WRF-Chem normalised mean 
bias factor (NMBF; Yu et al., 2006) and Pearson’s correlation coefficient (r) against observations 
are given for each country with available WHO measurements. 
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Country/ 
region 

Reduction in 
PM2.5 MORT 

PM2.5 MORT 
(yr-1) 

PM2.5 

DALYs (yr-1) 
Reduction in 
O3 MORT 

O3 MORT 
(yr-1) 

Cambodia 10% 
1,100 (1,000-

1,300) 

44,500 
(36,700-
53,600) 15% 

150 (130-
160) 

Laos 22% 
1,200 (1,000-

1,400) 

47,600 
(37,000-
57,900) 17% 80 (70-90) 

Myanmar 17% 
8,000 (7,100-

9,000) 

293,800 
(243,800-
349,200) 21% 

1,090 (960-
1,210) 

Thailand 12% 
6,500 (6,000-

7,000) 

264,200 
(221,300-
311,100) 8% 

620 (570-
670) 

Vietnam 3% 
3,600 (3,300-

4,100) 

131,900 
(108,800-
159,100) 5% 

410 (360-
450) 

Total 
Mainland 
SE Asia 9% 

20,500 
(18,400-
22,700) 

782,000 
(647,700- 
931,000 ) 10% 

 

2,350 
(2,090-
2,570) 

SE China 3% 

24,000 
(23,400-
24,800) 

798,100 
(703,500-
906,800)  2% 

2,170 
(1,950-
2,350) 

Table S2. Averted public health effects due to changes in long-term exposure to ambient PM2.5 and 
ozone (O3) from eliminating fire emissions. Shown are the percentage reductions in annual disease 
burden, and the numbers of averted annual premature mortalities (MORT) and disability-adjusted 
life years (DALYs) per country for the lower fire emissions scenario (FINN). Values in parentheses 
represent the 95% uncertainty intervals (95UI). PM2.5 mortality values are rounded to the nearest 
100 and O3 mortality values are rounded to the nearest 10. “SE China” is defined as south of 30°N 
and east of 98°W, and includes Hong Kong SAR, Macau SAR and Taiwan. “Mainland SE Asia” 
includes Cambodia, Laos, Myanmar, Thailand, and Vietnam. 
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Supporting Figures 

 

 

Figure S1. Locations of the air quality monitoring stations used to evaluate the models (Sects. 3.2 
and 3.3). (a) Thailand PCD PM10 monitoring stations. Stations defined as influenced by fire 
emissions (where FINN fire-derived PM10 contribute ≥ 20% to the annual mean PM10) by both 
the GLOMAP and WRF-Chem models are coloured orange; Stations defined as fire-influenced by 
the WRF-Chem model only are coloured red; stations defined as fire-influenced by the GLOMAP 
model only are coloured light blue; the remaining stations are coloured dark blue. (b) Ozone 
monitoring stations from Rohde and Muller (2015) coloured by region: Thailand (dark blue); 
Mainland China (red); Hong Kong (orange); and Taiwan (light blue). 
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Figure S2. Taylor diagram comparing GLOMAP-simulated and measured multi-annual average 
seasonal cycles of fire-derived PM10 concentrations at 12 air quality monitoring stations in northern 
Thailand (Fig. S1). The measurements are represented by a point on the x-axis at unit distance from 
the y-axis. Results are shown for three model simulations: without fire emissions 
(GLOMAP_nofire); with GFED4 emissions (GLOMAP_GFED); with GFASv1.2 emissions 
(GLOMAP_GFAS); and with FINNv1.5 emissions (GLOMAP_FINN). The model standard 
deviation and centred root mean square error (RMSE) are normalised by dividing by the 
corresponding measured standard deviation. The normalised standard deviation and RMSE values 
are marked by the solid and dashed lines, respectively. 

 

 

 

 

Figure S3. WRF-Chem-simulated and measured monthly mean total PM10 concentrations during 
2014 averaged over 12 air quality monitoring stations in fire-influenced regions of Thailand (Fig. 
S1). Simulated concentrations are shown for the model without fire emissions (WRFChem_nofire), 
and for the model with FINN fire emissions (WRFChem_FINN) and with FINN emissions scaled 
upwards by a factor 1.5 (WRFChem_FINNx1.5).        
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Figure S4. Taylor diagram comparing WRF-Chem-simulated and measured monthly mean fire-
derived PM10 concentrations during 2014 at 12 air quality monitoring stations in fire-influenced 
regions of Thailand (Fig. S1). The measurements are represented by a point on the x-axis at unit 
distance from the y-axis. Results are shown for three model simulations: without fire emissions 
(WRFChem_nofire); with FINN fire emissions (WRFChem_FINN); and with FINN emissions 
scaled upwards by a factor 1.5 (WRFChem_FINNx1.5). The model standard deviation and centred 
root mean square error (RMSE) are normalised by dividing by the corresponding measured 
standard deviation. The normalised standard deviation and RMSE values are marked by the solid 
and dashed lines, respectively. 
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Figure S5. WRF-Chem-simulated and measured annual mean surface PM2.5 concentrations across 
Southeast Asia. (a) Map of the simulated surface distribution of annual mean PM2.5 for 2014 
(underlying colours); overlying circles show measured annual mean PM2.5 concentrations for 
available years (2009-2016). Regions in grey are outside the model domain. (b) Simulated versus 
measured annual mean PM2.5 concentrations. Circles show measured annual mean PM2.5 
concentrations for the year 2014; diamonds show measured concentrations for years other than 
2014. All simulated annual mean PM2.5 concentrations are for the year 2014. The normalised mean 
bias factor (NMBF) and Pearson’s correlation coefficient (r) between simulated and measured 
values are displayed in the top left corner. 

(a) (b) 
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Figure S6. Evaluation of WRF-Chem-simulated ozone (O3) over Thailand and South-eastern (SE) 
China. Left: Time-series of simulated and measured daily mean surface O3 mixing ratios during 
2014; Right: simulated versus measured daily mean O3. Regional/province averages are shown for: 
(a) Tibet (7 air quality monitoring stations); (b) Yunnan (15 stations); (c) Guangxi (24 stations); 
(d) Hainan (20 stations); (e) Guangdong (113 stations); (f) Fujian (13 stations); (g) Zhejiang (60 
stations); (h) Taiwan/Republic of China (ROC) (72 stations); and (i) Hong Kong Special 
Administrative Region (SAR) (12 stations). O3 measurements are available from April to July 2014. 
The model bias (NMBF) and correlation (r2) between modelled and measured values are given at 
the top of the righthand figures. Simulated values are shown for three model simulations: without 
fire emissions (WRFChem_nofire); with FINN fire emissions (WRFChem_FINN); and with FINN 
emissions scaled upwards by a factor 1.5 (WRFChem_FINNx1.5). 
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Figure S7. Spatial distribution of WRF-Chem-simulated annual mean surface (a) PM2.5 and (c) 
ozone concentrations across Southeast Asia for 2014. Simulated concentrations are shown for the 
model simulation with FINN emissions scaled upwards by a factor 1.5 (WRFChem_FINNx1.5) in 
(a) and (c), and the model simulation without fire emissions (WRFChem_nofire) in (b) and (d). 
Regions in grey are outside the model domain. 
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Figure S8. Spatial distribution of subnational infant mortality rate (IMR) estimates across 
Southeast Asia for the year of 2015 (CIESIN, 2018a). The gridded IMR estimates are at a spatial 
resolution of 30 arc-seconds (~1 km). The IMR for a region or country is defined as the number of 
children who die before their first birthday for every 1,000 live births. 

 

 

 

 



 
 

17 
 

   
Figure S9. Gridded subnational Infant Mortality Rate (IMR; CIESIN, 2018a) values versus 
WRF-Chem simulated annual mean (a) fire-derived PM2.5, (b) non-fire-derived PM2.5, and (c) 
total PM2.5 concentrations across the Southeast Asian domain. The blue data points show mean 
values for binned IMR data (bin size = 10 deaths per 1,000 live births); error bars show the 
standard deviation. The grey data points show all 0.25°x0.25° grid cell values across the domain.  
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