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Abstract

We use machine learning methods to predict whether an active region (AR) which produces flares will lead to a solar energetic

particle (SEP) event using Space-Weather Michelson Doppler Imager (MDI) Active Region Patches (SMARPs). This new data

product is derived from maps of the solar surface magnetic field taken by the Michelson Doppler Imager (MDI) aboard the

Solar and Heliospheric Observatory (SOHO). We survey the SMARP active regions associated with flares that appear on the

solar disk between June 5, 1996 and August 14, 2010, label those that produced SEPs as positive and the rest as negative.

The AR SMARP features that correspond to each flare are used to train two different types of machine learning methods, the

support vector machines (SVMs) and the regression models. The results show that the SMARP data can predict whether a

flare will lead to an SEP with accuracy (ACC) {less than or equal to}0.72{plus minus}0.12 while allowing for a competitive

leading time of 55.3{plus minus}28.6 minutes for forecasting the SEP events.
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Key Points:9

• SMARP data can correctly predict whether a solar flare will lead to a solar en-10

ergetic particle (SEP) event 72% of the times.11

• Flare peak intensity is the strongest SEP predictor and can be coupled with SMARP12

data to achieve accuracy ≤ 0.92± 0.07.13

• The SMARP dataset provides a leading time of 55.3±28.6 minutes for forecast-14

ing the SEP events.15

Corresponding author: Spiridon Kasapis, skasapis@umich.edu

–1–



manuscript submitted to Space Weather

Abstract16

We use machine learning methods to predict whether an active region (AR) which17

produces flares will lead to a solar energetic particle (SEP) event using Space-Weather18

Michelson Doppler Imager (MDI) Active Region Patches (SMARPs). This new data prod-19

uct is derived from maps of the solar surface magnetic field taken by the Michelson Doppler20

Imager (MDI) aboard the Solar and Heliospheric Observatory (SOHO). We survey the21

SMARP active regions associated with flares that appear on the solar disk between June22

5, 1996 and August 14, 2010, label those that produced SEPs as positive and the rest23

as negative. The AR SMARP features that correspond to each flare are used to train24

two different types of machine learning methods, the support vector machines (SVMs)25

and the regression models. The results show that the SMARP data can predict whether26

a flare will lead to an SEP with accuracy (ACC) ≤ 0.72±0.12 while allowing for a com-27

petitive leading time of 55.3± 28.6 minutes for forecasting the SEP events.28

1 Introduction29

Large solar eruptions can potentially harm modern civilization in several different30

ways. Events such as large solar flares that lead to solar particle emissions, can adversely31

affect the near-earth environment and damage power grids, jam radio communications,32

incapacitate satellites, expose airline passengers to dangerous levels of radiation and even33

endanger life in outer space. Therefore, predicting and monitoring such events is an im-34

portant task for the community.35

Solar Energetic Particles are rare events that involve protons, electrons and heavy36

ions accelerated to high energies (up to tens of GeV while the fastest ones can acceler-37

ate to speeds of up to 80% of the speed of light) by two solar processes (Reames, 2013),38

the energization at a solar flare site or the shock waves associated with Coronal Mass39

Ejections (CMEs). Solar charged particles are accelerated in flares or CME shock waves40

(Wild et al., 1963) and travel preferentially along the interplanetary magnetic field to41

their detection point in space (McCracken & Ness, 1966).42

The study of solar energetic particle (SEP) events is a relatively recent science as43

the identification of the first solar proton event took place on 28 February, 1942 (For-44

bush, 1946). Observations of solar proton events (alternative name for SEP) were made45

using ground-based instruments that detected ionization, neutrons, or radio disturbances46

caused by them. The largest solar proton event recorded using these modern techniques47

(particles exceeded 15 GeV at the top of the atmosphere) was on the 23rd of February,48

1956. In the mid-1960s spacecraft was deployed that begun directly measuring solar pro-49

ton events. This was also the time when the first flare was associated with an SEP event50

(Shea & Smart, 1995).51

During the so-called Halloween storms in late October 2003, SEP events caused a52

number of power grid failures, 47 satellites reported malfunctions, more than 10 satel-53

lites were out of action for days, the Mars Odyssey spacecraft went into deep safe mode54

(Lopez et al., 2004), a Japanese satellite costing 640m USD was completely lost, the US55

FAA issued their first-ever high radiation dosage alert for high-altitude aircraft, and as-56

tronauts in the ISS had to seek safety into their heavily shielded service module (Webb57

& Allen, 2004; Horne et al., 2013).58

One of the sources of solar activity phenomena that cause SEPs are the magnet-59

ically strong regions on the solar sphere that we refer to as active regions (van Driel-Gesztelyi60

& Green, 2015). The most flare productive active regions (ARs) are the ones that un-61

dergo large changes in sunspot area and show magnetic flux imbalance (Choudhary et62

al., 2013). Large active regions are also generally strong, flary, evolve rapidly and their63

lifetime spans from days to months (Choudhary et al., 2013). Using instruments carried64
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onboard satellites such as the Michelson Doppler Imager (MDI) on the Solar and He-65

liospheric Observatory (SOHO) or the Helioseismic and Magnetic Imager (HMI) on the66

Solar Dynamics Observatory (SDO), we are able to retrieve components of the magnetic67

field at the solar surface, allowing us to calculate physical characteristics of the ARs (Scher-68

rer et al., 1995; Schou et al., 2012).69

Solar particle prediction studies mainly use the flare and near-Earth space envi-70

ronment data to forecast SEP events given the knowledge that large SEPs are almost71

always accompanied by a flare (Schrijver et al., 2012). Laurenza et al. (2009) used data72

such as flare location, flare size, and evidence of particle acceleration/escape to provide73

short-term warnings for SEP events. Similarly, Núñez (2011) used the soft X-ray, dif-74

ferential and integral proton fluxes data to forecast the SEP events of Solar Cycle 23 recorded75

on the NOAA/SWPC list. Although both flare and CME data are found to be useful76

inputs to predictive models, Garćıa-Rigo et al. (2016) deemed sufficient to only use flare77

properties as they noticed that the CME information offers insignificant increase in SEP78

prediction accuracy.79

Recently, machine learning (ML) methods like neural networks (in the multi-layer80

perceptron implementation), random forests, decision trees, extremely randomized trees81

and other, have been used in predicting SEP events. The preliminary results obtained82

by Bain et al. (2018) show that machine learning classification techniques such as the83

logistic regression (LR), decision trees (DTs) and support vector machine (SVM) algo-84

rithms give an improved forecasting skill over the current SWPC Proton Prediction Model85

(Balch, 2008) based on physical parameters associated with solar flares and coronal mass86

ejections. An even more comprehensive study that assesses the predictability of Solar87

Energetic Particles using ML techniques was recently published by Lavasa et al. (2021).88

Different studies have used a variety of sources to obtain the data necessary for so-89

lar particle event prediction. Richardson et al. (2018) predict the SEP events peak pro-90

ton intensity using the CME data in the Space Weather Database of Notifications, Knowl-91

edge, Information (DONKI). Papaioannou et al. (2016) have presented a catalogue which92

includes proton flux data for 314 SEP events obtained from the Energetic Particle Sen-93

sor (EPS) aboard the Geostationary Operational Environmental Satellites (GOES; Ro-94

driguez et al., 2014) and CME data obtained by the Large Angle and Spectrometric Coro-95

nagraph (LASCO; Brueckner et al., 1995) carried onboard the SOHO spacecraft. Us-96

ing this information, Papaioannou et al. (2018) classify the solar energetic particle (SEP)97

event radiation impact with respect to the characteristics of their parent solar events while98

attempting to infer the possible prediction of SEP events.99

Similarly, Anastasiadis et al. (2017) provide full-disk Helioseismic and Magnetic100

Imager (HMI) magnetograms to their novel integrated prediction system which nowcasts101

SEP events. The HMI instrument aboard the Solar Dynamics Laboratory (SDO) mea-102

sures the solar surface magnetic field from which the Space-Weather HMI Active Region103

Patches (SHARPs) are derived. SHARPs have been used to identify flares or SEPs in104

Chen et al. (2019) and Inceoglu et al. (2018) respectively.105

In this work, a new data product recently published by Bobra et al. (2021) called106

Space-Weather MDI Active Region Patches (SMARPs) will be used to predict SEPs. SMARPs107

are derived from the solar surface magnetic field taken by the Michelson Doppler Imager108

(MDI) on the SOHO spacecraft and provide a continuous and seamless set of keywords109

that describe every active region observed during Solar Cycle 23. The big difference be-110

tween the HMI (Schou et al., 2012) and the MDI (Scherrer et al., 1995) is that the first111

measures the vector magnetic field at the solar surface whereas the later only measures112

the line-of-sight component of the solar magnetic field. The main aim of this study is113

to evaluate the predictive power of MDI Active Region Patches (SMARPs) on SEP events114

as it is desirable for the space weather community to explore new datasets that, when115
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used on machine learning algorithms in the future, will be able to predict when solar pro-116

ton events will occur, how large they will be, and how long they will last.117

2 Database118

In this work, we will evaluate the prediction power of the sun’s magnetogram on119

SEP events. In particular, we focus on whether an active region which is associated with120

a solar flare will lead to an SEP event. To achieve this, five different predictors obtained121

from the SMARP dataset (SMARP Predictors) are used, while two more predictors from122

the NOAA solar X-ray flare dataset (Flare Predictors) are used for comparison. While123

we are specifically interested in the responses of the ML models when only SMARP Pre-124

dictors are used, the ability to forecast SEPs by using flare data will serve as a baseline125

capability.126

2.1 SMARP Predictors127

The magnetogram is measured by the Michelson Doppler Imager (MDI Scherrer128

et al., 1995) onboard SOHO between June 5, 1996 and August 14, 2010. Based on the129

magnetogram, Bobra et al. (2021) derived a new database called Space-Weather MDI130

Active Region Patches (SMARPs), which contains characteristics of the active regions131

on the solar surface. A Tracked Active Region Patch (TARP) Number is assigned to each132

active region as its identification number and a NOAA active region number, if avail-133

able, is assigned to each active region patch. Three physical keywords, total unsigned134

flux (USFLUXL), mean gradient of the vertical field (MEANGBL), and the logarithm135

of the total unsigned flux near polarity inversion line (RVALUE) are calculated using the136

pixels in the active region and stored in the SMARP header file. In addition, the SMARP137

header file also contains four spacial features specifying the location of the correspond-138

ing AR on the solar surface: the minimum and maximum latitude (LATDMIN, LAT-139

DMAX) and the minimum and maximum longitude (LONDTMIN, LONDTMAX). The140

SMARP data is available on the Joint Science Operations Center database (Mumford141

et al., 2015; Barnes et al., 2020).142

Besides the three physical keywords stored in the SMARP header file, we calcu-143

late the angular distance between the AR and the magnetic foot-point of the earth. The144

longitude and latitude location of the active region on the sun is approximated by the145

geometric center of the active region using the latitude and longitude keywords. The mag-146

netic foot-point of the earth on the sun is assumed to be at W45◦. Note that the mag-147

netic foot-point varies from event to event. One way of characterizing this variability is148

to calculate the magnetic foot-point location using the solar wind speed measured at 1149

AU assuming an ideal Parker spiral up to the solar source surface and reconstruct the150

coronal magnetic fields using potential field source surface model. However, interplan-151

etary magnetic field can also be disturbed by corotating interaction regions (CIRs), in-152

terplanetary coronal mass ejections (ICMEs) and other solar transient events, especially153

in solar maximum. In this work, for simplicity, we use W45◦ as an approximation. We154

also calculate the size of the active region by multiplying the difference of longitude by155

the difference of latitude.156

2.2 Construction of SEP Event List157

The SEP event list we use in this work is documented in the NOAA Space Envi-158

ronment Service Center website. For each SEP event, a solar flare and the correspond-159

ing NOAA active region number is assigned if exists. The solar flare list is obtained from160

the NOAA Solar Flare Data website. For each solar flare, the list contains the start, peak161

and end times, the peak intensity of the flare, the active region location and the corre-162

sponding NOAA active region number.163
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We match the solar flare list with the SMARP database using the AR numbers.164

If a flare does not have a registered AR number, matching based on their occurrence time165

and spatial coordinates is performed. We also discard those solar flares whose AR num-166

bers are undefined or missing. Out of the ∼ 25, 000 flares (A, B, C, M, X) recorded dur-167

ing the 14 year span between 1996 and 2010, 6,510 flares are matched with SMARP files.168

During this 14 year span, 93 SEP events are detected by the GOES spacecraft. Miss-169

ing information about the SEP’s associated flare or AR such as the Location and its Im-170

portance (Xray/Opt), leave only 70 SEPs with information adequate to label the 6,510171

flares. We assign a label to each flare: Positive if it led to an SEP and Negative if it did172

not. An additional 5 SEP-flare couples were discarded due to missing physical feature173

data about their corresponding SMARP Active Region. Therefore, the dataset used for174

training has a Positive and a Negative component comprised of 65 and 6,510 flares re-175

spectively, making it vastly unbalanced.176

Figure 1. Histograms for the time difference between the flare peak time and the selected

SMARP data (selected row in the TARP file). The distributions range between 10 and 100 min-

utes. The mean time differences shown in the error bars above the graphs are 55.3 and 53.6

minutes with a standard deviation of 28.6 and 24.8 minutes for the Positive (green) and Negative

(red) datasets respectively.

The SMARP header files contains rows with the physical and spatial features of177

each active region at a 96-minute cadence throughout its entire lifetime, starting two days178

before it emerges or rotates onto the solar disk until two days after it submerges or dis-179

appears from view behind the limb (Bobra et al., 2021). We select the SMARP header180

file row at the time right before the flare peak time. In Figure 1, a histogram of the time181

difference between the selected SMARP file row and the flare peak time is plotted with182

the left panel corresponding to the positive dataset and right panel corresponding to the183

negative dataset. The distributions range between 10 and 100 minutes. The mean time184

difference is 55.3 and 53.6 minutes with a standard deviation of 28.6 and 24.8 minutes185

for the Positive and Negative dataset respectively.186

2.3 Flare Predictors187

We will evaluate the prediction power of SMARP dataset on SEP events by com-188

paring the prediction results with those obtained by only using the flare information, i.e.189

flare intensity and flare location. We use the solar X-ray flare data that NOAA’s Geo-190

stationary Operational Environmental Satellites (GOES) continuously provides since 1975.191

Similarly to the SMARP Predictors, we calculate the flare angular distance from the earth’s192

magnetic foot-point location, W45◦, on the sun.193
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3 Preliminary Data Analysis194

We conduct preliminary analysis/assessment of different predictors, i.e. the SMARP195

and the Flare Predictors, via comparing the histogram of each predictor for the positive196

with that of negative samples. Figure 2 shows the density histograms of each predictor197

from the SMARP dataset on the top and from the GOES flare information on the bot-198

tom. The positive data is shown in green and negative data in red.199

Figure 2. The probability density values are given in the histograms for the SMARP and

Flare Predictors such that the area under each histogram integrates to 1. Both the SEP (green,

positive samples) and flare-only (red, negative samples) data are split into 25 bins

As shown in Figure 2, the flare peak intensity is a powerful discriminator between200

the positive and negative dataset. The flare intensity has been used as a feature to pre-201

dict the occurrence and properties (peak proton intensity, event duration, and etc.) of202

SEP events (Laurenza et al., 2009; Balch, 2008). This predictive power difference between203

the flare peak intensity and the SMARP Predictors on the left of Figure 2 has a big im-204

pact when comparing the SEP prediction capability with and without SMARP data. Mod-205

erate distinction between the events that led to an SEP and those that did not can be206

identified in the predictors acquired using the SMARP active region coordinates (Ac-207
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tive Region Angular Distance and Area). Large active regions increase the likelihood of208

an SEP event occurrence. The total unsigned flux is related to the particle acceleration209

therefore the SEP events are connected to higher flux values. The flux and intensity dis-210

tributions show similar trends but with the former having less predictive power. The Ver-211

tical Field Gradient distribution of the Positive dataset aligns well with that of the Neg-212

ative dataset, making it the least powerful predictor along with the R Value which shows213

the same trend.214

4 Machine Learning Methods215

To investigate whether the SOHO (SMARP AR data) or the GOES (flare erup-216

tion information) dataset can predict better the response variable of the two classes de-217

fined above, we use two popular groups of machine learning algorithms provided by the218

scikit-learn software package v0.24.2 for Python: different variations of the Support Vec-219

tor Machine (SVM; Cortes & Vapnik, 1995) and two Regression Models.220

4.1 Support Vector Machine221

SVMs were initially designed and have been used to solve binary classification prob-222

lems (Shao et al., 2014). In the most general case, the SVM is fitted to the data using223

a set of vector-target pairs (xi, yi) where i = 1, 2, .., n. The target for positive and neg-224

ative observations respectively is yi ∈ {1, 0} and the corresponding physical character-225

istics feature vector is xi = (fi1, fi2, .., fip). For all tests performed, our training data226

length is n = 116 and the maximum feature vector length is p = 6, where all calcu-227

lated predictors are used. Each different SVM method maps the input feature vector xi228

to a higher dimension space using an unknown function φ dependent on the user-defined229

kernel K. Given a regularization parameter C > 0 it solves an optimization problem230

to obtain the SVM trained weight vector w (Hsu & Lin, 2002; Inceoglu et al., 2018). Dur-231

ing testing, prediction is done by multiplying the trained vector w to the projected in-232

put feature vector φ(xi) with an addition of a bias term. A more detailed study on how233

to solve the SVM optimization equations is out of the scope of this research and can be234

found elsewhere (Cortes & Vapnik, 1995; Vapnik, 1998).235

The kernel function K is defined as the inner product of data pairs that correspond236

to different observations i and j, K(xi, xj) = φ(xi)
Tφ(xj). In this study we train four237

different variations of the SVM (Amari & Wu, 1999). One uses the Linear kernel K =238

〈xi, xj〉, two use Polynomial kernels K = γ〈xi, xj〉d where d ∈ {2, 3} (second and third239

degree) and the last one uses the Gaussian Radial Basis Function (RBF) kernel K =240

exp(−γ‖xi = xj‖2) which has been used in similar studies (Inceoglu et al., 2018). The241

weighting factor γ is user-defined and controls the influence a single training example242

has on the classification task. The different kernels help the prediction model deal with243

complex datasets such as the physical features of solar active regions by transforming244

the input into any desired form.245

4.2 Linear Models246

The observed physical properties of a SMARP AR can be also processed for the247

purpose of prediction by linear models: regression methods in which the target value is248

expected to be a linear combination of the input features. Assuming a model function249

f(x) = wTx+b where w is a set of coefficients acquired during fitting, every feature’s250

(xi) predicted target yi is 1 if f(xi) ≥ 0 and 0 if otherwise. In this case study linear251

models such as Ridge and Logistic regression are being used.252

The ridge regression is one of the simplest machine learning algorithms and works253

well for small datasets while being computationally inexpensive. To fit the coefficients254
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w to the training data, the ridge regression minimizes an ordinary Least Squares loss func-255

tion with an additional term that penalizes the size of the coefficients, as given in (1).256

JRidge = ‖w>x− y‖22 + α‖w‖22 (1)

Between different training runs we vary the complexity parameter α in order to con-257

trol the amount of shrinkage and find the value that produces the most robust predic-258

tions. We do not adopt a cross validation procedure for selecting the tuning parameter259

α due to considerations of sample sparsity and because the randomized picking process260

of the training data leads to non-significant selection bias. Although it is a model often261

adopted when the response y takes real numbers, we chose ridge regression because it262

reduces overfitting, guarantees that we can find a solution and offers a different approach263

for binary classification compared to other competing models.264

The dichotomous nature of Logistic Regression makes it a great candidate for the265

binary SEP prediction task. We use the default Logistic Regression module provided by266

the Scikit-Learn library in Python (Pedregosa et al., 2011) which includes the l2 regu-267

larization as a penalty and the Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-268

BFGS) optimization algorithm (Saputro & Widyaningsih, 2017) as a solver. The L-BFGS269

solver fits our application as it is robust and recommended for small dataset prediction270

tasks. To calculate the optimal w coefficients, Logistic Regression minimizes the cost func-271

tion J for w and c.272

JLR =
1

2
w>w + C

n∑
i=1

log(e−yi(x
>
i w+c) + 1) (2)

The constant C controls the regularization strength of the model. Although nor-273

malization is applied to the flare data before the fitting process, the C constant is also274

varied throughout different training runs in order to find the value that produces the most275

numerically stable prediction.276

4.3 Training and Tuning the ML Models277

The scarcity of the SEP events along with the mission duration of the MDI/SOHO278

limits the size of the Positive dataset and leads to difficulties in separating the data into279

training and testing subsets in a reasonable way. To overcome this problem, every model280

is trained on 90% of the Positive events (58) and an equal number of Negative events.281

The training of each algorithm is followed by a similarly balanced testing on the remain-282

ing 10% Positive (7) and an equal number of Negative events. This balanced training283

and testing procedure is repeated k number of times to provide uncertainty assessment284

of the random selection of events. In our work, k is chosen to be equal to 100. Each time,285

a different batch of Negative events is randomly selected from the pool of 7,626 flare erup-286

tion events that did not lead to an SEP. Similarly, in every run a different split between287

training and testing occurs for the Positive dataset.288

5 Results289

For each one of the SVMs and Linear Models, we follow the same training proce-290

dure, aiming to predict whether an AR that produces a flare will lead to an SEP event.291

The goal is to illustrate how useful the SMARP dataset is for this particular task, we292

therefore train the ML models using two separate sets of features, one that uses SMARP293

information and one that uses flare information (see Section 2 for the detailed descrip-294

tions of the two sets of features). The number of features vary from 2 to 4 and the ma-295

chine learning algorithms are tested on a number of different predictor combinations.296
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The comparison between the different types of predictors and algorithms is done297

using three metrics that characterize and quantify the predictive power of classifiers: the298

Accuracy (ACC), the True Skill Statistics (TSS; Hanssen & Kuipers, 1965) and the Hei-299

dke Skill Score (HSS; Heidke, 1926). For every set of k different runs a cumulative con-300

fusion matrix (Figure 4) is obtained based on the results from the raw SVM and Lin-301

ear Model outputs. Each row and column in the confusion matrix represents the num-302

ber of instances in an actual class and in a predicted class respectively. More informa-303

tion about the metrics, their equations and statistical meaning can be found in the works304

of Inceoglu et al. (2018) and Florios et al. (2018).305

The ACC can be artificially high in the rare event where a model always predicts306

the majority class. In flare and SEP prediction such naive cases are common due to the307

data imbalance, but in this paper all models are trained on a one-to-one positive-negative308

ratio, so these rare cases are not a concern. Therefore, this study’s basic prediction qual-309

ity metric is the ACC, with the TSS and HSS being presented too as auxiliary metrics.310

5.1 SEP Prediction with SMARP Predictors311

The cumulative confusion matrix in Figure 3 shows that out of 1400 validation in-312

stances, Ridge Regression correctly classifies 552 as being Positive and 449 as being Neg-313

ative when using the SMARP Flux and the AR Distance. This is the cumulative infor-314

mation obtained from 100 different runs, each of which has 14 validation points. The mean315

accuracy suggests that 72% of the times (±12% for a single run) the Third Degree Poly-316

nomial SVM algorithm can predict whether a flare will lead or not to an SEP using the317

its AR SMARP features. The comparison between the probability of detection and the318

probability of false detection lead to an average TSS level of 0.47 ± 0.24 for the same319

100 runs. Similarly, the HSS measures a fractional forecast improvement over a random320

forecast of 0.44 ± 0.25.321

The results show that the Linear Models can predict whether a flare will be accom-322

panied by SEPs with ACC values ≥ 0.70 ± 0.12 for a number of SMARP Predictors323

combinations (Table 2 in Appendix). The maximum corresponding TSS and HSS val-324

ues for these combinations are above the 0.40 levels, while they are generally below the325

0.35 levels for the rest of cases. Similar to row 3 of Table 1, the Polynomial models that326

use the AR Distance and Area in Table 2 fail to produce a meaningful decision bound-327

ary yielding ACC values ≤ 0.52 ± 0.04, TSS values ≤ 0.15 ± 0.28 and HSS values ≤328

0.05±0.09. Note here that a zero TSS or HSS value means that the method has no skill329

over the random forecast, therefore the these specific Polynomial examples do not show330

any predictive power at all.331

Although the quality of the results cannot be judged based on the variance, the scores332

indicate that the better a model’s predictive power is, the lower the variance between333

the different runs is. Thus, the Intensity based models have an ACC standard deviation334

of ≤ 0.09 while in SMARP examples, where prediction quality is inferior, the ACC stan-335

dard deviation is ≥ 0.10. This pattern is even more evident when considering the TSS336

(or the HSS) for which the standard deviation can be as high as 0.28 at the SMARP Pre-337

dictors exclusive runs. Potential reasons about this behavior of variance is the small num-338

ber of Positive data which allows for low quality runs to not converge at all.339

Both SVM and Linear models are affected by user-defined constants such as the340

α and C in Equations 1 and 2. An embedded grid search is employed for each experi-341

ment, where we vary each hyper-parameter on a range between 0.05 to 20. The param-342

eter that produced the highest-quality and most consistent results was used for the ex-343

amples presented in this study.344
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Figure 3. The distribution of 100 different ACC, TSS and HSS values are shown in the box

plots (left). The values were obtained using the SMARP Flux & AR Distance on a Third Degree

Polynomial SVM and constitute the best SEP prediction the SMARP data can achieve. Adding

all the individual TP, TN, FP and FN values respectively we produce a cumulative confusion

matrix for the 100 different runs (right).

5.2 SEP Prediction with Flare Predictors345

Similar to the results presented before, the prediction quality metrics for the flare-346

only cases are calculated based on the confusion matrices obtained from each different347

run. The cumulative confusion matrix in Figure 4 shows that out of 1400 validation in-348

stances, Ridge Regression correctly classifies 626 as being Positive and 651 as being Neg-349

ative when trained on flare intensity and distance. This is the cumulative information350

obtained from k = 100 different runs, each of which was tested on 14 data points. The351

mean accuracy suggests that 91% of the times (±8% for a single run) the Ridge algo-352

rithm can predict whether a flare will lead or not to an SEP using its physical charac-353

teristics. The comparison between the probability of detection and the probability of false354

detection lead to an average TSS level of 0.84 ± 0.12 for the 100 runs. Similarly, the HSS355

measures a fractional forecast improvement over a random forecast of 0.82 ± 0.14.356

Using the Flare Predictors (first row of Table 1) all the different SVM and Linear357

models produce similar results. The TSS and HSS show higher standard deviation val-358

ues (varying from 0.13 to 0.17) compared to the ACC. The predictive power of flare In-359

tensity is demonstrated when comparing the first two box plots in Figure 5 with the rest,360

where different predictors other than Intensity are being used instead.361

The ACC, TSS and HSS values range from 0.88±0.09 to 0.92±0.07 (values marked362

red and green in Table 1 of the Appendix), 0.78±0.17 to 0.86±0.13 and 0.76±0.18 to363

0.84±0.15 respectively for the runs that include Intensity accompanied with a SMARP364

Predictor. These results show that all models, when using the Flare Intensity, can suc-365

cessfully predict ≤ 92% of the times if a flare will be accompanied with an SEP. When366

using the SMARP Predictors along with the Flare Distance instead, the ACC values range367

from 0.60± 0.09 to a maximum of 0.71± 0.10, the TSS from 0.36± 0.3 to 0.846± 0.2368

and the HSS from 0.19±0.18 to 0.42±0.2. This proves that when Intensity is not in-369

volved in the prediction process, all models yield inferior results, losing at the best case370

0.17 ± 0.09 from the accuracy metric. We only test our models on a mix of SMARP and371

Flare Predictors to verify the prediction power of the Intensity, as in real-life applica-372

tions the two groups of predictors cannot be used together due to the leading time dif-373

ference.374
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Figure 4. The distribution of k=100 different ACC, TSS and HSS values are shown in the

box plots (left). The values were obtained using the Flare Intensity & Flare Distance on a Ridge

Regression model and constitute the best SEP prediction the flare data can achieve. The box

range shows the interquartile range, the red line inside it the median value, the whiskers show

the results range and the two red dots show two outlier values. The range of the y-axis is kept

the same with Figure 3 for comparison. Adding all the individual TP, TN, FP and FN values

respectively we produce a cumulative confusion matrix for the 100 different runs (right).

Although each SVM or Linear model performs differently when trained on the same375

predictors, the variance between the models is of high significance only for some cases376

where the second and third degree Polynomial SVMs encounter convergence difficulties.377

For the extreme case of Flare Distance & ARAREA in Table 1 the accuracy difference378

between the best and the worst performing models is 0.1±0.12. For the rest of the pre-379

dictors combinations the difference is ≤ 0.03± 0.13.380

The maximum accuracy achieved on each one of the four main categories of pre-381

dictor combinations is presented in Figure 5. The resulting ACC, TSS and HSS values382

show that regardless the machine learning model, the Flare Predictors generally perform383

better than the SMARP data because of the better predictive power of the flare inten-384

sity. Although the SMARP data cannot provide SEP forecast of quality similar to the385

flare intensity, it provides us with a better leading time compared to the Flare Predic-386

tors.387

5.3 Comparison with Results in Literature388

Inceoglu et al. (2018) used data provided by the SHARPs, GOES, and DONKI databases389

to train SVMs that forecast both CME and SEP events with maximum TSS and HSS390

of 0.92±0.09 and 0.92±0.08. Anastasiadis et al. (2017) use the SDO/Helioseismic and391

Magnetic Imager (HMI) full-disk magnetograms and the flare information from the SOHO/MDI392

database on the prediction tool they call Forecasting Solar Particle Events and Flares393

(FORSPEF). They achieve Heidke Skill Scores (HSS) of 0.37±0.011 and 0.67±0.007394

when using solar flare data and CME data respectively. While we only use GOES data395

to forecast exclusively SEP events (not CMEs), the best TSS and HSS our SVM imple-396

mentations achieve are 0.84±0.12 and 0.82±0.14, results that are comparable to both397

aforementioned studies.398

On the other hand, Papaioannou et al. (2018) perform a principal component anal-399

ysis (PCA) on a set of six solar variables obtained from GOES and LASCO in order to400

calculate a decision boundary for their logistic regression. They classify events as SEP401

versus non-SEP and achieve a maximum POD (TSS + POFD) of 77.78%. Based on flare402

prediction, the warning tool Garćıa-Rigo et al. (2016) present provides long-term warn-403
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Figure 5. A cumulative box plot for the four main categories of predictor combinations out-

lined in the Appendix Tables. More specifically, the first plot (pink) corresponds to row 1 in

Table 1, the second (blue) to rows 2-5, the third (green) to 6-10 and the fourth (yellow) corre-

sponds to Table 2. The plot makes evident the superiority of the flare intensity over the SMARP

data.

ings of possible SEP event occurrence with POD scores of up to 58.3%. Núñez (2011)404

presents a dual-model system called UMASEP that has a POD of all (well- and poorly405

connected with flares) SEP events of 80.72%. The SMARP data in Figure 3 achieves a406

POD 78.8%, similar to the works of Papaioannou and Nunez. If intensity gets involved407

in our logistic regression model, we can achieve POD scores of up to 90%. Lastly, it is408

important to note that all the results we report are using a probability threshold pt =409

0.5. It is possible to slightly increase the prediction statistics of our models as Anastasiadis410

et al. (2017) show in their work, but this is out of the scope of our study.411

6 Conclusions412

To predict SEP events we use the newly published Space-Weather MDI Active Re-413

gion Patches (SMARPs) dataset which includes observations of the solar magnetogram414

that were made during the active Solar Cycle 23. Point data selected from the SMARP415

time series is used on a variety of machine learning algorithms such as a different Sup-416

port Vector Machines and Linear Regression models. The purpose of this study is to eval-417

uate the power of this new data product for SEP forecast. Our results (Table 1 & 2) show418

that SMARP can accomplish this task as it can identify correctly 72% of the times whether419

an Active Region that produces a flare will lead to an SEP or not. Although the pre-420

diction results for the SMARP dataset are worse than the ones produced using the flare421

peak intensity and location, we demonstrate that not only SMARP data produces bet-422

ter results compared to earlier SEP prediction works, but it also provides a better lead-423

ing time than other datasets.424

In conclusion, although the SMARP dataset is constructed from the MDI data set,425

which includes only the line-of-sight component of the surface magnetic field at a rel-426
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atively long 96-minute cadence, it can produce competitive prediction results for SEPs427

while providing a longer leading time than using Flare Predictors.428
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Appendix438

Table 1.

Maximum ACC, TSS and HSS Values for the SVM and Linear Models using Different Predictors

SVMs Linear Models

Flare Predictors Linear RBF Polynomial 2 Polynomial 3 Logistic Reg. Ridge

0.90 ± 0.08 0.91 ± 0.07 0.90 ± 0.08 0.90 ± 0.08 0.90 ± 0.08 0.91 ± 0.07 ACC
1. Intensity & Flare Distance 0.82 ± 0.16 0.84 ± 0.13 0.82 ± 0.15 0.80 ± 0.16 0.83 ± 0.16 0.84 ± 0.12 TSS

0.80 ± 0.17 0.82 ± 0.14 0.80 ± 0.16 0.78 ± 0.17 0.80 ± 0.17 0.82 ± 0.14 HSS

SMARP & Flare Predictors

0.71 ± 0.10 0.68 ± 0.13 0.70 ± 0.11 0.70 ± 0.11 0.71 ± 0.11 0.71 ± 0.12 ACC
2. Flare Distance & USFLUXL 0.46 ± 0.20 0.39 ± 0.28 0.44 ± 0.24 0.42 ± 0.24 0.45 ± 0.22 0.46 ± 0.25 TSS

0.42 ± 0.20 0.36 ± 0.26 0.40 ± 0.23 0.39 ± 0.23 0.42 ± 0.21 0.41 ± 0.23 HSS

0.67 ± 0.14 0.69 ± 0.13 0.61 ± 0.14 0.61 ± 0.12 0.69 ± 0.12 0.70 ± 0.10 ACC
3. Flare Distance & RVALUE 0.36 ± 0.29 0.41 ± 0.27 0.25 ± 0.32 0.30 ± 0.32 0.41 ± 0.25 0.43 ± 0.22 TSS

0.34 ± 0.27 0.38 ± 0.26 0.22 ± 0.27 0.23 ± 0.23 0.38 ± 0.24 0.40 ± 0.21 HSS

0.66 ± 0.13 0.68 ± 0.11 0.60 ± 0.09 0.62 ± 0.10 0.70 ± 0.12 0.69 ± 0.11 ACC
4. Flare Distance & ARAREA 0.35 ± 0.27 0.40 ± 0.25 0.36 ± 0.30 0.39 ± 0.29 0.43 ± 0.24 0.42 ± 0.24 TSS

0.32 ± 0.26 0.36 ± 0.22 0.19 ± 0.18 0.24 ± 0.21 0.41 ± 0.23 0.39 ± 0.22 HSS

0.69 ± 0.13 0.69 ± 0.13 0.67 ± 0.12 0.66 ± 0.11 0.69 ± 0.13 0.69 ± 0.11 ACC
5. Flare Distance, USFLUXL 0.41 ± 0.27 0.42 ± 0.27 0.35 ± 0.30 0.36 ± 0.25 0.35 ± 0.26 0.41 ± 0.24 TSS

& ARAREA 0.38 ± 0.26 0.37 ± 0.26 0.32 ± 0.28 0.32 ± 0.23 0.39 ± 0.25 0.38 ± 0.22 HSS

0.88 ± 0.09 0.89 ± 0.07 0.90 ± 0.08 0.90 ± 0.08 0.88 ± 0.09 0.89 ± 0.09 ACC
6. Intensity & USFLUXL 0.80 ± 0.16 0.80 ± 0.13 0.82 ± 0.14 0.80 ± 0.17 0.78 ± 0.17 0.79 ± 0.17 TSS

0.77 ± 0.18 0.77 ± 0.15 0.80 ± 0.15 0.79 ± 0.18 0.76 ± 0.18 0.77 ± 0.17 HSS

0.89 ± 0.08 0.91 ± 0.07 0.91 ± 0.08 0.89 ± 0.09 0.91 ± 0.07 0.90 ± 0.08 ACC
7. Intensity & RVALUE 0.79 ± 0.16 0.83 ± 0.14 0.83 ± 0.15 0.80 ± 0.16 0.84 ± 0.13 0.83 ± 0.15 TSS

0.77 ± 0.17 0.82 ± 0.15 0.81 ± 0.16 0.78 ± 0.17 0.81 ± 0.14 0.80 ± 0.16 HSS

0.91 ± 0.07 0.91 ± 0.07 0.91 ± 0.07 0.90 ± 0.07 0.92 ± 0.07 0.91 ± 0.07 ACC
8. Intensity & ARDIST 0.84 ± 0.13 0.84 ± 0.13 0.83 ± 0.14 0.83 ± 0.13 0.86 ± 0.13 0.84 ± 0.14 TSS

0.82 ± 0.14 0.81 ± 0.14 0.81 ± 0.15 0.81 ± 0.14 0.84 ± 0.15 0.82 ± 0.15 HSS

0.91 ± 0.07 0.91 ± 0.08 0.90 ± 0.08 0.91 ± 0.07 0.92 ± 0.08 0.90 ± 0.08 ACC
9. Intensity, USFLUXL 0.83 ± 0.14 0.84 ± 0.15 0.82 ± 0.15 0.83 ± 0.13 0.85 ± 0.15 0.81 ± 0.16 TSS

& ARDIST 0.82 ± 0.15 0.82 ± 0.16 0.80 ± 0.16 0.82 ± 0.14 0.83 ± 0.16 0.80 ± 0.17 HSS

0.90 ± 0.08 0.91 ± 0.07 0.91 ± 0.08 0.90 - 0.08 0.91 ± 0.08 0.90 ± 0.08 ACC
10. Intensity & MEANGBL 0.82 ± 0.15 0.85 ± 0.13 0.84 ± 0.15 0.82 ± 0.15 0.84 ± 0.14 0.82 ± 0.16 TSS

0.80 ± 0.17 0.83 ± 0.14 0.83 ± 0.15 0.80 ± 0.16 0.82 ± 0.15 0.80 ± 0.16 HSS

Note. The ACC values ≥ 0.91 with standard deviation ≤ 0.07 are marked in bold. In green and red are

marked the higher and lower accuracy values respectively for each one of the three predictor groups.
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Table 2.

Maximum ACC, TSS and HSS Values for the SVM and Linear Models using SMARP Predictors

SVMs Linear Models

SMARP Predictors Linear RBF Polynomial 2 Polynomial 3 Logistic Reg. Ridge Score

0.67 ± 0.12 0.67 ± 0.13 0.70 ± 0.12 0.72 ± 0.12 0.70 ± 0.12 0.71 ± 0.12 ACC
1. USFLUXL & ARDIST 0.39 ± 0.28 0.38 ± 0.28 0.43 ± 0.25 0.47 ± 0.24 0.43 ± 0.23 0.47 ± 0.25 TSS

0.34 ± 0.24 0.34 ± 0.25 0.39 ± 0.23 0.44 ± 0.25 0.40 ± 0.24 0.42 ± 0.24 HSS

0.65 ± 0.11 0.67 ± 0.12 0.65 ± 0.12 0.67 ± 0.12 0.69 ± 0.11 0.65 ± 0.12 ACC
2. USFLUXL & ARAREA 0.35 ± 0.27 0.38 ± 0.28 0.34 ± 0.27 0.36 ± 0.26 0.37 ± 0.23 0.30 ± 0.27 TSS

0.30 ± 0.23 0.35 ± 0.24 0.30 ± 0.24 0.33 ± 0.24 0.34 ± 0.22 0.27 ± 0.23 HSS

0.69 ± 0.11 0.69 ± 0.11 0.52 ± 0.04 0.51 ± 0.03 0.67 ± 0.12 0.70 ± 0.12 ACC
3. ARDIST & ARAREA 0.42 ± 0.25 0.42 ± 0.23 0.15 ± 0.28 0.10 ± 0.22 0.36 ± 0.25 0.42 ± 0.26 TSS

0.37 ± 0.23 0.38 ± 0.22 0.05 ± 0.09 0.03 ± 0.06 0.34 ± 0.24 0.40 ± 0.25 HSS

0.65 ± 0.13 0.68 ± 0.10 0.58 ± 0.11 0.60 ± 0.11 0.67 ± 0.11 0.66 ± 0.12 ACC
4. ARDIST & RVALUE 0.33 ± 0.28 0.38 ± 0.22 0.18 ± 0.29 0.26 ± 0.29 0.36 ± 0.23 0.35 ± 0.25 TSS

0.31 ± 0.26 0.35 ± 0.20 0.15 ± 0.22 0.21 ± 0.23 0.34 ± 0.21 0.33 ± 0.23 HSS

0.67 ± 0.13 0.68 ± 0.11 0.70 ± 0.11 0.67 ± 0.10 0.70 ± 0.13 0.69 ± 0.10 ACC
5. USFLUXL, ARDIST 0.36 ± 0.28 0.38 ± 0.24 0.42 ± 0.23 0.37 ± 0.21 0.42 ± 0.27 0.41 ± 0.22 TSS

& ARAREA 0.34 ± 0.26 0.35 ± 0.22 0.39 ± 0.22 0.34 ± 0.19 0.39 ± 0.26 0.38 ± 0.21 HSS

0.68 ± 0.12 0.68 ± 0.13 0.66 ± 0.13 0.69 ± 0.12 0.67 ± 0.11 0.69 ± 0.13 ACC
6. All SMARP Predictors 0.40 ± 0.24 0.32 ± 0.27 0.35 ± 0.28 0.42 ± 0.25 0.36 ± 0.24 0.40 ± 0.27 TSS

0.37 ± 0.23 0.35 ± 0.25 0.33 ± 0.27 0.39 ± 0.24 0.33 ± 0.23 0.38 ± 0.26 HSS

Note. The ACC values ≥ 0.70 are marked in bolt. In green and red are marked the higher and lower ac-

curacy values respectively.
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