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Abstract

Earthquake focal mechanism data provide information about the stress state at the origin of these earthquakes. The inversion

methods that are commonly used to infer the stress tensor from focal mechanisms have varying complexity but always rely

on a number of assumptions. We present an iterative method built upon a classic linear stress tensor inversion that allows to

relax the assumption on shear stress magnitudes while preserving the computational simplicity of the linear problem. Every

iteration of our method computes the least-squares solution of the problem, which makes the method fast enough to estimate

the inverted parameter errors with non-parametric resampling methods such as bootstrapping. Following previous studies,

this method removes the fault plane ambiguity in focal mechanism data by selecting the nodal plane that best satisfies the

Mohr-Coulomb failure criterion. We first test the performance and the robustness to noise of the proposed method on synthetic

data sets, and then apply it to data from Southern California and from the Geysers geothermal field. We focus the study

on investigating the consequences of relaxing the assumption of constant shear stress magnitudes. Our variable shear method

successfully generalizes its constant shear counterpart: it is able to perform similarly when the constant shear assumption is a

good approximation and provides more accurate results when it is not. We provide the Python package ILSI to implement the

proposed method.
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Abstract

Earthquake focal mechanism data provide information about the stress state at the origin of these

earthquakes. The inversion methods that are commonly used to infer the stress tensor from focal

mechanisms have varying complexity but always rely on a number of assumptions. We present an

iterative method built upon a classic linear stress tensor inversion that allows to relax the assumption

on shear stress magnitudes while preserving the computational simplicity of the linear problem. Every

iteration of our method computes the least-squares solution of the problem, which makes the method

fast enough to estimate the inverted parameter errors with non-parametric resampling methods such

as bootstrapping. Following previous studies, this method removes the fault plane ambiguity in focal

mechanism data by selecting the nodal plane that best satisfies the Mohr-Coulomb failure criterion.

We first test the performance and the robustness to noise of the proposed method on synthetic data

sets, and then apply it to data from Southern California and from the Geysers geothermal field. We

focus the study on investigating the consequences of relaxing the assumption of constant shear stress

magnitudes. Our variable shear method successfully generalizes its constant shear counterpart: it is

able to perform similarly when the constant shear assumption is a good approximation and provides
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more accurate results when it is not. We provide the Python package ILSI to implement the proposed

method.
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1. Introduction

The sense of motion on faults carries information on the stress state surrounding these faults.

Field measurements of fault orientations and slip directions (slickensides) were first used to retrieve

the stress tensor using a number of assumptions [e.g. Carey et al., 1974; Angelier, 1979; Angelier

et al., 1982]. The cornerstone assumption of these methods is that slickensides are oriented along

the direction of maximum shear stress resolved on the faults [the so-called Wallace-Bott assumption,

Wallace, 1951; Bott, 1959]. Stress tensor inversion techniques were extended to the more widely avail-

able earthquake focal mechanism data, which describe faulting from seismic observations instead of

direct field measurements. In general, the inverse problem is non-linear and solving it requires grid-

search or other global optimization methods [Angelier et al., 1982; Gephart and Forsyth, 1984], but
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with additional assumptions the problem can be linearized [e.g. Michael, 1984]. Both non-linear

and linear inversion techniques suffer from the ambiguity in earthquake focal mechanism data that

provide two possible fault planes per datum, without offering the possibility to identify the actual

fault plane [the consequences of choosing the wrong plane are discussed at length in Michael, 1987b].

While some of the non-linear inversion methods choose the fault planes as the set of planes that

minimize their objective function [such as the algorithm implemented in Focal Mechanism Stress

Inversion, FMSI, Gephart, 1990], other criteria, physics-based and independent from the objective

function, are preferred to avoid data over-fitting. Lund and Slunga [1999] introduced the use of the

Mohr-Coulomb failure criterion to select fault planes.

In this work, we present an inversion method built upon the linearized problem due to Michael

[1984], turning it into an iterative inversion while preserving the computational efficiency of the least-

squares solution of a linear problem. We thus relax the assumption made by Michael [1984] that

shear stress magnitude is constant across faults or, equivalently, that all faults are optimally oriented

within the stress field. Following previous studies [Lund and Slunga, 1999; Vavryčuk, 2014], we also

use the Mohr-Coulomb failure criterion to select fault planes. The proposed method is implemented

by our Python package ILSI (Iterative Linear Stress Inversion, see Data and Resources). The scope

of this study is to demonstrate the efficacy of our method to effectively solve the non-linear problem

involving variable shear stress magnitudes, and that it performs similarly or better than its constant

shear counterpart [namely, the method proposed in Vavryčuk, 2014] on realistic data sets and under

challenging noise conditions, while eliminating one assumption about the data.
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2. Methodology

2.1. Previous Work

Given a fault plane with orientation described by its unitary normal n̂, the traction on the plane

is:

T = σn̂, (1)

where σ is the Cauchy stress tensor, and T is the traction. The normal Tn and tangential (shear) Tt

components of the traction are:

Tn = (σn̂ · n̂)n̂ = σnn̂ (2)

Tt = T − Tn = σn̂− (σn̂ · n̂)n̂ = τ t̂.

In Equation (2), σn and τ are the magnitudes of the normal and shear tractions, respectively. The

direction of shear traction is given by the unit vector t̂. The stress tensor is often represented by

its eigendecomposition: the principal stress directions σ̂i (eigenvectors) and the principal stresses σi

(eigenvalues, i = 1, 2, 3). A plane that is perpendicular to σ̂i does not experience any shear, and is

under a purely compressional traction of magnitude σi. By convention, eigenvalues are ordered such

that σ1 is the most compressional stress, σ3 is the least compressional stress and σ2 is the interme-

diate stress. Note that in terms of deviatoric stresses (the stress minus the lithostatic pressure), σ1

is the compression axis and σ3 is the extension axis.

Stress tensor inversion of earthquake focal mechanism data commonly relies on two assumptions:

- the stress tensor is homogeneous in space,
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- slip on faults occur in the direction of maximum resolved shear stress [Wallace-Bott assumption,

Wallace, 1951; Bott, 1959].

An earthquake focal mechanism is a descriptor of the orientation and slip direction of a fault, based

on the radiation pattern of seismic waves. Because of the symmetry of radiation patterns, there

exists two fault planes with different slip directions that describe the same focal mechanism. The

fault normal n̂ and slip direction ŝ of a given fault plane can be interchanged to describe slip on

an auxiliary plane that produces the same radiation pattern. Thus, each focal mechanism datum

provides two possible fault normals n̂ and slip directions ŝ. We describe later a way of solving this

ambiguity, but will assume for now that the fault plane and slip direction are known. Based on the

Wallace-Bott assumption, one seeks the stress tensor that predicts shear directions t̂ that best match

the slip directions ŝ. This inverse problem does not provide any information on the absolute stress

magnitudes, therefore it can only retrieve the reduced stress tensor, i.e. a normalized deviatoric

stress tensor σ∗:

Tr(σ∗) =
3∑

k=1

σ∗
kk = 0;

∑
i,j

(σ∗
ij)

2 = 1. (3)

For simplicity, hereinafter we keep using σ instead of σ∗. One can only obtain four independent

parameters from the inverse problem: the three principal stress directions σ̂i, and the shape ratio R,

R =
σ1 − σ2

σ1 − σ3

. (4)

This scalar quantity is a measure of the relative magnitude of the principal stresses. In terms of

deviatoric stress, if R > 0.5, σ2 is extensional, and conversely if R < 0.5 then σ2 is compressional.

One can think of R as describing the position of σ2 in between σ1 and σ3 on the x-axis of a Mohr

circle (see Figure 1).
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For a population of faults described by their normals n̂i and their slip directions ŝi, writing

Equation (2) for each fault and identifying the shear direction t̂i to the slip direction ŝi yields the

following system of equations for shear tractions:

σn̂i − (σn̂i · n̂i)n̂i = τiŝi. (5)

The inverse problem consists of finding σ such that Equation (5) is satisfied on each fault i. Un-

fortunately, even though the left-hand side of Equation (5) is linear in σ, the right-hand side is not

because of the shear magnitude τi. Although one cannot determine the absolute shear magnitudes,

the relative magnitudes between faults still matter. Several strategies have been proposed to solve

the inverse problem: for example, Angelier et al. [1982] solve the non-linear problem iteratively, and

the broadly used method due to Gephart and Forsyth [1984] adopts a grid-search over the four inde-

pendent parameters to minimize their angular misfit (i.e. their objective function does not depend

on shear magnitudes). These two methods consider errors not only in the slip directions but also in

the orientation of the fault normals. The other widely used method is due to Michael [1984], which

stands out by its simplicity, and which many other methods are built upon [for example, Hardebeck

and Michael, 2006; Mart́ınez-Garzón et al., 2014; Vavryčuk, 2014]. The author made the assumption

that shear stress is relatively constant from fault to fault, thus assigning the shear magnitude on

the right-hand side of Equation (5) a scalar (equal to one). While this assumption can be seen as

a weakness of the method, it has also been argued that this is a physically reasonable assumption

that regularizes the inversion [Michael, 1984]. We discuss the regularizing effect when analyzing our

synthetic tests (Section 3). The linear problem is:
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Gm = d (6)

.

.

n̂i,1 + n̂i,1n̂
2
i,3 − n̂3

i,1 n̂i,2 − 2n̂i,2n̂
2
i,1 n̂i,3 − 2n̂i,3n̂

2
i,1 n̂i,1n̂

2
i,3 − n̂i,1n̂

2
i,2 −2n̂i,1n̂i,2n̂i,3

n̂i,2n̂
2
i,3 − n̂i,2n̂

2
i,1 n̂i,1 − 2n̂i,1n̂

2
i,2 −2n̂i,1n̂i,2n̂i,3 n̂i,2 + n̂i,2n̂

2
i,3 − n̂3

i,2 n̂i,3 − 2n̂i,3n̂
2
i,2

n̂3
i,3 − n̂i,3 − n̂i,3n̂

2
i,1 −2n̂i,1n̂i,2n̂i,3 n̂i,1 − 2n̂i,1n̂

2
i,3 n̂3

i,3 − n̂i,3 − n̂i,3n̂
2
i,2 n̂i,2 − 2n̂i,2n̂

2
i,3

.

.


︸ ︷︷ ︸

G



σ11

σ12

σ13

σ22

σ23


︸ ︷︷ ︸

m

=



.

.

ŝi,1

ŝi,2

ŝi,3

.

.


︸ ︷︷ ︸

d

In Equation (6), d is the stack of all slip vectors and G is the stack of all matrices relating

the stress tensor elements to the direction of shear stress on the faults. Given that we can only

retrieve the deviatoric stress tensor (see Equation (3)), the last diagonal term that does not appear

in Equation (6) is implicitly defined by σ33 = −σ11 − σ22. The linear inverse problem defined by

Equation (6) is usually solved in the least-squares sense, for example with the Tarantola and Valette

formula [Tarantola and Valette, 1982]:

m = mprior +
(
GTC−1

D G+ C−1
M

)−1
GTC−1

D (d−Gmprior) . (7)

In Equation (7), mprior is an approximate solution known a priori, CD and CM are the covariance

matrices modeling the prior knowledge on the data and model parameter distributions, respectively.

If no prior knowledge on the target solution is available, then C−1
M = 0 and mprior = 0. Note that
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this linear formulation only considers errors in slip directions and not in fault orientations.

2.2. This Study

We relax the assumption of constant shear stress magnitudes in Michael [1984] by iteratively

solving for both the stress tensor elements and the shear stress magnitudes. The algorithm is:

1. Initialize the solution:

m(0) =
(
GTC−1

D G+ C−1
M

)−1
GTC−1

D d(0) (8)

2. Compute shear stress magnitudes at iteration t and update the set of linear equations (i.e.

update the estimate of the right-hand side of Equation (5)):

τ
(t)
i = |σ(t)n̂i − (σ(t)n̂i · n̂i)n̂i|; d

(t)
i = τ

(t)
i d

(0)
i (9)

3. Solve the updated linear inverse problem and update the stress tensor elements m(t) using the

previous estimate m(t−1) as prior knowledge:

m(t) = m(t−1) +
(
GTC−1

D G+ C−1
M

)−1
GTC−1

D

(
d(t) −Gm(t−1)

)
. (10)

4. Repeat 2 and 3 until |τ (t) − τ (t−1)| is lower than a user-provided threshold.

The superscript in parenthesis is the iteration index, the subscript i is the fault index, d(0) are the

unitary slip vectors and C−1
M is generally set to zero. C−1

D can be used to give more or less weight

to the observations based on their quality, or is equal to identity if all focal mechanisms are equally

accurate. We emphasize that the shear stress magnitudes τ
(t)
i are not free parameters of the inversion,

but are functions of the inverted stress tensor, and therefore do not promote data overfitting. In
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Section 3, we show with synthetic examples that this iterative procedure produces similar robustness

to data perturbation as the regular linear method of Michael [1984] and helps find more accurate

solutions. In this study, we use the outward footwall normals and the slip direction of the hanging

walls with respect to the footwalls, implicitly setting our stress tensor sign convention to negative

compression. The formula relating strike/dip/rake to normal and slip vectors can be found, for ex-

ample, in Chapter 4.2 of Stein and Wysession [2009].

When dealing with earthquake focal mechanism data sets, one needs to determine the fault planes

out of the pairs of nodal planes in order to get an accurate estimate of the stress tensor [Michael,

1987b, illustrates how choosing the wrong planes impacts the solution]. We use the Mohr-Coulomb

failure criterion to assess which planes are more likely to be the fault planes for a given stress tensor

[Lund and Slunga, 1999]. We recall that this criterion states that a rupture occurs if the shear stress

exceeds a critical value given by:

τc = C + µσn, (11)

where C and µ are the cohesion and the friction on the fault, respectively. We denote the effective

normal stress on the fault by σn, meaning that we include any pore pressure in this term. The closer

the shear stress τ is to the critical value, the more unstable the fault is. Therefore, a measure of

fault instability is:

∆τ = τ − τc = τ − C − µσn = τ − µ(σn + C/µ) = τ − µσ∗
n. (12)

In Equation (12), ∆τ is the instability parameter as defined in Lund and Slunga [1999]. In Equa-

tions (11) and (12), σn is assumed to be positive in compression to retrieve Lund and Slunga [1999]’s
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expression. Note that we included cohesion into the normal stress magnitude (σn → σ∗
n). Since we

do not have access to absolute values of stress, the cohesion is not a relevant variable in this analysis.

This also means that ∆τ as defined here only has a meaning in a relative sense, when comparing

different planes. Therefore, following Vavryčuk et al. [2013], Vavryčuk [2014], we express normal

stresses with respect to the maximum compression stress σ1, and normalize the instability parameter

by its value at the most unstable plane. The modified instability parameter I is defined as:

I =
τ − µ(σ1 − σ)

τc − µ(σ1 − σc)
. (13)

This formula was derived assuming negative compression (that is σ1 < σ2 < σ3) for consistency with

the first part of the method. τc and σc are the shear stress and normal stress magnitudes of the most

unstable fault. The different terms of Equation (13) are defined graphically in Figure 1. Note that, in

Section 3, we will refer to the coefficient of friction in Equation (13) as µA (”µ algorithm”). Given a

stress tensor σ, the fault plane that is chosen is the one that maximizes I out of the two nodal planes.

Finally, the inversion includes the following steps:

1. Initial guess of σ by randomly selecting sets of nodal planes.

2. Choose the fault planes based on I.

3. Inner loop: Iteratively run the linear inversion (Equations (8)-(10)).

4. Repeat 2 and 3 until convergence or a user-defined maximum number of iterations.

Ten iterations are usually sufficient to reach convergence. Our proposed method differs from the

method described in Vavryčuk [2014] only by the addition of the inner loop (step 3) that solves

the non-linear problem with variable shear stress magnitudes. Therefore, we refer to the method in
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Less 
compressive

More 
compressive

Figure 1: Definition of the instability parameter [Equation (13), following Vavryčuk et al., 2013] in the Mohr space
where σ′ is normal stress in the positive compression convention. The instability parameter in Equation (13) is written
in terms of normal stress σ in the negative compression convention. The red straight lines are the failure lines whose
slopes are controlled by the friction µ. The most unstable fault has coordinates (σ′

c, τ
′
c) in the Mohr space. The σ′

i’s
are the principal stresses ordered from most compressive to least compressive.

Vavryčuk [2014] as the constant shear counterpart of our method. In the following, we sometimes

loosely refer to the constant (variable) shear stress magnitudes method as the constant (variable)

shear method.

Even though adding these iterations to the linear inversion from Michael [1984] makes our algo-

rithm slower, it is still fast enough to be run many times on bootstrapped data sets to infer the pa-

rameter confidence intervals [Efron and Tibshirani, 1986]. Earlier studies have shown that bootstrap

resampling in stress inversions infers more correct confidence intervals than methods using statisti-

cal hypotheses [e.g. Michael, 1987a; Hardebeck and Hauksson, 2001]. We use this non-parametric

method to estimate uncertainties in the applications described in the next sections.
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We note that using the Mohr-Coulomb failure criterion to select fault planes and iteratively solve

for the stress tensor does not ensure convergence. Indeed, this is a feature of both our method and

the methods described in Lund and Slunga [1999] and Vavryčuk [2014]. Problematic data sets may

lead to an oscillatory solution. Given the stress tensor τ (t) at iteration t, the selected set of nodal

planes S(t) depends on the outcome of the instability criterion I(τ (t)). Inverting this set of nodal

planes produces a new stress tensor τ (t+1) that, in turn, selects a new set of nodal planes S(t+1). For

example, a non-optimally oriented fault present in S(t) may have a more unstable auxiliary plane

that will be selected in S(t+1). The inversion of S(t+1) may yield a solution where the true fault

plane is again more unstable, et cetera. The discrete nature of S implies that any change in the

selected nodal planes translates into a sharp change in the associated fault normals. Because shear

stress is a smooth function of the fault normal (Equation (2)), it also implies a sharp change in the

inverted stress tensor. Despite oscillations of the solution in these problematic cases, one can still

use this iterative procedure to explore different possible populations of faults, and select in the end

the stress tensor that produces the lowest residuals. Ten iterations are, again, usually sufficient to

explore the candidate solutions and select the best one. We suggest that the non-convergence of

the algorithm indicates the inadequacy of a simple Mohr-Coulomb failure criterion, with a single

coefficient of friction for all faults, to describe the real failure criterion. Non-converging instances

reflect inherent uncertainties that can be estimated with the bootstrap resampling method.

3. Synthetic Experiments

The scope of this study is to demonstrate that relaxing the assumption of constant shear stress

magnitudes is not detrimental to the robustness of the method with respect to its constant shear
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counterpart [Vavryčuk, 2014], and also produce more accurate results. Because the equations of

the forward and inverse problems (Equations (6) and (7)) remain the same in any orthonormal

basis, the choice of the directions of principal stresses in the synthetic tests does not matter. How-

ever, the accuracy of the results is sensitive to the shape ratio. In order to simulate realistic data,

focal mechanisms are synthesized such that they follow the Mohr-Coulomb failure criterion assum-

ing some coefficient of friction. However, to avoid limiting the experiments to a simplistic failure

criterion that would fit too well the method’s assumptions, we investigate multiple data synthesis

strategies such as randomly distributed coefficients of friction, or accepting with low probability focal

mechanisms that do not satisfy the failure criterion (see full descriptions in Table 1). In order to

restrict the synthetic earthquakes to physically plausible ruptures, we choose the cohesion parameter

in the Mohr-Coulomb criterion such that the instability (Equation (13)) of the least unstable fault

is Imin = 0.80, i.e. the least unstable fault is 20% less unstable than the most unstable fault (the

optimally oriented fault). To synthesize a focal mechanism, we randomly draw a fault plane orien-

tation from a uniform distribution of strike and dip angles, and accept it if it satisfies the selection

criterion (e.g. the Mohr-Coulomb criterion). Furthermore, because sampling uniformly the space

of fault orientations does not produce a uniform distribution in the Mohr space, and does not even

ensure that faults with higher instability are preferred (see Figure 2a), we accept valid fault planes

with a probability that is proportional to instability (p = (I− Imin)/(1− Imin)). This high instability

preferential sampling produces more realistic data sets (cf. Figure 2b). We emphasize that, because

of this sampling strategy, the lowest value Imin = 0.80 is rarely approached (cf. Figure S1). We

focus on the results of the tests made with the high instability sampling, but also comment briefly

on the tests with uniform fault orientations since this sampling strategy naturally challenges more

the assumption of constant shear stress magnitude.
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(a)
Uniform fault orientation sampling
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High instability sampling

Figure 2: (a): Uniform sampling of the fault orientation space with the Mohr-Coulomb failure criterion (red line).
(b): High instability preferential sampling. The color intensity maps the fault plane density: the brighter/lighter, the
denser. The density contours were estimated by smoothing the empirical distribution, resulting in contours artificially
showing events outside and in forbidden regions of the Mohr circle. Note: These Mohr circles were drawn with positive
compression normal stress σ′.

For each data synthesis scenario, we investigate the effect of the size of the data set and noise on

the results of the inversion [following previous studies such as Vavryčuk, 2014; Vavryčuk et al., 2015;

Mart́ınez-Garzón et al., 2016a]. We recall that a focal mechanism corresponds to a (normalized)

moment tensor. Noise is added by rotating the moment tensor about a randomly chosen axis of a

randomly chosen angle θ ∼ U(−α,+α), where U is the uniform distribution and α is the maximum

angle. Thus, α is the parameter controlling the level of noise. We vary the size of the data set from

25 to 250 focal mechanisms, and the noise level from 0° to 60°. Real data sets often exhibit expo-

nentially distributed focal mechanism errors, with errors above 40° seldom encountered [e.g. Gephart
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and Forsyth, 1984; Hardebeck and Hauksson, 2001]. Therefore, both the uniform distribution of ro-

tation angles and the large rotation angles explored in our experiments are likely to simulate tougher

conditions than would exist in real data.

Data synthesis scenario Description
Scenario 1 Focal mechanisms satisfy the Mohr-Coulomb criterion with µ = 0.60. The

fault plane selection algorithm assumes µA = 0.60.
Scenario 2 Focal mechanisms satisfy the Mohr-Coulomb criterion with µ = 0.60+ η,

η ∼ U(−0.4,+0.4). The fault plane selection algorithm assumes µA =
0.60.

Scenario 3 Most focal mechanisms satisfy the Mohr-Coulomb criterion with µ =
0.60 + η, η ∼ U(−0.4,+0.4). Focal mechanisms that do not satisfy the
failure criterion can be accepted with maximum probability 0.25, and this
probability decreases as the fault instability (see Equation (13)) decreases.
The fault plane selection algorithm assumes µA = 0.60.

Scenario 4 Focal mechanisms satisfy the Mohr-Coulomb criterion with µ = 0.75. The
fault plane selection algorithm assumes µA = 0.60.

Scenario 5 Focal mechanisms satisfy the Mohr-Coulomb criterion with µ = 0.75+ η,
η ∼ U(−0.4,+0.4). The fault plane selection algorithm assumes µA =
0.60.

Scenario 6 Most focal mechanisms satisfy the Mohr-Coulomb criterion with µ =
0.75 + η, η ∼ U(−0.4,+0.4). Focal mechanisms that do not satisfy the
failure criterion can be accepted with maximum probability 0.25, and this
probability decreases as the fault instability (see Equation (13)) decreases.
The fault plane selection algorithm assumes µA = 0.60.

Table 1: Description of the six data synthesis scenarios. Scenarios 4, 5, and 6 are duplicates of 1, 2, and 3, except
that the fault plane selection algorithm assumes an incorrect coefficient of friction (i.e. µA ̸= µ for scenario 4, and
µA ̸= Mean(µ) for scenarios 5 and 6 with random µ). In all data sets, the smallest fault instability is Imin = 0.80
(Equation (13)). U is the uniform distribution.

The quality of the inverted results is assessed by the following two error parameters:

- ϵσ: the 3D rotation angle [Kagan, 1991] between the inverted and the true stress tensors (i.e.

the smallest rotation angle about any axis necessary to superimpose the two tensors),
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- ϵR = |Rinv −Rtrue|: the difference between the inverted and the true shape ratios.

To stabilize the results of the tests, we repeat the experiment 50 times for each data set size and

noise level and average the errors.

Before analyzing the ensemble of the results over all experiments, we start by presenting in detail

the results from a single experiment to clearly describe our analysis. In this experiment, the stress

tensor mostly promotes oblique reverse faulting with shape ratio R = 0.50 and the data strictly

follow the Mohr-Coulomb criterion with µ = 0.60 (data scenario 1, see Table 1). Figure 3 shows the

data in the Mohr space and in the P/T space. P and T are the pressure and tension axes of the

moment tensors, respectively.

The errors on the inverted parameters show that both methods perform similarly and well in

general (cf. Figure 4). We analyze the error differences between the two methods to facilitate the

comparison (∆ϵσ, ∆ϵR, see Figure 5). The two methods do not produce significant error differences

in the estimates of the principal stress directions and direction and magnitude of shear stress. How-

ever, noticeable differences appear in the estimate of the shape ratio, and our method produces more

accurate results of up to ∆ϵR = 0.10 in some cases. In order to draw general conclusions between

the two methods, it is necessary to analyze and interpret the results over the multiple stress states

and data scenarios.

We synthesize the results of all experiments in Figure 6. Each 2D map of an error parameter

that was given as a function of noise and data set size in Figures 4 and 5 is now summarized by a

box plot describing its distribution. We focus the analysis on the error differences between the two
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Figure 3: (a): Fault planes (blue dots) in the Mohr space. The two red lines indicate the Mohr-Coulomb criterion
with µ = 0.60 and cohesion value such that the smallest instability is Imin = 0.80 (see Equation (13)). The two most
unstable fault planes, the so-called principal faults, are shown by the large black dots (see also the two planes in panel
b). σ′ is the positive compression normal stress. (b): Stereographic projection of the P (pressure, red dots) and T
(tension, blue inverted triangles) axes of the focal mechanisms. The directions of the three principal stresses (σ1, σ2

and σ3) are also shown. The two black lines are the two principal faults that form a system of two conjugate faults.

methods; the absolute errors are available in the supplementary material (Figure S2) and show that

both methods are in general successful at retrieving the correct solution. Overall, the results reveal

trends that are similar to that of the experiment presented in detail above. Namely, the two methods

produce qualitatively similar estimates of the principal stress directions (Figure 6, column 1). More

significant discrepancies exist in the estimates of the shape ratio (Figure 6, column 2), with globally

better results with our method.

Our variable shear method appears to produce more accurate results when the data complexity
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Figure 4: Errors of the inversion results from the stress tensor 1 with R = 0.50 (see Table ??), and data that exactly
follow the Mohr-Coulomb failure criterion with µ = 0.60 (Scenario 1 in Table 1) with a, b: the constant shear stress
magnitude method [Vavryčuk, 2014], and c, d: the variable shear stress magnitude method (our method). See the
text for additional explanation about the error parameters ϵσ (a, c), ϵR (b, d).

is increased (scenario 1 to scenario 6), which might be expected because the data satisfy the assump-

tion of constant shear stress magnitude increasingly worse. A noteworthy feature of these results

is that when assuming an incorrect value of coefficient of friction in the fault selection algorithm,

our method produces better results (e.g. scenario 1 vs. scenario 4, Figure 6). When dealing with
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Figure 5: Error differences between the two inversion methods (see Figure 4: right panels minus left panels). Red
colors indicate better performances from our variable shear method, whereas blue colors indicate better performances
from the constant shear method. Note: beside for the shape ratio, the two methods produce very similar quality
results.

real earthquakes, the Mohr-Coulomb failure criterion is only an approximation of the actual failure

criterion, and, most likely, whichever value of coefficient of friction µA used in the fault selection al-

gorithm is wrong to some extent. Therefore, our scenario 4 might represent more realistic conditions

for the inversion methods. We note that Vavryčuk [2014] suggested to choose µA as the coefficient

of friction that maximizes the average instability I. In this study, we prefer to fix µA and keep the

number of free parameters to five.

The compact representation of the results shown in Figure 6 does not indicate whether the cases

where our variable shear method performs similarly or slightly less well than the constant shear

method occur under high noise conditions or small data sets. For that, it is necessary to look at the

differences between the error parameters for every experiment, as in Figure 5. We present the com-

prehensive comparison on scenario 1 and scenario 4 in Figure 7 (other scenarios in Supplementary,
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Figure 6: Summary of the error differences between the constant shear and variable shear methods. Each of the two
columns shows the distribution of one relative error parameter (∆ϵσ, ∆ϵR). Each row shows the results for a different
data scenario (see Table 1). The box plots show the distributions of the relative error parameters for the three shape
ratios (filled dots: R = 0.25, inverted triangles: R = 0.50, diamonds: R = 0.75). Symbols indicate the median, limits
of the boxes are the first and third quartiles, and whiskers are the 2.5 and 97.5 percentiles (i.e. the boxplots cover the
95% confidence interval). Positive values indicate better performances from our variable shear method.

Figure S3). In cases where differences are most significant (for R = 0.50 in Figure 7), our variable

shear method mostly produces better results, in particular for the shape ratio, even at high noise
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levels and small data sets. When the two methods perform similarly over all noise levels and data

set sizes, we observe a slight advantage of the constant shear method for low quality data sets. The

assumption of constant shear stress magnitude works as a regularizing hypothesis when data are very

noisy [Michael, 1984]. However, we note that, in most cases, it becomes advantageous to use the

constant shear assumption only at high noise levels (α > 30°-40°, and uniformly rather than exponen-

tially distributed rotation angles) that may not be reached in real data [Gephart and Forsyth, 1984;

Hardebeck and Hauksson, 2001]. Furthermore, the constant shear hypothesis correctly regularizes

the problem only if it is a good approximation, which is true here because of our high instability

preferential sampling (cf. Figure 2). Overall, these tests show that the variable shear method is

reliable under noisy conditions, and it often produces more accurate results.

We presented the results obtained with the high instability preferential sampling approach as

more unstable faults are likely to be preferentially activated in the crust. An alternative is to sample

fault orientations uniformly and accept all the faults that satisfy the Mohr-Coulomb failure criterion

(i.e. any fault with I > Imin). We showed that this sampling strategy seems to prefer low instability

faults (cf. Figure 2a and Figure S1a) and, therefore, naturally produces data sets for which the

constant shear approximation is worse. In the earth, regions with transient changes in the isotropic

stress component, for example, because of changes in pore fluid pressure, can create conditions with

dominantly low instability faults [e.g. Mart́ınez-Garzón et al., 2016b]. We ran a similar series of tests

with the uniform orientation sampling approach and drew similar conclusions to those presented here,

but the advantage of the variable shear method was enhanced (see results summarized in Figure S4).
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each subpanel). Figure axis labels are the same as Figure 5. Red colors indicate better performances from our variable
shear stress method, whereas blue colors indicate that the constant shear stress method does better. We recall that
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4. Application to Real Data

We demonstrate the applicability of our variable shear method to real data on two data sets:

the Southern California data set (Section 4.1), and the Geysers geothermal field, California, data

set (Section 4.2). The latter was chosen because it is known to feature fluid induced earthquakes

[e.g. Mart́ınez-Garzón et al., 2013] and, therefore, stress conditions that are more likely to produce
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discrepancies between the constant and variable shear methods, as discussed at the end of Section 3.

In the following application, we not only compare the iterative constant [Vavryčuk, 2014] and

variable shear methods (the proposed method) but also the regular linear method [i.e. constant shear

and no fault plane selection, Michael, 1984]. The uncertainties are computed by bootstrap resam-

pling the data set 2000 times. Each bootstrap replica contains the same number of focal mechanisms

as in the original data set, but some focal mechanisms can be repeated several times while others

can be absent from the resampled data set. For the regular linear method with no fault selection

criterion, the fault plane of a given focal mechanism is randomly selected out of the two nodal planes.

We chose to include the linear method in the comparison because it is known to produce accurate

confidence intervals with bootstrap resampling [especially on very noisy data sets, Hardebeck and

Hauksson, 2001], and therefore it is worth checking if all these methods yield statistically significant

solutions.

4.1. Southern California

The Southern California data set contains 298 M > 1 earthquake focal mechanisms [see Hauksson

et al., 2012; Yang et al., 2012, and Data and Resources]. We selected focal mechanisms within a

region of limited extent (most of the earthquakes are within a 10 km×10 km area, cf. Figure 8a).

The data set shows mostly E/W horizontal tension axes and N/S horizontal pressure axes (see Fig-

ure 8b). The focal mechanisms indicate predominantly strike-slip faulting earthquakes, but also

oblique-reverse earthquakes, and a few oblique-normal earthquakes [see classification of focal mech-

anisms in the Kaverina diagram, Kaverina et al., 1996, see Figure 8c].
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Figure 8: Southern California data set. (a): Lower hemisphere focal mechanisms colored by depth. (b): P (red dots)
and T axes (blue inverted triangles). (c): Representation of the focal mechanisms in the Kaverina diagram. The
dominant faulting style is strike-slip, with also many oblique reverse faulting earthquakes, and some oblique normal
faulting earthquakes.

The stress inversion results are presented in Figure 9 and Table 2. The three methods retrieve

the same directions of principal stresses, which is often observed when comparing different inversion

techniques [e.g. Vavryčuk et al., 2015, and our synthetic tests]. The principal directions indicate a

stress state close to the Andersonian strike-slip regime, with almost horizontal N/S most compres-

sive stress σ1 and E/W least compressive stress σ3. Significant differences in the inverted shape ratio

R are observed between the linear and the two iterative methods, whereas the latter two methods

predict shape ratios that are similar to within their uncertainties. The iterative methods produce an
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average angle between the predicted resolved shear stresses and observed slip directions, β [the misfit

measure used in Michael, 1984], that is smaller than that of the linear method by about 4°-5°. Thus,

the iterative methods produce solutions that follow better the Wallace-Bott hypothesis, but, given

that β is sensitive to noise in the data set, this difference is too small to confidently assert that these

solutions are better than that of the linear method. However, focal mechanisms revealed that earth-

quakes were mostly a mix of strike-slip and oblique-reverse events, indicating a transpression regime.

When σ1 and σ3 are (nearly) horizontal (as in Figure 9a), such transpression regime is described by

R > 0.50. The shape ratios R = 0.74 and R = 0.84 obtained by the two iterative methods better

describe a transpression regime than the R = 0.51 estimated by the linear method. Thus, we can

still be confident that the use of a fault plane selection algorithm helped the two iterative methods

produce more accurate results about the true stress state.

Linear Iterative constant shear Iterative variable shear
σ̂1 (az., pl.) (189.0°, 15.4°) (189.3°, 15.7°) (188.2°, 20.8°)
95% CI (183.0°-197.8°, 5.2°-26.7°) (183.3°-197.8°, 5.4°-26.7°) (181.2°-197.5°, 9.6°-33.2°)

σ̂2 (az., pl.) (67.7°, 62.0°) (65.4°, 63.3°) (57.6°, 59.7°)
95% CI (41.9°-95.4°, 50.2°-74.4°) (35.5°-93.5°, 51.2°-75.7°) (35.1°-84.6°, 42.8°-70.7°)

σ̂3 (az., pl.) (285.7°, 22.7°) (285.5°, 21.1°) (286.6°, 21.0°)
95% CI (273.4°-298.0°, 10.8°-34.6°) (273.3°-298.0°, 8.3°-33.0°) (273.4°-303.2°, 10.8°-38.1°)

R 0.51 0.74 0.84
95% CI (0.43, 0.59) (0.70, 0.81) (0.76, 0.87)

Table 2: Inverted parameters from the Southern California data set (Figure 9). The principal stress directions σ̂is are
given as (azimuth, plunge). The 95% confidence interval of each parameter is also given.

4.2. The Geysers Geothermal Field

The Geysers geothermal field data set contains 116 earthquake focal mechanisms [NCEDC, 2014,

and see Data and Resources]. The data were selected inside a narrow area (1 km×2 km, see Fig-
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Figure 9: Southern California results. (a): Stereographic projection of the directions of the principal stresses. Circle:
σ1, most compressive stress; square: σ2, intermediate stress; triangle: σ3, least compressive stress. See the legend for
the azimuth—plunge values. The 95% confidence intervals are shown. (b): Distribution of inverted shape ratios on
bootstrapped data sets. (c): Distribution of resolved shear stress magnitudes.

ure 10a) and between 2010-12-01 and 2011-04-01 because this seismicity is known to be associated

with an episode of high fluid injection in two nearby wells [Mart́ınez-Garzón et al., 2013], i.e. under

high pore fluid pressure. Such conditions promote a wide variety of fault instability levels [as in

the uniform fault orientation sampling explored in supplementary, and, e.g. Mart́ınez-Garzón et al.,

2016b] and thus contribute to producing a wide variety of shear stress magnitudes on faults, which

should lead to some discrepancies between the constant and variable shear inversion methods. The

data set mostly shows W-NW/E-SE tension axes and vertical pressure axes (cf. Figure 10b). The

Kaverina diagram indicates that most earthquakes occur on normal faults, mixed with some oblique-

normal earthquakes (see Figure 10c).
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Figure 10: The Geysers geothermal field data set. (a): Lower hemisphere focal mechanisms colored by depth. (b): P
(red dots) and T axes (blue inverted triangles). (c): Representation of the focal mechanisms in the Kaverina diagram.
The dominant faulting style is normal, with some oblique normal/strike-slip faulting earthquakes, and few reverse
faulting earthquakes.

The directions of the principal stresses are similarly estimated by the three inversion methods (see

Figure 11a and Table 3). Minor differences remain within the 95% confidence interval of each method

(see Table 3). Clearer differences are seen in the inverted shape ratios (cf. Figure 11b), the three

methods giving different estimates but with considerable overlap of their confidence intervals. Our

variable shear method and the linear method seem to produce statistically meaningful differences,

with a significantly higher estimate of the shape ratio with our method, R = 0.69, vs. R = 0.43

for the linear method. Even though the shape ratio distributions from the two iterative methods do
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not overlap as much as in the Southern California data set, the overlap is still too large to make the

differences statistically significant. We note that the shape ratios inverted from the original data set,

R = 0.61 for the constant shear method vs. R = 0.69 for the variable shear method, indicate a dif-

ference of about 0.1, which is in the range of error difference observed in the synthetic tests between

the two methods. Using the mean shear/slip angle β to evaluate the quality of each solution is again

difficult as the three values are similar and probably not meaningfully different given noise in the data.
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Figure 11: The Geysers results. (a): Stereographic projection of the directions of the principal stresses. Circle: σ1,
most compressive stress; square: σ2, intermediate stress; triangle: σ3, least compressive stress. See the legend for
the azimuth—plunge values. The 95% confidence intervals are shown. (b): Distribution of inverted shape ratios on
bootstrapped data sets. (c): Distribution of resolved shear stress magnitudes.

28



Linear Iterative constant shear Iterative variable shear
σ̂1 (az., pl.) (216.3°, 67.0°) (218.6°, 69.5°) (220.5°, 71.9°)
95% CI (181.5°-257.1°, 50.9°-83.6°) (177.3°-267.7°, 54.0°-86.1°) (161.6°-291.1°, 57.9°-88.6°)

σ̂2 (az., pl.) (22.6°, 22.4°) (25.1°, 19.9°) (21.7°, 17.2°)
95% CI (11.0°-38.4°, 9.0°-38.8°) (12.8°-43.5°, 6.2°-35.6°) (7.4°-43.3°, 3.5°-31.0°)

σ̂3 (az., pl.) (114.6°, 4.9°) (116.7°, 4.4°) (113.4°, 5.5°)
95% CI (101.3°-129.3°, 0.3°-16.4°) (103.1°-133.7°, 0.3°-15.5°) (96.8°-132.8°, 0.3°-19.9°)

R 0.43 0.61 0.69
95% CI (0.29, 0.58) (0.45, 0.75) (0.54, 0.85)

Table 3: Inverted parameters from the Geysers data set (Figure 11). The principal stress directions σ̂is are given as
(azimuth, plunge). The 95% confidence interval of each parameter is also given.

5. On the Applicability of the Proposed Method to Real Data, and Future Applications

Despite lacking ground truth, we argue that our variable shear method is better suited to an-

alyze the Geysers data set because of its widely distributed shear stress magnitudes. The fraction

of faults with a given shear |τ | does not decrease smoothly with |τ |, as is the case for the Southern

California data set (compare Figure 9c and Figure 11c). When converting these shear stresses into

fault instabilities, it is more apparent that the Geysers data set contains more non-optimally ori-

ented faults (see Figure S5). Comparing the discrepancy between the constant and the variable shear

methods constitutes a way of measuring the validity of the constant shear approximation. However,

the inhomogeneity of inverted shear stress magnitudes has also been used to assess the validity of the

uniform stress assumption, namely that variations in shear stress magnitudes are a consequence of

stress heterogeneities [e.g. Michael, 1984]. Nevertheless, our synthetic tests showed that the proposed

method was not prone to data overfitting, and therefore we believe that our method helps retrieve

more accurately the uniform component of a stress field. Rigorous testing of this idea remains to

be done [such as in Michael, 1991], but is out of the scope of this first study. Beside, we note that,

in reality, low instability fault planes might rupture with a non-negligible tensile component [e.g.
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Vavryčuk, 2011] that our algorithm is not designed to deal with. Finally, it is important to men-

tion that methods aiming at finding a heterogeneous stress tensor have been developed [Hardebeck

and Michael, 2006; Mart́ınez-Garzón et al., 2014] and that the algorithm described here could be

implemented in these methods. Together, these would remove the necessity for the assumptions of

constant shear stress magnitudes and homogeneity of the stress tensor.

6. Summary and Concluding Remarks

In Section 2.1, we introduced the stress tensor inversion problem and presented the underlying

assumptions and drawbacks. In Section 2.2, we introduced an iterative inversion method that ex-

plicitly accounts for variable shear stress magnitudes. This method is built upon the linear inversion

due to Michael [1984], and follows the fault selection algorithm from previous studies [e.g. Lund and

Slunga, 1999; Vavryčuk, 2014] to deal with focal mechanism data sets where the true fault planes are

generally unknown. The proposed method effectively solves the non-linear inverse problem, where

shear stress is a non-linear function of the stress tensor, by repeating the linear inversion described

in Michael [1984] with shear stress magnitudes estimated from the stress tensor computed in the

previous iteration.

We conducted a series of synthetic tests on realistic data sets where the assumption of constant

shear stress magnitude is a fair approximation (see discussion on data sampling in Figure 2). We

showed that the proposed variable shear method was similarly robust to noise and data set size as its

constant shear counterpart [Vavryčuk, 2014] based on synthetic tests that explored different stress

regimes and different assumptions on the data (cf. Section 3). The results showed that our variable
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shear method often produce more accurate solutions, in particular in the estimate of the shape ratio,

and that otherwise the two iterative methods perform similarly (see Figure 6). The regularization

due to the assumption that all shear stress magnitudes are the same [Michael, 1984] did not produce

any significant differences between the two methods, and only favored the constant shear method

for very high noise conditions (α >30°-40°) that are unlikely to be encountered in real data sets

(see Figure 7). Differences between the two methods became more apparent as the assumptions

underlying the data synthesis got more complex (e.g. coefficient of friction is not the same on all

faults). Disregarding whether the Mohr-Coulomb failure criterion describes well the data or not, our

tests suggested that the variable shear method was more robust to erroneous assumptions on the

coefficient of friction in the fault plane selection algorithm. Nevertheless, differences between the two

methods remained small and likely to not be statistically significant in real data applications where

the ground truth is unknown and uncertainties have to be taken into account.

We applied our method to real data sets (from Southern California and the Geysers geothermal

field, see Section 4) and showed that differences between the two iterative methods were within the

95% confidence interval of each other. Uncertainties were estimated with the bootstrap resampling

method [Efron and Tibshirani, 1986]. Thus, our study showed that the primary interest of the pro-

posed method is in relying on fewer assumptions in the stress inversion methodology. It has been

argued that a wide distribution of shear stress magnitudes could reflect the inadequacy of the uni-

form stress model [Michael, 1984], although there exists physical conditions, such as high pore fluid

pressure environments [e.g. Mart́ınez-Garzón et al., 2016b] or heterogeneous coefficients of friction

[Collettini et al., 2009], where shear stress magnitudes are not closely clustered around a single value.

Our proposed method therefore fully handles all data sets that can be described by shear earthquakes
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in a uniform stress state, and we speculate that it will help resolve the contribution of stress hetero-

geneities to data misfit. Even though this study did not explore the effects of stress heterogeneities

on the inversion results, our variable shear method can be used jointly with techniques that deal

with these. For example, stress heterogeneities originating from interactions between earthquakes

can be removed by declustering the earthquake catalog from which focal mechanisms are computed

[e.g. Mart́ınez-Garzón et al., 2016a], or our proposed method can be included in a broader inversion

scheme that aims at resolving the stress state as a function of space [e.g. Hardebeck and Michael,

2006].

Running the synthetic tests and real data applications with our implementation of the constant

and variable shear iterative method in the Python package ILSI (see Data and Resources) showed

that the variable shear method took only 1.5 to 2 times longer than the constant shear method.

This modest runtime increase makes the proposed method well-suited for large scale problems, and a

good candidate for improving current non-homogeneous stress inversions relying on a linear inversion

(SATSI, Hardebeck and Michael [2006], or its Matlab implementation MSATSI, Mart́ınez-Garzón

et al. [2014]).

Data and Resources

The Southern California focal mechanisms were obtained from the Southern California Earth-

quake Data Center at https://scedc.caltech.edu/data/alt-2011-yang-hauksson-shearer.html

[we used the 2011-2013 catalog, Hauksson et al., 2012; Yang et al., 2012]. The Geysers geother-

mal field focal mechanisms were obtained from the Northern California Earthquake Data Center at
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https://www.ncedc.org/ncedc/catalog-search.html [NCEDC, 2014]. In the real data applica-

tions, we restricted the catalog to the region displayed in Figures 8 and 10. The Kaverina diagrams

were produced using the plotting routine from FMC [https://github.com/Jose-Alvarez/FMC, ver-

sion 1.6, last accessed November 2021, Álvarez-Gómez, 2019]. Faults in Figure 9 were taken from the

USGS data base (https://www.usgs.gov/programs/earthquake-hazards/faults, last visited in

February 2022).

The Python package ILSI, available at https://github.com/ebeauce/ILSI, implements the

variable shear method proposed here and the constant shear method described in Vavryčuk [2014].

The repository also provides the scripts to reproduce our figures (version 1.0.3, last accessed February

2022).

The supplemental material includes figures to show the differences in fault instabilities produced

by the two fault sampling strategies described in this manuscript (Figure S1), additional results from

the synthetic tests presented here (Figures S2, S3), results from different tests (Figure S4), and the

fault instabilities of the Southern California and Geysers data sets used in the real data applications

(Figure S5).
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V. Vavryčuk, F. Bouchaala, and T. Fischer. High-resolution fault image from accurate locations and

focal mechanisms of the 2008 swarm earthquakes in west bohemia, czech republic. Tectonophysics,

590:189–195, 2013.
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Figure S1: Distribution of fault instabilities for (a): the uniform fault orientation sampling, and (b): the
high instability preferential sampling.
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Figure S2: Summary of the errors of (a): the constant shear method and (b): the variable shear method.
Each column shows the distribution of one error parameter (ϵσ and ϵR), represented by a box plot. Each
row shows the results for a different data scenario (see Table 1 in the main manuscript). The box plots show
the results for the three shape ratio values (filled dots: R = 0.25, inverted triangles: R = 0.50; diamonds:
R = 0.75). Symbols indicate the median, limits of the boxes are the first and third quartiles, and whiskers
are the 2.5 and 97.5 percentiles (i.e. the boxplots cover the 95% confidence interval).
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