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Abstract

Wet bulb globe temperature (WBGT) is a widely applied heat stress index. However, most applications of WBGT within the

heat stress impacts literature do not use WBGT at all, but one of the ad hoc approximations, typically the simplified WBGT

(sWBGT) or the environmental stress index (ESI). Surprisingly little is known about how well these approximations work for

the global climate and climate change settings that they are being applied to. Here we assess the bias distribution as a function

of temperature, humidity, wind speed and radiative conditions of both sWBGT and ESI relative to a well-validated, explicit

physical model for WBGT developed by Liljegren, within an idealized context and the more realistic setting of ERA5 reanalysis

data. sWBGT greatly overestimates heat stress in hot-humid areas. ESI has much smaller biases in the range of standard

climatological conditions. However, both metrics may substantially underestimate extreme heat especially over subtropical

dry regions. These systematic biases demonstrate that sWBGT-derived estimates of heat stress and its health and labor

consequences are significantly overestimated over much of the world today. We recommend discontinuing the use of sWBGT.

ESI may be acceptable for assessing average heat stress or integrated impact over a long period like a year, but less suitable for

health applications, extreme heat stress analysis, or as an operational index for heat warning, heatwave forecasting or guiding

activity modification at workplace. Nevertheless, Liljegren’s approach should be preferred over these ad hoc approximations

and we provide a Python implementation to encourage its widespread use.
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Key Points:7

• Most climate change heat stress impacts studies which claim to use WBGT, em-8

ploy instead ad hoc approximations.9

• We evaluate the biases of two commonly used approximations within both an ide-10
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Abstract14

Wet bulb globe temperature (WBGT) is a widely applied heat stress index. However,15

most applications of WBGT within the heat stress impacts literature do not use WBGT16

at all, but one of the ad hoc approximations, typically the simplified WBGT (sWBGT)17

or the environmental stress index (ESI). Surprisingly little is known about how well these18

approximations work for the global climate and climate change settings that they are19

being applied to. Here we assess the bias distribution as a function of temperature, hu-20

midity, wind speed and radiative conditions of both sWBGT and ESI relative to a well-21

validated, explicit physical model for WBGT developed by Liljegren, within an ideal-22

ized context and the more realistic setting of ERA5 reanalysis data. sWBGT greatly over-23

estimates heat stress in hot-humid areas. ESI has much smaller biases in the range of24

standard climatological conditions. However, both metrics may substantially underes-25

timate extreme heat especially over subtropical dry regions. These systematic biases demon-26

strate that sWBGT-derived estimates of heat stress and its health and labor consequences27

are significantly overestimated over much of the world today. We recommend discontin-28

uing the use of sWBGT. ESI may be acceptable for assessing average heat stress or in-29

tegrated impact over a long period like a year, but less suitable for health applications,30

extreme heat stress analysis, or as an operational index for heat warning, heatwave fore-31

casting or guiding activity modification at workplace. Nevertheless, Liljegrens approach32

should be preferred over these ad hoc approximations and we provide a Python imple-33

mentation to encourage its widespread use.34

Plain Language Summary35

Wet bulb globe temperature (WBGT) is a widely applied heat stress index. How-36

ever, most applications of WBGT within the climate change heat stress impacts liter-37

ature do not use WBGT at all, but one of the ad hoc approximations, typically the sim-38

plified WBGT (sWBGT) or sometimes the environmental stress index (ESI). But we know39

little about how well these approximations work for measuring heat stress. Here we eval-40

uate the performance of sWBGT and ESI against a well-validated, explicit physical model41

of WBGT. sWBGT greatly overestimates heat stress under hot, humid climate. ESI per-42

forms much better in measuring average heat stress. But they both may seriously un-43

derestimate severe heat stress especially in hot, dry regions. Our results suggest that pre-44

vious estimates of heat stress and its impact using sWBGT tend to be largely overes-45

timated. We recommend discontinuing the use of sWBGT. ESI may be acceptable for46

assessing average heat stress, but less suitable for the warning or forecasting of extreme47

heat, or providing guidance for employees and employers to deal with heat stress at work-48

place. Nevertheless, the well-validated physical model of WBGT should be preferred over49

these approximations and we provide a Python implementation to encourage its more50

widespread use.51

1 Introduction52

Heat stress has caused more deaths than any other extreme weather event, and is53

recognized to have broad social and economic impacts such as heat-related illness (Barriopedro54

et al., 2011; Mora et al., 2017; Ebi et al., 2021), conflict (Burke et al., 2009; Schleuss-55

ner et al., 2016), crime (Shen et al., 2020), electricity demand(Maia-Silva et al., 2020),56

and labor productivity reduction (Dunne et al., 2013; Kjellstrom et al., 2016; Masuda57

et al., 2021; Orlov et al., 2020; Hsiang et al., 2017). Heat stress will become a even big-58

ger threat in the future as the world warms (Diffenbaugh & Giorgi, 2012; Meehl & Tebaldi,59

2004; Willett & Sherwood, 2010; Sherwood & Huber, 2010; D. Li et al., 2020).60

As well reviewed elsewhere, many heat stress metrics have been developed (de Fre-61

itas & Grigorieva, 2014; Epstein & Moran, 2006; Havenith & Fiala, 2015). Among these62

the wet bulb globe temperature (WBGT) is arguably the most popular one, enjoying the63
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advantages of a simple physical interpretation, covering all four ambient factors (tem-64

perature, humidity, wind and radiation) contributing to heat stress, and having well es-65

tablished safety thresholds to guide activity modification within the military (Army, 2003),66

occupational (NIOSH, 2016) and athletic settings (ACSM, 1984). It is constructed as67

a linear combination of natural wet bulb temperature (Tw), black globe temperature (Tg)68

and dry bulb temperature (Ta): WBGT = 0.7Tw + 0.2Tg + 0.1Ta (Yaglou & Minard,69

1957).70

Measurement of WBGT requires costly instrument and time-consuming attention71

by experienced operators which prevents it to become a routine meteorological measure-72

ment at weather stations. As a result, several approaches have been developed to ap-73

proximate WBGT, with the simplified WBGT (sWBGT) (ABM, 2010) and environmen-74

tal stress index (ESI) (D. Moran et al., 2001; D. Moran, Pandolf, Laor, et al., 2003) be-75

ing representative of many similar ad hoc approaches.76

sWBGT (ABM, 2010) is an approximate form requiring only temperature and hu-77

midity and explicitly assuming fixed moderately high solar radiation and low wind speeds78

which implies potential positive or negative biases when these assumptions are not met.79

It has been widely used because of its simplicity for assessing heat stress and the impli-80

cation on athletes and labor (Smith et al., 2018; Willett & Sherwood, 2010; Kakamu et81

al., 2017; Cooper et al., 2016; Lee & Min, 2018; Zhu et al., 2021; Kjellstrom et al., 2009;82

Liu, 2020; Altinsoy & Yildirim, 2014). ESI was constructed via a multiple regression with83

WBGT being the dependent variable and temperature, humidity, solar radiation and their84

interaction terms being independent variables (D. Moran et al., 2001). ESI was validated85

across different climate regimes over Israel and New Zealand based on large databases86

(D. Moran, Pandolf, Shapiro, et al., 2003; D. Moran et al., 2004; D. S. Moran et al., 2004,87

2005). Although a high correlation (>0.9) between WBGT and ESI was achieved, the88

residual errors can be up to ±2°C, and it may be the critical situations (such as extreme89

heat stress) where ESI substantially under- or overestimate WBGT (Havenith & Fiala,90

2015).91

Outside of the limited conditions for which these approximate forms were devel-92

oped, little is known about how well these approximations work for the global climate93

and climate change settings that they are being applied to. Although a few studies had94

quantified biases of sWBGT or ESI based on local meteorological measurements (D. Moran95

et al., 2004; D. S. Moran et al., 2004, 2005; Grundstein & Cooper, 2018), the results are96

not readily transferable to other regions with different climate conditions. A recent study97

employed both sWBGT and ESI to assess labor reduction due to intensifying heat stress,98

and found vast differences between the two metrics (de Lima et al., 2021). However, it99

is not clear which one is more close to the reality. Given the expected biases of both met-100

rics, and their large discrepancies in indicating labor loss, it is necessary to assess the101

magnitude of these biases and the consequent influences on heat stress impact assess-102

ment, which is crucial for determining the suitability of each metric under certain ap-103

plication scenarios.104

Aside from the simple approximations of WBGT described above, physical mod-105

els on the energy balance of WBGT sensors have also been developed which enable a di-106

rect simulation of WBGT measurements from weather station observations or climate107

model output (Gaspar & Quintela, 2009; C. H. Hunter & Minyard, 1999; Bernard & Pour-108

moghani, 1999; Liljegren et al., 2008; Dernedde & Gilbert, 1991). Among them, the model109

developed by Liljegren et al. (2008) is a highly sophisticated one being well calibrated110

and validated (with a RMS difference of less than 1°C) (Liljegren et al., 2008; Lemke &111

Kjellstrom, 2012). However, Liljegren’s approach has seen limited applications (Takakura112

et al., 2017, 2018; Casanueva et al., 2020; Jacobs et al., 2019; Orlov et al., 2019) poten-113

tially because it is complex and computationally intensive. Moreover, Liljegren’s code114

was written in C and FORTRAN language which may be not familiar to most end-users.115
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To resolve this issue, we rewrote the code in Cython which is fast, easy to use in Python,116

and scales well for large dataset such as climate model output.117

Here we treat Liljegren’s model as a ground truth, and explores the bias distribu-118

tions of sWBGT and ESI within both an idealized context and the more realistic set-119

ting of ERA5 reanalysis data. The paper is structured as follows. Section 2 introduces120

more details on the metrics and Liljegren’s model, as well as data source and analysis121

methods. Section 3 presents bias quantification results including first the bias distribu-122

tion within an idealized context as a function of temperature, humidity, wind speed and123

radiative conditions, and second the error structure introduced within ERA5 reanaly-124

sis data. In section 4, the potential consequences of these biases are examined through125

an example application of labor productivity estimation. Section 5 discusses the impli-126

cation of our results. Section 6 concludes by highlighting the main findings and provid-127

ing suggestions.128

2 Data and methods129

2.1 sWBGT, ESI and Liljegren’s model130

Here we present the formulas of sWBGT, ESI and Liljegren’s model. Parameter131

definitions and their units within all equations are summarized in the list of notation.132

sWBGT was developed for heat stress assessment in sports medicine and formulated as133

(ACSM, 1984):134

sWBGT = 0.567(Ta − 273.15) + 0.393ea + 3.94 (1)135

ESI was designed as an approximation to WBGT via a multiple regression model (D. Moran136

et al., 2001), and structured as (D. Moran, Pandolf, Shapiro, et al., 2003):137

ESI = 0.62(Ta−273.15)−0.007RH+0.002Sdown+0.0043(Ta−273.15)·RH−0.078(0.1+Sdown)−1

(2)138

Liljegren’s model is physically based relying on fundamental principles of heat and139

mass transfer. It performs energy budget analysis on both natural wet bulb and black140

globe sensors, which boil down to two separate equations for Tw (eq. 3) and Tg (eq. 5)141

(Liljegren et al., 2008) that need to be solved by iteration:142

Tw = Ta −
∆H

cp

MH2O

MAir
(
Pr

Sc
)0.56(

ew − ea
P − ew

) +
∆Fnet

Ah
(3)143

where ∆Fnet refers to net radiative gain by the wick:144

∆Fnet =
1

2
πDLεw(Ldown + Lup)− πDLσεwT 4

w + (πDL+
πD2

4
)(1− αw)(1− fdir)Sdown

+ (DL sin θ +
πD2

4
cos θ)(1− αw)fdir

Sdown

cos θ
+ πDL(1− αw)Sup (4)

T 4
g =

Ldown + Lup

2σ
− h(Tg − Ta)

εgσ
+
Sdown(1− αg)

2εgσ
(1− fdir +

fdir
2 cos θ

) +
1− αg

2εgσ
Sup (5)145

where Sdown, Sup, Ldown and Lup denote surface downward and upwelling solar and long-146

wave radiation respectively. The latter three radiation components were approximated147

as:148

Ldown = σεaT
4
a (6)149

Lup = σεsfcT
4
sfc = σT 4

a (7)150
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Sup = αsfcSdown (8)151

In Liljegren’s model, air temperature, humidity, wind speed and surface downward152

solar radiation are required as inputs for solving Tw and Tg. For details of the calcula-153

tion procedure, please refer to Liljegren et al. (2008). Liljegren’s model was originally154

written in FORTRAN and C-language programs. We rewrote it in Cython language for155

implementation in Python. Please find the code availability in the Acknowledgement sec-156

tion.157

2.2 Bias quantification within an idealized context158

Bias distributions of sWBGT and ESI are first identified within an idealized con-159

text as a function of four input variables. We apply Liljegren’s model in its original form160

to assessing biases of both metrics across artificially selected ranges of air temperature161

(20-50°C), relative humidity (5-95%), 2m wind speed (0.13, 0.5, 1.0, 2.0, 3.0m/s), and162

surface downward solar radiation (0, 300, 500, 700, 900w/m2). The focus is on condi-163

tions under which biases are exceptionally large.164

2.3 Bias quantification using ERA5 reanalysis data165

With diverse climate regimes spanning across the globe, biases of different mag-166

nitudes and/or signs are expected to occur over different regions. It would be useful to167

reveal the spatial distribution of biases and identify locations where sWBGT/ESI is ex-168

ceptionally biased and their applications would cause serious under- or over-estimation169

of heat stress and downstream impacts.170

ERA5 reanalysis data (Hersbach, H. et al., 2018; Bell, B. et al., 2020) are used to171

identify the bias spatial structure in a more realistic setting. Since all four radiation com-172

ponents are available from the ERA5 archive, the approximations in equation 6-8 are no173

longer necessary. The 2m air and dewpoint temperature, surface pressure, 10m wind speed174

and surface downward and upwelling solar and thermal radiation on a 0.25◦×0.25◦ grid175

are used to calculate WBGT at an hourly frequency.176

The cosine zenith angle (cos θ) is needed to project direct solar radiation from a177

flux through a horizontal plane (as stored in ERA5 reanalysis archive) to a flux through178

a plane perpendicular to the incoming solar radiation (as required by energy budget anal-179

ysis) (as denoted by cosθ term in the denominator within eq. 4-5). Since model radia-180

tion components are stored as accumulated-over-time quantities (over each hourly in-181

terval in the case of ERA5 reanalysis data), the time average of cosθ during each inter-182

val is needed. However, when the accumulation intervals encompass sunset or sunrise,183

the inclusion of zeros (when the sun is below the horizon) may make the time average184

of cos θ too small. Being in the denominator, this too small cos θ would lead to an over-185

estimation of the projected direct solar radiation and consequently too high WBGT val-186

ues. A simple approximate solution to this problem is taking the average cos θ during187

only the sunlit part of each interval (please refer to Hogan and Hirahara (2016) or Di Napoli188

et al. (2020) for the calculation procedure). In Fig. S1, we provide an example of erro-189

neously peaks of WBGT values around sunrise or sunset introduced by using cos θ av-190

eraged over the whole hourly interval, and also show that the peaks can be removed by191

averaging cos θ only during the sunlit period.192

2.4 Labor productivity calculation193

Several different labor productivity functions have been applied to assessing heat194

stress-induced labor reduction (Dunne et al., 2013; Bröde et al., 2018; Kjellstrom et al.,195
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2018; Foster et al., 2021), and here we choose the method adopted by ISO7243 standard196

for illustrative purposes.197

The ISO7243 standard provided WBGT limit reference values (WBGTlim) corre-198

sponding to the upper limit of the prescriptive zone for different levels of metabolic heat199

production rates (M in Watts) (ISO, 2017):200

WBGTlim = 56.7− 11.5log10(M) + 273.15 (9)201

For WBGT exceeding the limit value, only a fraction of each hour is allowed for
working in order to ensure that the physiological strain during each hour cycle can be
recuperated after the rest. This fraction can be used as an estimate of labor productiv-
ity (for example, a value of 0.5 indicates a 30min working and 30min rest cycle, and con-
sequently a 50% labor productivity) and calculated as follows (Malchaire, 1979; Bröde
et al., 2018):

labor productivity = max{0;min[1;
WBGTlim,rest −WBGT

WBGTlim,rest −WBGTlim
]} (10)

2.5 Gridded population dataset202

Gridded world population data (GPWv4.11) (Center for International Earth Sci-203

ence Information Network - CIESIN - Columbia University, 2018) with a spatial reso-204

lution of 0.25◦×0.25◦ for year 2020 after adjusting to match the country total of United205

Nations World Population Prospects are employed to calculate global population-weighted206

labor productivity.207

3 Bias quantification208

3.1 Idealized setting209

In order to understand bias structure and its dependencies on ambient conditions,210

we calculate sWBGT/ESI biases (sWBGT/ESI - WBGT) across artificially selected ranges211

of air temperature, relative humidity, wind speed and solar radiation (Fig. 1). In the case212

of sWBGT, positive biases (sWBGT>WBGT) appear to be dominant, especially dur-213

ing nighttime (zero solar radiation), with bias magnitudes up to more than +10 °C. Nev-214

ertheless, negative biases (sWBGT<WBGT) may occur under strong solar radiation and215

light wind condition. Given any fixed level of solar radiation and wind speed, there tends216

to be larger positive biases under hotter and more humid condition which is a direct re-217

sult of sWBGT placing all weights on temperature and humidity.218

ESI, in comparison, is mainly subject to negative biases. Wind speed and solar ra-219

diation appear to be the dominant factors controlling bias magnitudes with larger neg-220

ative biases under strong solar radiation and light wind (up to -10 °C under 900w·m−2
221

solar radiation and 0.13 m/s wind speed). Under dry condition with relative humidity222

<10%, ESI exhibits smaller negative biases and even positive ones during nighttime when223

the bias magnitudes are overall smaller as well.224

Although some combinations of the four meteorological inputs shown in figure 1225

are physically less plausible (such as large humidity and strong solar radiation), it pro-226

vides an overall picture of sWBGT/ESI biases across the 4-D climatic space which can227

serve as a guidance for further detailed bias assessment or practical applications. For ex-228

ample, we expect larger over-estimations by sWBGT during nighttime (or indoor) or un-229

der hot-humid climate such as in the tropics, and larger under-estimation by ESI under230

sunny, calm days. Next, we explore bias structure under the more realistic setting of ERA5231

reanalysis data with frequent reference to and comparison with the pattern obtained here.232

233
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Figure 1. Bias distribution of sWBGT (a) and ESI (b) across an artificial 4-D climatic space

of air temperature, relative humidity, 2m wind speed and surface downward solar radiation. Each

small box in (a) and (b) depicts bias distribution across a range of temperature (20-50°C) and

relative humidity (5-95%) as shown in (c) under fixed levels of solar radiation and wind speed.

3.2 Realistic setting234

3.2.1 Biases at climatological mean level235

ERA5 reanalysis data are applied to identifying the spatial distribution of biases236

within a realistic context. First, we assess biases of both metrics in terms of the clima-237

tological monthly average (1990-2019) of daily mean, maximum and minimum values (Fig.238

2). Since we focus on heat stress, only the hottest calendar month (determined by cli-239

matological monthly mean of WBGT) is included. A consistent overestimation by sWBGT240

is detected across the globe with larger biases for daily minimum (by > 4°C) and smaller241

biases for daily maximum (Fig. 2e,f). Areas with hot-humid summer, such as the trop-242

ics, south Asia, eastern China and southeastern U.S., exhibit larger positive biases (>2°C243

for daily maximum, >5°C for daily minimum and >4°C for daily mean) (Fig. 2d-f) which244

is consistent with the bias structure revealed within idealized context (Fig. 1a). Subtrop-245

ical dry regions show smaller biases in comparison. Additionally, a topography effect is246

evident with smaller positive or even negative biases for daily maximum over mountain-247

ous areas like the Himalayas, Andes, and Rocky Mountains (Fig. 2e), although the WBGT248

values over these regions are generally small (Fig. 2b).249

ESI has smaller overall biases compared with sWBGT. Positive and negative bi-250

ases within ±1°C occur for daily mean in subtropical dry regions and the tropics respec-251

tively (Fig. 2g). Negative biases dominate daily maximum values particularly in the trop-252

ics (Fig. 2h). In that region, the bias magnitude is -2 to -3°C due to relatively strong253

solar radiation and low wind speed over tropical areas as indicated in the idealized re-254

sults (Fig. 1b). Subtropical dry regions, despite even stronger solar radiation, show smaller255

negative and even positive biases for daily maximum as a result of low humidity and prob-256

ably relatively higher wind speed. In the case of daily minimum, the differences between257

ESI and WBGT are generally small (within ±0.5°C) except over-estimations by 1-2°C258

over North Africa and Middle East (MENA) dry regions (Fig. 2i). This agrees with the259

positive biases under dry nighttime conditions revealed within the idealized setting (Fig.260

1b).261

Compared with sWBGT, ESI appears to be a better approximation particularly262

for nighttime and daily mean situation. However, the larger negative biases for daily max-263
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imum (Fig. 2h) imply that ESI may substantially underestimate daily peak heat stress264

especially when we turn from climatological mean to individual days or hours.265

a b c

d e f

g h i

10 2 8 18 28 36
WBGT ( C)

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7
sWBGT/ESI - WBGT ( C)

Figure 2. Climatological monthly average (CMA) of daily mean (a), maximum (b) and mini-

mum (c) WBGT for the period 1990-2019. Biases of sWBGT (d-f) and ESI (g-i) with respect to

CMA of daily mean (d, g), maximum (e, h) and minimum values (f, i). Only the hottest month

(determined by CMA WBGT) being included.

3.2.2 Frequencies of relatively large biases266

It bears mentioning that bias quantification in Fig. 2 is based on 30-year clima-267

tological means, whereas bias magnitudes can be much larger over certain individual days268

and/or hours. Here we count the frequencies of relatively large positive and negative bi-269

ases (beyond ±2°C) based on original hourly time series during 1990-2019 (Fig. 3), with270

an additional requirement of WBGT exceeding 25°C, the WBGTlim value for very heavy271

work (a metabolic rate of 520W) according to ISO7243 standard.272

sWBGT overestimates WBGT by at least 2°C within more than 30% cases over273

tropics and other hot-humid area and even more than 80% over the northern part of South274

Asia (Fig. 3a). In the same region, there are still more than 50% cases even if biases mag-275

nitudes are raised to >5°C (Fig. S2). In contrast, underestimations by more than 2°C276

are rare (<1%) and concentrate in subtropical dry regions presumably under dry, sunny277

and calm days (Fig. 1a). In the case of ESI, negative biases beyond -2°C are detected278

for over 10% cases in tropical areas (Fig. 3d); whereas positive biases in ESI by more279

than 2°C are less frequent and concentrate over west Sahara and Middle East dry regions280

(<5%) (Fig. 3c).281

3.2.3 Biases conditional on WBGT values282

It is useful to know whether biases are independent of WBGT values or not. A cor-283

relation between them indicates biases of different magnitudes for heat stress of differ-284

ent levels, amongst which the under- or over-estimation of more severe heat stress is of285

particular concern. To explore it, we calculate and compare biases conditional on the 50th,286
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Figure 3. Occurrence percentage of positive (a, c) and negative biases (b, d) larger than ±2°C
for sWBGT (a, b) and ESI (c, d) during 1990-2019 with an additional requirement of WBGT

exceeding 25°C. Only the hottest month (defined by climatological monthly average WBGT) is

included.

75th, 90th, 95th, 99th, and 99.9th percentile exceedance values of WBGT (Fig. 4), which287

is done for each individual year first and then averaged across the period 1990-2019.288

Both sWBGT and ESI show a clear tendency towards smaller positive or stronger289

negative biases moving from lower to higher percentile exceedance values of WBGT, sug-290

gesting a potential correlation between biases and WBGT which is not surprising since291

both of them are controlled by the same set of meteorological variables (Fig. 1). sWBGT292

conditional on 50th percentile of WBGT shows substantial positive biases (> 3°C glob-293

ally) which are reduced to < 2°C in the majority of the world when conditional on 99th294

percentile of WBGT. Negative biases even occur in many areas particularly over sub-295

tropical dry regions (< −2°C) when we move to 99.9th percentile. ESI exhibits small296

biases (within ±1°C) worldwide conditional on 50th percentile of WBGT which mono-297

tonically shift to strong negative biases conditional on 99.9th percentile of WBGT (<298

−1°C globally and < −4°C in the low latitudes).299

The dependence of biases on WBGT may be explained by the fact that both higher300

WBGT and stronger negative (or smaller positive) bias tend to be associated with strong301

solar radiation and light wind (Fig. 1). Based on the results shown here, We expect sWBGT302

to largely overestimate median-level heat stress but less (or even underestimate) for more303

severe heat stress (such as the hottest week or 3 days of the year). ESI, in contrast, does304

a better job in measuring heat stress of median level but tend to seriously underestimate305

those of more severity.306

3.2.4 Biases of extreme values307

Extreme events are of special importance in the study of heat stress. For exam-308

ple, some studies attempt to identify extremely rare, short-term events in Tw in the past309

30 years and going into the future (Raymond et al., 2020). The stronger negative biases310

of both metrics conditional on higher percentile exceedance values of WBGT (e.g. Fig.311
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Figure 4. Biases of sWBGT (a-f) and ESI (g-l) conditional on the 50th (a, g), 75th (b, h),

90th (c, i), 95th (d, j), 99th (e, k), and 99.9th (f, l) percentile exceedance values of WBGT during

1990-2019

4f, l) raise a cautionary note that extreme heat stress at some places of the world may312

be seriously underestimated. Here we implement a generalized extreme value (GEV) anal-313

ysis to estimate and compare the extreme values of WBGT, sWBGT and ESI at each314

grid cell. Specifically, a GEV model is fit to the annual maximum (calculated from hourly315

frequency) of each metric during 1990-2019 using ERA5 reanalysis data. The metric val-316

ues corresponding to a 1-in-30-year event are calculated and compared (Fig. 5).317

Biases of extreme values share similar pattern with those conditional on 99.9 per-318

centile exceedance values of WBGT yet with larger magnitudes. Even in extreme value319

sWBGT produces overestimated values (by less than 3°C in tropics and other hot-humid320

area and northern Eurasia, and by 3-5°C in the northeast of North America) in many321

regions with the notable exception of subtropical dry regions. Large negative biases are322

detected in MENA region (-4°C to -7°C) (Fig .5d). ESI underestimates WBGT by more323

than 3°C across most of the world (Fig. 5e). MENA regions stand out with strong neg-324

ative biases between -6°C and -10°C.325

The biases structure of extreme values shown here is not merely a simple exten-326

sion of patterns observed at climatological mean levels. For example, relatively small bi-327

ases of ESI at climatological mean level (Fig. 2g-i) suggest it is a potentially acceptable328

approximation of WBGT for quantifying climatological mean heat stress or its tempo-329

ral trends. Nevertheless, serious underestimations are expected when it comes to the most330

extreme heat stress conditions.331

3.2.5 Local biases in specific hot-humid and hot-dry regions332

It is revealing to explore the bias structure in a more detailed way for two differ-333

ent end-member regimes relevant to heat stress, corresponding to hot-humid and hot-334
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Figure 5. WBGT (a) and ESI (b) return levels corresponding to a 1-in-30-year event, and

their differences (ESI-WBGT) (c)

dry climates (Buzan & Huber, 2020). Here Bangladesh and Sahara (Amazon and Ara-335

bia) are selected for assessing the bias of sWBGT (ESI). Each region is characterized by336

a 2◦ × 2◦ lat/lon box (Fig. 6).337

Biases of sWBGT exhibit similar diurnal cycles at Bangladesh and Sahara with larger338

positive biases during nighttime and smaller biases during mid-day (Fig. 6a,e) which is339

consistent with previous studies (Grundstein & Cooper, 2018). sWBGT rarely under-340

estimates WBGT in Bangladesh within hot-humid climate (Fig. 6a-d). Sahara, being341

hot and dry, sees both positive and negative biases in daytime with the majority of cases342

being positive biases (Fig. 6e-h). ESI also shows similar diurnal cycles of biases over Ama-343

zon and Arabia with smaller biases in nighttime especially for Amazon (Fig. 6i,m). Dur-344

ing nighttime in Arabia, ESI consistently overestimates WBGT by around 2°C poten-345

tially as a result of low humidity (Fig. 6o).346

Consistent with the dependence of biases on WBGT values revealed in Fig. 4, a347

negative correlation between daytime biases and WBGT values is identified for both met-348

rics (Fig. 6b,f,j,n). This negative correlation indicates a serious underestimation of ex-349

treme heat stress by sWBGT at Sahara (up to -10°C for WBGT values above 38°C) and350

by ESI at both Amazon (around -5°C for WBGT values over 35°C) and Arabia (up to351

-10°C for WBGT values over 38°C) (Fig. 6f,j,n). The underestimation of extreme heat352

stress is especially severe at dry regions despite a positive bias at mean level for both met-353

rics. Moreover, solar radiation appears to be negatively (positively) correlated with bi-354

ases (WBGT) confirming its important role in contributing to the negative correlation355

between biases and WBGT values. In addition, there is a positive correlation between356

nighttime biases and WBGT values over Bangladesh (Fig. 6c) probably because both357

biases and WBGT values are positively correlated with temperature and humidity. This358

indicates that, when nighttime heat stress is exceptionally severe in hot-humid climate,359

sWBGT tends to overestimate it even more.360

Furthermore, Hot-dry regions have more dispersed bias distribution than hot-humid361

regions. Bias spread is also much larger during daytime potentially as a result of the large362

spatial and temporal variability in short-wave radiation.363
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Figure 6. Biases quantification for sWBGT over Bangladesh (23-25◦N; 88-90◦E) (a-d) and

Sahara (22-24◦N; 24-26◦E) (e-h), and ESI over Amazon (1◦S-1◦N; 70-72◦W) (i-l) and Arabia

(25-27◦N; 43-45◦E) (m-p). The diurnal cycle of biases is plotted in the leftmost column, with the

shading area corresponding to 1 to 99th percentiles. Bias scattergrams for daytime and nighttime

are plotted in the middle two columns with daytime on the left and nighttime on the right. Box-

plots placed within scattergram describe bias spread with box extending from the lower to upper

quartile and whiskers representing 1th and 99th percentiles. Daytime scattergram is colored by

surface downward solar radiation. Bias frequency heatmap for both daytime and nighttime is

plotted in the rightmost column. Data used cover the period 1990-2019 with only the hottest

calendar month (defined by climatological monthly average WBGT) included.

4 Application to labor productivity estimation364

The sWBGT/ESI biases revealed above are expected to affect the downstream im-365

pact assessment of heat stress which might be assessed in many ways depending on the366

application. Here we take labor productivity estimation as an example to examine the367

impact of these biases. Labor productivity depends on working intensity measured by368

metabolic rate. Here we assume a metabolic rate of 415W which is classified as ’high metabolic369

rate’ in ISO7243 standard (ISO, 2017) and representative for agriculture labor. Clima-370

tological mean annual labor productivity (1990-2019) is calculated using all three met-371

rics from ERA5 reanalysis data (Fig. 7a-c). sWBGT vastly underestimates labor pro-372

ductivity (as a result of overestimating heat stress) in tropics and other hot-humid ar-373

eas. The zonal average labor productivity shows large differences across equatorial area374

with values barely below 90% according to WBGT but as low as 60% as indicated by375

sWBGT. To put that in context, that bias (30%) is comparable to the labor loss in trop-376

ics predicted for a nearly 4.0 degree warming by Buzan and Huber (2020) (Fig. 10 in377

their paper), and the predicted global labor loss from the beginning to the end of this378

century under RCP8.5 scenario by Dunne et al. (2013) (Fig. 2 in their paper). ESI clearly379
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did a much better job with respect to deviation magnitudes. It overestimates annual la-380

bor productivity by for example 5 percent in tropics (Fig. 7e,f).381

In order to take into account population distribution and human exposure, we fur-382

ther calculate population-weighted average annual labor productivity for the globe, trop-383

ics and high latitudes during 1950-2019 (Fig. 7g-i). The discrepancy between ESI and384

WBGT is much smaller and relatively stable along with time leading to similar decreas-385

ing trends (-0.26% and -0.33% per decade respectively for global average). However, un-386

derestimation of labor productivity by sWBGT became increasingly large resulting in387

a substantially larger decreasing trends (-1.0% per decade for global average). Namely,388

positive biases in sWBGT not only cause a serious underestimation of labor productiv-389

ity but also a substantial exaggeration of labor reduction tendency. This can be explained390

by the larger positive bias of sWBGT in the hot-humid regime (Fig. 1a). Heat stress over-391

estimation by sWBGT will be further amplified as the world warms with increasing air392

temperature and only small changes in relative humidity (Byrne & O’Gorman, 2013; Byrne393

& OGorman, 2018; Buzan & Huber, 2020). In contrast, solar radiation and wind speed,394

the main controlling factors of ESI bias, have no clear, robust changes with warming over395

land.396

Labor productivity in Fig. 7 is derived by treating both daytime and nighttime hours397

as potentially available working time. However, people within the majority of industries398

tend to work in daytime. Some outdoor work (such as field preparation, sowing, and crop399

harvesting) may rely on daylight making working during nighttime less feasible. Hence,400

we repeat the labor productivity estimation with only daytime hours included (Fig. S3).401

The absolute labor productivity is reduced (comparing Fig. S3a-c with Fig. 7a-c). sWBGT402

still largely underestimate labor productivity (Fig. S3e) although we remove nighttime403

hours when heat stress is consistently and seriously overestimated by sWBGT (Fig. 1a).404

Labor productivity overestimation by ESI becomes stronger (Fig. S3f) which is consis-405

tent with the tendency of heat stress underestimation by ESI in daytime (Fig. 1b).406

Here we estimate annual labor productivity from hourly data which may be not407

available in most archives such as CMIP and CORDEX. It is common to see studies us-408

ing sub-daily (de Lima et al., 2021; Buzan & Huber, 2020), daily (Liu, 2020; Altinsoy409

& Yildirim, 2014; Zhu et al., 2021; Kjellstrom et al., 2018; Orlov et al., 2020) or even monthly410

output (Dunne et al., 2013) for similar purpose. Although not the focus of this article,411

it is useful to quantify the potential error introduced thereby. Therefore, the hourly ERA5412

reanalysis data are re-sampled to 8 and 4 times daily scale (calculate temporal averages413

of radiation flux and re-sample instantaneous values of other fields once each 3 and 6 hours414

interval), and averaged to obtain the daily mean values. The estimation of annual la-415

bor productivity (including both daytime and nighttime hours) is then repeated under416

each temporal resolution (Fig. S4). We found that labor productivity derived from daily417

average inputs is substantially overestimated especially in the tropics (by around 7 to418

more than 13 percent) (Fig. S4f), which is not surprising since both WBGT formula-419

tion and labor productivity function are nonlinear. Particularly, all existing labor pro-420

ductivity functions involve a lower threshold of WBGT (e.g. 25°C for very heavy work421

with a metabolic rate of 520W according to ISO7243 standard) below which there is no422

labor loss. It is likely to have a daily average WBGT below this threshold but much higher423

WBGT values during peaking daytime hours in which case the labor productivity es-424

timated from daily average WBGT is too optimistic. In terms of population-weighted425

global and annual average labor productivity, the adoption of daily average inputs in-426

troduce a consistent overestimation by around 2.2 percent during the period 1950-2019.427

Nevertheless, the derived decreasing trend is similar between hourly (-0.33 percent per428

decade) and daily average inputs (-0.29 percent per decade). In comparison, the 8 or 4429

times daily inputs mainly face a sampling issue (despite the time average for radiation430

fields) which nevertheless only small errors of within ±1 percent in most of the world431

(Fig. S4b,d).432
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Figure 7. Annual average labor productivity for the period 1990-2019 derived from WBGT

(a), sWBGT (b), and ESI (c), with the zonal average value shown in (d). Labor productivity

anomaly introduced by using sWBGT (e) and ESI (f). Population weighted annual average labor

productivity from 1950 to 2019 across the globe (g), low latitudes (30◦S -30◦N) (h) and high lati-

tudes (outside of 30◦S to 30◦N) (i). Labor productivity is quantified assuming a metabolic rate of

415W.

5 Discussion433

sWBGT was soundly criticized for missing two ambient factors contributing to heat434

stress (Budd, 2008). However, it is widely applied because of its simplicity (Smith et al.,435

2018; Willett & Sherwood, 2010; Kakamu et al., 2017; Cooper et al., 2016; Lee & Min,436

2018; Chen et al., 2020; Schwingshackl et al., 2021; Matthews et al., 2017). Particularly,437

sWBGT has been frequently adopted for estimating heat stress-induced labor produc-438

tivity reduction both globally (Kjellstrom et al., 2009; Chavaillaz et al., 2019; Knittel439

et al., 2020) and regionally (Liu, 2020; Altinsoy & Yildirim, 2014; Zhu et al., 2021; Zhang440

& Shindell, 2021). For instance, under RCP8.5 scenario labor productivity for heavy out-441

door work was predicted to decrease by 38% in Southeast Asia and the Middle East by442

2050 (Knittel et al., 2020), and more than 40% in South and East China by the end of443

this century (Liu, 2020); in U.S., around 1.8 billion and 4.4 billion workforce hours were444

predicted to be lost annually by the 2050s and 2100s under RCP8.5 scenario (Zhang &445

Shindell, 2021). Such estimates have been applied to informing adaptation strategies (Zhu446

et al., 2021), or feed into economic models for assessing the downstream socioeconomic447

impact (Zhang & Shindell, 2021; Chavaillaz et al., 2019; DARA, 2012). However, as we448

have demonstrated, the adoption of sWBGT may have introduced substantial overes-449

timation of labor and economic loss which may bias the design of greenhouse gas emis-450

sion policy and decisions of mitigation and/or adaptation investments.451

ESI has seen much less applications (de Lima et al., 2021). Its suitability depends452

more on the application scenarios. The predictions of different heat stress outcomes in-453

volve exposure duration of varying lengths and environmental data of different tempo-454
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ral resolutions (Vanos et al., 2020), and hence are affected by biases in varying degrees.455

For instance, monitoring exertional heatstroke in bricklayers require sub-hourly environ-456

ment data and will be heavily affected by the serious underestimation of extreme heat457

stress by ESI during individual peaking hour with high WBGT values. The risk estima-458

tion of classic heatstroke generally asks for heat stress information at daily timescale which459

is then feed into epidemiological models (Vanos et al., 2020). It therefore concerns more460

about biases at daily mean level. The estimates of labor productivity reduction and the461

consequent economic impacts typically require heat stress information integrated over462

a long period such as a year. In this case, ESI may be an acceptable approximation to463

WBGT due to its relatively small biases under standard climatological conditions.464

Many previous studies use daily (Chen et al., 2020; Schwingshackl et al., 2021) or465

monthly(Newth & Gunasekera, 2018; C. Li et al., 2017; Knutson & Ploshay, 2016; C. Li466

et al., 2020) average inputs to calculate one of the approximated forms of WBGT, ne-467

glecting the fact that WBGT formulation is nonlinear involving nonlinear covariation468

of temperature and moisture conditions. On one hand, it makes WBGT calculated from469

temporally averaged inputs overestimated (Buzan et al., 2015); on the other hand, feed-470

ing daily or monthly average WBGT into labor response function (Liu, 2020; Altinsoy471

& Yildirim, 2014; Zhu et al., 2021; Knittel et al., 2020; Zhang & Shindell, 2021; Chavail-472

laz et al., 2019; Orlov et al., 2020; Dunne et al., 2013) will result in substantial overes-473

timation of labor productivity as we have shown above. For studies using daily average474

sWBGT to estimate labor productivity (Liu, 2020; Altinsoy & Yildirim, 2014; Zhu et475

al., 2021; Knittel et al., 2020; Zhang & Shindell, 2021; Chavaillaz et al., 2019), errors in-476

troduced by the metrics and the improper time scale may cancel each other to some ex-477

tent. For the sake of accuracy, it is recommended to use high-temporal-resolution data478

to calculate heat stress metrics involving the effects of multiple factors such as temper-479

ature and humidity. In addition, a heat stress module called HumanIndexMod had been480

incorporated into the Community Land Model (CLM), the land surface component of481

the Community Earth System Model (CESM) since CLM4.5 (Buzan et al., 2015). It can482

enable the calculation of several heat stress metrics (Liljegren’s WBGT formulation is483

not included though) and thermodynamic quantities at each model time step capturing484

the full nonlinearity of temperature-moisture covariation.485

Except sWBGT and ESI, there are also several other approximations to WBGT486

commonly used within heat stress literature. Orlov et al. (2020) performed a regression487

analysis against WBGT calculated from Liljegren’s formulation and applied the resul-488

tant 2nd order polynomial to subsequent calculations. Some studies use the psychromet-489

ric wet bulb temperature (Tpwb) and air temperature to replace natural wet bulb tem-490

perature and black globe temperature leading to the following formula: WBGT = 0.7∗491

Tpwb+0.3∗Ta (Dunne et al., 2013; Newth & Gunasekera, 2018; C. Li et al., 2017; Knut-492

son & Ploshay, 2016; C. Li et al., 2020; Schwingshackl et al., 2021; D. Li et al., 2020).493

This simplified form neglects the effects of solar radiation making it only apply to in-494

door or well-shaded thermal conditions. We find that although the power of Liljegren’s495

formulation has been well recognized 10 years ago (Lemke & Kjellstrom, 2012), it only496

saw very limited applications (Takakura et al., 2017, 2018; Casanueva et al., 2020; Ja-497

cobs et al., 2019; Orlov et al., 2019). One potential reason is that Liljegren’s approach498

is computationally intensive since it requires iterative calculations and careful treatment499

of latitude, date, and the time of day to get solar radiation correct (Orlov et al., 2020).500

Moreover, Liljegren’s original code was written in C and Fortran language which may501

be not familiar to most end-users. To tackle this problem, we rewrote the code in Cython502

which is fast, easy to use in Python and scales well for large dataset. Leveraging on par-503

allel computing enabled by Dask, it takes around half a minute to calculate one-year WBGT504

at 3-hourly frequency for a GCM with a spatial resolution of 1.5◦×1.5◦ using one node505

(24 cores) of Brown cluster at Purdue University. We include Liljegren’s original formu-506

lation as well as the modified version to take advantage of the full set of radiation com-507
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ponents in climate model output. Please find the details of code availability in the Ac-508

knowledgement section.509

6 Summary and conclusions510

We explicitly calculated Liljegren’s formulation for WBGT and assessed the per-511

formance of two previously used, simple approximations WBGT–sWBGT and ESI–against512

it. The bias structure across the 4-D climatic (atmospheric temperature, shortwave ra-513

diation, specific humidity, wind speed) space of this bias was explored within an ideal-514

ized context. Within this idealized framework, sWBGT is expected to overestimate WBGT515

during nighttime and under hot-humid days. Both approximate metrics tend to under-516

estimate WBGT within sunny, calm days. An overestimation by ESI may occur under517

dry nighttime conditions. We also explored the bias distribution driven by ERA5 reanal-518

ysis data computed at hourly resolution (from 1990-2019) and find results which are con-519

sistent with the structure revealed under idealized context. Under standard climatolog-520

ical conditions, we identify a substantial overestimation by sWBGT across the world and521

considerably smaller biases for ESI. Nevertheless, biases tend to be negatively correlated522

with WBGT values suggesting a potentially serious underestimation of most extreme heat523

stress values by both metrics especially in subtropical dry regions.524

Given the large biases of sWBGT, we can not recommend it as a suitable approx-525

imation to WBGT, which raises serious questions about prior work, since this is the most526

commonly used approximation in previous studies. Studies using sWBGT to approxi-527

mate WBGT need to be reevaluated as likely systematically overestimate heat stress and528

its impacts over most of the Earth, most of the time, while underestimating the sever-529

ity of the most extreme (>99.9 percentile exceedance). ESI is more suitable for many530

applications and it’s appropriateness depends more on the application purposes. It may531

be acceptable for evaluating heat stress at climatological mean level or the integrative532

downstream impact over a long period (such as annual labor productivity). However,533

the expected serious underestimation of most extreme heat stress makes it less suitable534

for epidemiological studies (i.e. on morbidity and mortality), extreme heat stress anal-535

ysis, or as an operational index for heat warning, heatwave forecasting or guiding activ-536

ity modification at workplace.537

Nevertheless, Liljegren’s explicit formulation of WBGT should be preferred over538

these ad hoc approximations. Our code is straightforward to use and well suited for cal-539

culating WBGT from large-size climate model output and reanalysis data.540

Notation541

cp specific heat of dry air at constant pressure (J · kg1 ·K1)542

D diameter of wick (m)543

ea ambient vapor pressure (hPa)544

ew vapor pressure at the surface of the wick (hPa)545

ESI environmental stress index (°C)546

fdir fraction of the total horizontal solar irradiance due to the direct beam of the sun547

h convective heat transfer coefficient for the wick or black globe (W ·m−2 ·K−1))548

L length of wick (m)549

Ldown Surface downward long-wave radiation (W ·m−2)550

Lup Surface upwellig long-wave radiation (W ·m−2)551

M metabolic heat production rate (W)552

MAir molecular weight of dry air (kg)553

MH2O molecular weight of water vapor (kg)554

RH Relative humidity (%)555
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Sc Schmidt number556

sWBGT simplified wet bulb globe temperature (°C)557

Sdown Surface downward solar radiation (W ·m−2)558

Sup Surface upwelling solar radiation (W ·m−2)559

Ta ambient air temperature (K)560

Tg Black globe temperature (K)561

Tsfc surface temperature (K)562

Tw natural wet bulb temperature (K)563

P surface pressure (hPa)564

Pr Prandtl number565

WBGT wet bulb globe temperature (K)566

WBGTlim WBGT limit reference value (K)567

WBGTlim,rest WBGT limit reference value under resting metabolic rate (117 W) (K)568

αg albedo of the globe569

αsfc surface albedo570

αw albedo of the wick571

σ Stefan-Boltzmann constant (W ·m−2 ·K−4)572

εa emissivity of the atmosphere573

εg globe emissivity574

εsfc surface emissivity575

θ Solar zenith angle (radian)576

∆Fnet net radiative gain by the wick from the environment (W)577
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Bröde, P., Fiala, D., Lemke, B., & Kjellstrom, T. (2018). Estimated work abil-633

ity in warm outdoor environments depends on the chosen heat stress assess-634

ment metric. International Journal of Biometeorology , 62 (3), 331–345. doi:635

10.1007/s00484-017-1346-9636

Budd, G. M. (2008). Wet-bulb globe temperature (WBGT)–its history and its limi-637

tations. Journal of Science and Medicine in Sport , 11 (1), 20–32. doi: 10.1016/638

j.jsams.2007.07.003639

Burke, M. B., Miguel, E., Satyanath, S., Dykema, J. A., & Lobell, D. B. (2009).640

Warming increases the risk of civil war in Africa. Proceedings of the National641

Academy of Sciences, 106 (49), 20670–20674. doi: 10.1073/pnas.0907998106642

Buzan, J. R., & Huber, M. (2020). Moist Heat Stress on a Hotter Earth. Annual643

Review of Earth and Planetary Sciences, 48 (1), 623–655. doi: 10.1146/annurev644

-earth-053018-060100645

Buzan, J. R., Oleson, K., & Huber, M. (2015). Implementation and compari-646

son of a suite of heat stress metrics within the Community Land Model647

version 4.5. Geoscientific Model Development , 8 (2), 151–170. doi:648

10.5194/gmd-8-151-2015649

Byrne, M. P., & O’Gorman, P. A. (2013). Link between landocean warming contrast650

and surface relative humidities in simulations with coupled climate models.651

Geophysical Research Letters, 40 (19), 5223–5227. doi: 10.1002/grl.50971652

Byrne, M. P., & OGorman, P. A. (2018). Trends in continental temperature and hu-653

midity directly linked to ocean warming. Proceedings of the National Academy654

of Sciences, 115 (19), 4863–4868. doi: 10.1073/pnas.1722312115655

Casanueva, A., Kotlarski, S., Fischer, A. M., Flouris, A. D., Kjellstrom, T., Lemke,656

B., . . . Liniger, M. A. (2020). Escalating environmental summer heat ex-657

posurea future threat for the European workforce. Regional Environmental658

–18–



manuscript submitted to Earth’s Future

Change, 20 (2), 40. doi: 10.1007/s10113-020-01625-6659

Center for International Earth Science Information Network - CIESIN - Columbia660

University. (2018). Gridded Population of the World, Version 4 (GPWv4):661

Population Count Adjusted to Match 2015 Revision of UN WPP Country662

Totals, Revision 11. NASA Socioeconomic Data and Applications Center663

(SEDAC). Retrieved from https://doi .org/10 .7927/H4PN93PB (Place:664

Palisades, NY)665

Chavaillaz, Y., Roy, P., Partanen, A.-I., Da Silva, L., Bresson, E., Mengis, N., . . .666

Matthews, H. D. (2019). Exposure to excessive heat and impacts on labour667

productivity linked to cumulative CO2 emissions. Scientific Reports, 9 (1),668

13711. doi: 10.1038/s41598-019-50047-w669

Chen, X., Li, N., Liu, J., Zhang, Z., Liu, Y., & Huang, C. (2020). Changes in Global670

and Regional Characteristics of Heat Stress Waves in the 21st Century. Earth’s671

Future, 8 (11). doi: 10.1029/2020EF001636672

Cooper, E. R., Ferrara, M. S., Casa, D. J., Powell, J. W., Broglio, S. P., Resch,673

J. E., & Courson, R. W. (2016). Exertional Heat Illness in American Football674

Players: When Is the Risk Greatest? Journal of Athletic Training , 51 (8),675

593–600. doi: 10.4085/1062-6050-51.8.08676

DARA. (2012). Climate vulnerability monitor: A guide to the cold calculus of a hot677

planet (2nd ed.) (Tech. Rep.). Madrid: Fundacion DARA International.678

Dask Development Team. (2016). Dask: Library for dynamic task scheduling [Com-679

puter software manual]. Retrieved from https://dask.org680

de Freitas, C. R., & Grigorieva, E. A. (2014). A comprehensive catalogue and clas-681

sification of human thermal climate indices. International Journal of Biometeo-682

rology , 59 , 109–120. doi: 10.1007/s00484-014-0819-3683

de Lima, C. Z., Buzan, J. R., Moore, F. C., Baldos, U. L. C., Huber, M., & Hertel,684

T. W. (2021). Heat stress on agricultural workers exacerbates crop impacts685

of climate change. Environmental Research Letters, 16 (4), 044020. doi:686

10.1088/1748-9326/abeb9f687

Dernedde, E., & Gilbert, D. (1991). Predicction of Wet-Bulb Globe Temperatures in688

aluminum smelters. American Industrial Hygiene Association Journal , 52 (3),689

120–126. doi: 10.1080/15298669191364451690

Diffenbaugh, N. S., & Giorgi, F. (2012). Climate change hotspots in the CMIP5691

global climate model ensemble. Climatic Change, 114 (3-4), 813–822. doi:692

https://doi.org/10.1007/s10584-012-0570-x693

Di Napoli, C., Hogan, R. J., & Pappenberger, F. (2020). Mean radiant temperature694

from global-scale numerical weather prediction models. International Journal695

of Biometeorology , 64 (7), 1233–1245. doi: 10.1007/s00484-020-01900-5696

Dunne, J. P., Stouffer, R. J., & John, J. G. (2013). Reductions in labour capacity697

from heat stress under climate warming. Nature Climate Change, 3 (6), 563–698

566. doi: 10.1038/nclimate1827699

Ebi, K. L., Vanos, J., Baldwin, J. W., Bell, J. E., Hondula, D. M., Errett, N. A., . . .700

Berry, P. (2021). Extreme Weather and Climate Change: Population Health701

and Health System Implications. Annual Review of Public Health, 42 (1),702

293–315. doi: 10.1146/annurev-publhealth-012420-105026703

Epstein, Y., & Moran, D. S. (2006). Thermal Comfort and the Heat Stress Indices.704

Industrial Health, 44 (3), 388–398. doi: 10.2486/indhealth.44.388705

Foster, J., Smallcombe, J. W., Hodder, S., Jay, O., Flouris, A. D., Nybo, L.,706

& Havenith, G. (2021). An advanced empirical model for quantifying707

the impact of heat and climate change on human physical work capac-708

ity. International Journal of Biometeorology , 65 (7), 1215–1229. doi:709

10.1007/s00484-021-02105-0710

Gaspar, A. R., & Quintela, D. A. (2009). Physical modelling of globe and nat-711

ural wet bulb temperatures to predict WBGT heat stress index in outdoor712

environments. International Journal of Biometeorology , 53 (3), 221–230. doi:713

–19–



manuscript submitted to Earth’s Future

10.1007/s00484-009-0207-6714

Grundstein, A., & Cooper, E. (2018). Assessment of the Australian Bureau of Me-715

teorology wet bulb globe temperature model using weather station data. Inter-716

national Journal of Biometeorology , 62 (12), 2205–2213. doi: 10 .1007/s00484717

-018-1624-1718

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cour-719

napeau, D., . . . Oliphant, T. E. (2020). Array programming with NumPy.720

Nature, 585 (7825), 357–362. doi: 10.1038/s41586-020-2649-2721

Havenith, G., & Fiala, D. (2015). Thermal Indices and Thermophysiologi-722

cal Modeling for Heat Stress. In R. Terjung (Ed.), Comprehensive Phys-723

iology (pp. 255–302). Hoboken, NJ, USA: John Wiley & Sons, Inc. doi:724

10.1002/cphy.c140051725

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J.,726
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Figure S1. Comparison between WBGTs calculated with the average cosine zenith angle dur-

ing each hourly interval (cosθ) and that during only the sunlit part of each interval (cosθsunlit).

A grid cell at 36◦N and 84.25◦E (close to Y-12 National Security Complex in U.S.) is selected for

demonstration purpose. Shown in upper panel are differences in hourly WBGT values calculated

from two types of cosine zenith angle in 2019 (WBGT calculated from cosθ - WBGT calculated

from cosθsunlit). The lower panel zooms in a 3-day period from October 9 to 11, 2019 show-

ing WBGTs calculated with cosθ (red solid curve) and cosθsunlit (black cross). WBGT values

calculated from cosθ show erroneous peaks around sunrise.
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Figure S2. Occurrence percentage of positive biases >5°C for sWBGT during 1990-2019 with

an additional requirement of WBGT >= 25°C. Only the hottest calendar month (defined by

climatological monthly average WBGT) is included.
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Figure S3. Same as Fig. 7 but labor capacity is calculated during daytime only
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Figure S4. Annual average labor productivity calculated from hourly inputs (a); annual

average labor productivity calculated from 8 times daily (c), 4 times daily (e), and daily average

inputs (g), and their anomalies (d, f, h respectively) compared with that based on hourly inputs

(other resolutions minus hourly); population weighted global annual average labor productivity

during 1950-2019 (b).
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