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Abstract

Soil carbon cycling and ecosystem functioning can strongly depend on how microbial communities regulate their metabolism

and adapt to changing environmental conditions to improve their fitness. Investing in extracellular enzymes is an important

strategy for the acquisition of resources, but the principle behind the trade-offs between enzyme production and growth is not

entirely clear. Here we show that the enzyme production rate per unit biomass may be regulated in order to maximize the

biomass specific growth rate. Based on this optimality hypothesis, we derive mathematical expressions for the biomass specific

enzyme production rate and the microbial carbon use efficiency, and verify them with experimental observations. As a result of

this analysis, we also find that the optimal enzyme production rate decays hyperbolically with the soil organic carbon content.

We then show that integrating the optimal extracellular enzyme production into microbial models may change considerably soil

carbon projections under global warming, underscoring the need to improve parameterization of microbial processes.
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jections12
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Abstract13

Soil carbon cycling and ecosystem functioning can strongly depend on how microbial com-14

munities regulate their metabolism and adapt to changing environmental conditions to15

improve their fitness. Investing in extracellular enzymes is an important strategy for the16

acquisition of resources, but the principle behind the trade-offs between enzyme produc-17

tion and growth is not entirely clear. Here we show that the enzyme production rate per18

unit biomass may be regulated in order to maximize the biomass specific growth rate.19

Based on this optimality hypothesis, we derive mathematical expressions for the biomass20

specific enzyme production rate and the microbial carbon use efficiency, and verify them21

with experimental observations. As a result of this analysis, we also find that the opti-22

mal enzyme production rate decays hyperbolically with the soil organic carbon content.23

We then show that integrating the optimal extracellular enzyme production into micro-24

bial models may change considerably soil carbon projections under global warming, un-25

derscoring the need to improve parameterization of microbial processes.26

Plain Language Summary27

Understanding how soil microbial communities function and cycle carbon and nu-28

trients is detrimental to accurately project future soil carbon stocks and global warm-29

ing and to properly manage soils. In order to assimilate carbon and energy, microbial30

communities produce extracellular enzymes that degrade soil organic matter to then be31

able to uptake it. However, the enzyme production process requires microbes to invest32

resources at the expense of their own growth, giving rise to a complex trade-off that has33

been difficult to predict. Here we leverage a microbial model and recent experimental34

data on soil microbial communities across the UK to show that soil microbial commu-35

nities regulate the investment in resource acquisition to maximize their growth rate. This36

finding provides an underlying principle that describes how soil microbes may regulate37

physiological trade-offs and results in a mathematical formulation that can be integrated38

into microbial carbon models to improve predictions of soil carbon cycling.39

1 Introduction40

Soil microbial communities play a major role in the biogeochemical cycles of car-41

bon (C) and nutrients in the biosphere (Falkowski et al., 2008; Paul, 2014; Naylor et al.,42

2020) and their functioning is essential not only to soil health and fertility (Brady & Weil,43

2016), but also to soil carbon sequestration and, in turn, global warming (Singh et al.,44

2010). Microbially-explicit C models are increasingly being used to account for how mi-45

crobial processes control soil C decomposition (Allison et al., 2010; J. Schimel, 2001; Ger-46

man et al., 2012; Davidson et al., 2014; Sulman et al., 2018). An important aspect of these47

models is that through the microbial carbon use efficiency (CUE) —the ratio of C used48

for growth to C acquired— they account for how microbes are allocating C between an-49

abolism, catabolism, and production of extracellular enzymes (Manzoni et al., 2012; R. L. Sins-50

abaugh et al., 2013; Geyer et al., 2016; Manzoni et al., 2018). However, how microbes51

regulate their enzyme production in response to soil environmental conditions is not clear52

and, as a result, microbial models are formulated assuming that the enzyme production53

rate is simply proportional to the microbial biomass.54

The production of extracellular enzymes is an essential step in the decomposition55

of soil organic carbon (SOC) (Conant et al., 2011). Soil microorganisms release extra-56

cellular enzymes in order to catalyze the depolymerization of complex soil organic mat-57

ter compounds and produce soluble, low molecular weights compounds that can be read-58

ily assimilated (R. Sinsabaugh & Moorhead, 1994). To this end, microbes need to allo-59

cate available resources, in the form of carbon and energy, to the synthesis of these en-60

zymes, hence necessarily facing a trade-off (Koch, 1985; Ramin & Allison, 2019; Malik61

et al., 2019). In fact, while synthesizing extracellular enzymes comes at the expense of62
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growth and carbon use efficiency, higher extracellular enzyme concentrations result in63

faster depolymerization and, in turn, potentially higher C assimilation by microbes. Char-64

acterizing this trade-off and how it is affected by environmental conditions is crucial to65

quantify SOC decomposition dynamics, especially in response to perturbations (Sihi et66

al., 2016; Sulman et al., 2018).67

Recent developments in microbial C modeling incorporate extracellular enzyme pro-68

duction and activities (Allison et al., 2010; Allison, 2014; Sihi et al., 2016; Sulman et al.,69

2018; Abramoff et al., 2018). Contrarily to traditional C models which adopted a con-70

stant CUE value or directly estimated C decomposition as a first-order reaction not ex-71

plicitly controlled by microbial activity (e.g., (Parton et al., 1987; C. Li, 1996; Manzoni72

et al., 2009)), microbial models with explicit physiology couple C decomposition to mi-73

crobial and extracellular enzyme activities (R. Sinsabaugh & Moorhead, 1994; J. Schimel,74

2001; Allison et al., 2010; Sihi et al., 2016). These new models have the potential to im-75

prove the prediction of soil C dynamics by taking into account the microbial response76

to different biological, physical, chemical conditions across environmental gradients (Wieder77

et al., 2013, 2015). However, they include more equations, state variables, and param-78

eters that make them difficult to calibrate. In-depth analyses of microbial processes and79

trade-offs in resource allocation can improve parameterization of such models and con-80

tribute to reducing the structural and parameter uncertainty in SOC projections.81

Here, we hypothesize that microbial communities regulate the trade-off between82

growth and production of extra-cellular enzymes in order to maximize the biomass spe-83

cific growth rate. We provide explicit mathematical expressions for the biomass specific84

enzyme production rate and for the microbial CUE, and show that the trade-off between85

growth and enzyme production is controlled by the SOC content. After testing our pre-86

dictions against experimental observations, we show that including this optimal regu-87

lation of enzyme production in microbial models provides a considerably different response88

to warming, especially in terms SOC content.89

2 Theory: optimal regulation of extracellular enzymes production90

Figure 1. Schematic representation of carbon pools

and their interactions in microbial carbon models.

We begin by deriving an91

expression for the production92

of extracellular enzymes based93

on the optimality hypothesis94

that soil microbes regulate the95

production of enzymes to max-96

imize the biomass specific growth97

rate. We will then test our re-98

sults against experimental ob-99

servations in Sec. 3.100

We leverage the core for-101

mulation of microbial carbon102

models, which reflect our state-103

of-the-art understanding of mi-104

crobial processes in soils. Soil105

microbial processes are gener-106

ally described considering four107

carbon pools, as showed in Fig.108

1 (Allison et al., 2010; Sihi et109

al., 2016). The soil organic car-110

bon (SOC), supplied by plant111

input, is broken down into soluble organic carbon (DOC) via the depolymerization of112

complex SOC molecules, catalyzed by extracellular enzymes (the enzyme pool, E) pro-113
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duced by soil microbes (B) (J. P. Schimel & Weintraub, 2003; Allison et al., 2010). The114

microbial biomass uptakes DOC, partly converting it to CO2 to obtain energy (i.e., catabolism)115

and using the rest for synthesizing new biomass and producing extracellular enzymes (Fig-116

ure 2A). The soil microbial community is thus treated as a single species with average117

physiological parameters that are meant to represent the large variability of the soil en-118

vironment.119

These microbial processes lead to the following expression for the biomass growth120

rate (Manzoni et al., 2012; Hagerty et al., 2018),121

G = U − PE −RU −RB −RE , (1)

where U is the DOC uptake rate, PE is the production rate of extracellular enzymes, and122

Rs are the carbon losses via respiration. These include respiration linked to C uptake123

(RU ), to the production of enzymes (RE), and maintenance respiration RB . The formu-124

lation of G in Eq. 1 is particularly suitable to variational approaches, as it explicitly dis-125

tinguishes the terms contributing positively to growth (U) from those contributing neg-126

atively (Rs and PE). Eq. 1 in fact contains the trade-off between growth and produc-127

tion of extracellular enzymes, as it accounts for the C costs of producing enzymes (PE128

and RE), which necessarily reduce growth by reducing the microbial CUE (Koch, 1985;129

Ramin & Allison, 2019) (Figure 2).130

The uptake rate U is expressed as a function of the dissolved organic carbon (DOC)131

and microbial biomass (B), according to the Michaelis-Menten expression132

U = UmaxB
DOC

DOC +KU
, (2)

where Umax is the biomass specific uptake rate under non-limiting DOC concentrations133

and KU is the half-saturation constant. We assume that the concentration of DOC is134

proportional to product of SOC and enzyme concentration E. Under quasi-steady state135

conditions for the enzyme pool, the enzyme concentration E = PE/δE , so that DOC =136

βSOC · PE/δE (β being a proportionality coefficient) and the uptake rate137

U = UmaxB
SOC · PE

SOC · PE +K ′U
, (3)

where K ′U = δE · KU/β, PE is the enzymes production rate, and δE is the enzymes138

turnover rate. Expressing, as in microbial models, the respiration fluxes as RU = rU ·139

U , RB = rB ·B, RE = rE · PE (where rs are respiration coefficients) and the produc-140

tion of enzymes as PE = kE · B, (kE is the biomass specific enzyme production rate)141

the biomass specific growth rate (µ = G/B) can be written as142

µ = Umax
SOC · kE ·B

SOC · kE ·B +K ′U
(1 − rU ) − rB − kE(1 + rE). (4)

Based on the observation that B = αSOC, where α is a constant (see Fig. 2D in (Malik143

et al., 2018)), Eq. 4 can be re-expressed as144

µ = Umax
kE

kE +K∗U
(1 − rU ) − rB − kE(1 + rE), (5)

where k∗U = k′U/(αSOC2). Eq. 5 expresses the growth rate as a function of only SOC145

(which is inside k∗U ) and the biomass specific rate of extracellular enzyme production,146

kE . Note also that kE appears both in the uptake rate, a term which positively affect147

µ, and in last term (kE(1+rE)), which negatively affects µ. In fact, under given resource148

availability, higher ke result in faster depolymerization of SOC and in turn higher C up-149

take, but carries higher C costs, hence reducing the CUE (see Figure 2A). On the con-150

trary, for lower ke microorganisms can invest more in growth and increase their CUE,151

–4–
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Figure 2. A Schematic representation of C flow through a microorganism facing a trade-off

in C allocation between growth and production of extracellular enzymes. B Conceptual plot

showing the effect of enzyme production rate on microbial CUE, DOC uptake rate, and specific

growth rate. For given resource availability, higher enzyme production rates promote depoly-

merization and uptake, but the C costs increase, causing the microbial CUE to decrease. As a

result the growth rate (µ = CUE · U/B) has a maximum at an intermediate (“optimal”) enzyme

production rate.

but this results in lower resource acquisition (uptake). In this trade-off, there is an ideal152

balance between CUE and production of enzymes that maximizes µ (Figure 2B).153

To obtain the expression for the value of kE that satisfies our optimality hypoth-154

esis, we compute the derivative of Eq. 5 with respect to kE ,155

dµ

dkE
=

U∗ · k∗U
(k∗U + kE)2

− (1 + kE), (6)

where U∗ = Umax(1 − rU ) was introduced for conciseness. Setting dµ/dkE = 0 and156

solving for kE then yields the “optimal” value of kE that maximises µ,157

koptE =

√
U∗k∗U
1 + rE

− k∗U ≈

√
U∗k∗U
1 + rE

, (7)

where the last equality derives from the fact that k∗U is very small (k∗U � 1) and it is158

negligible compared to the first term where it is inside the square root. Lastly, we can159

group all the constants —which encode key information on microbial physiology— to160

obtain a relation between the optimal biomass specific production of enzymes and SOC,161

koptE = γ · 1

SOC
, (8)

where γ =
√
U∗K ′U/(α+ αrE). According to Eq. 8, which is a mathematical formu-162

lation of the optimality hypothesis, koptE is not a constant, but a function of the SOC con-163

tent, an important indicator of resources availability. Soil microorganisms thus adjust164

their biomass specific enzyme production rate koptE to maximize the growth rate µ by “sens-165

ing” the availability of resources (i.e., “SOC”) in their environment. From this optimal-166

ity hypothesis, we can also predict how the microbial CUE and the growth rate change167
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Figure 3. A Relationship between biomass specific enzyme production and SOC. The con-

tinuous line is computed from Eq. 8, fitted by means of a Major Axis Regression (p < 0.001). B

Relationship between microbial CUE and SOC. The continuous line is computed from Eq. 9, also

fitted by means of a Major Axis Regression (p < 0.01). Gray shaded areas indicate the confidence

bands. The experimental observations of biomass specific enzyme production rate, SOC, and

CUE are from Malik et al. (2019).

with respect to SOC. Substituting Eq. 8 in Eq. 5 and dividing by U/B yields a relation-168

ship of the form169

CUE = CUE0 −
b

SOC
, (9)

where CUE0 = 1 − ru − rB/(Umaxη), b = (γ
√
U∗(1 + rE))/(Umaxη), and η = γ/(γ +170

k
′

U/α). Combining Eqs. 8 and 9 then yields the relationship between CUE and koptE ,171

CUE = CUE0 −
b

γ
koptE , (10)

Finally, from Eq. 8 and the fact that CUE = Bµ/U , the specific growth rate µ = UmaxηCUE.172

3 Experimental verification173

To test if soil microorganisms regulate their investment in extracellular enzymes174

so as to maximize their specific growth rate, we checked whether the observations of kE175

and CUE vary with SOC as predicted by Eqs. 8 and 9, respectively. To this regard, we176

retrieved experimental data from Malik et al. (2019), which measured biomass specific177

enzyme production and carbon use efficiency in circumneutral pH soils from 38 sites across178

the United Kingdom. Sites have variable land uses, including pristine and intensive grass-179

lands and arable soils. Soils also had different SOC content, allowing us to specifically180

test our expressions. We refer to Malik et al. (2018) and Malik et al. (2019) for more de-181

tails on soil sampling and analyses. The measurements do not provide directly kE , but182

a proxy for it. Therefore, here we focused on how kE decays with the SOC content and183

not on the specific values of γ or the coefficient relating kE to its proxy. We then sim-184

ply fitted the value of γ through a standard least squares method and tested whether185

Eqs. 8, 9, and 10 match the observations. By doing so, we also avoided introducing un-186

certainty in the choice of physiological parameter values.187

Figure 3A readily shows that Eq. 7 matches the observations throughout the en-188

tire range of measured SOC, lending support to our hypothesis that microorganisms op-189

timize their biomass specific production of enzymes to maximize the specific growth rate,190

µ, for given SOC content. Our theory thus provides a principle according to which soil191
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microorganisms regulate the extracellular enzymes-growth trade-off. At low SOC con-192

tents microorganisms find it convenient (or are forced) to invest highly in enzymes so193

as to accelerate the depolymerization of the available SOC content, even if this is low,194

and obtain enough DOC to uptake. On the contrary, at high SOC contents depolymer-195

ization can proceed at high rates even with lower enzyme concentrations. Accordingly,196

rather than producing excess enzymes with limited benefits, microbes can “afford it” to197

invest more heavily in the biosynthesis of new biomass. The scatter around the predicted198

curve is expected, as these measurements include soils with different land use and land199

cover, soil pH, and microbial diversity (Malik et al., 2018), in addition of course to pos-200

sible measurement error and uncertainty.201

Figure 3B shows that our predictions also match the relationship between CUE and202

SOC, independently supporting our optimality hypothesis. Eq. 9 provides a mathemat-203

ical formulation for microbial regulation of the community CUE under optimal regula-204

tion of C allocation between growth and production of extracellular enzymes. As we have205

seen above, at low SOC soil microorganisms need to produce more enzymes to obtain206

sufficient labile substrate, and as a result the CUE (fraction of C allocated to biosyn-207

thesis of new biomass) declines. As the SOC increases, microbes invest less in enzyme208

production and more into growth, hence increasing their CUE up to their physiological209

maximum, CUE0. This trade-off becomes clearly evident in the negative relationship be-210

tween CUE and koptE expressed by Eq. 10 (Figure 4A).211

4 Discussion and implication212

Soil microorganisms are biological machines able to evolve and adapt to local en-213

vironmental conditions to improve their fitness (von Stockar, 2013; Falkowski et al., 2008;214

Roach et al., 2018; Noda-Garcia et al., 2018; Naylor et al., 2020). To provide a more phys-215

ical foundation to the concepts of evolution and adaptation, there have been a number216

of studies trying to identify quantitative measures of fitness for microbial communities,217

such as the growth rate (Westerhoff et al., 1983; Manzoni et al., 2017), the growth yield218

(Bachmann et al., 2013), or the energy efficiency (Maitra & Dill, 2015), from which a219

variety of optimality principles were formulated. According to which one of these prin-220

ciples microorganisms evolve remains an open question, whose answer may depend on221

the environmental conditions (Lipson, 2015) and the timescale of observation (Roach et222

al., 2018), but also on the specific independent variables that are being explored, those223

that are being kept fixed, and what is included as mathematical constraints (Martyushev224

& Seleznev, 2006). Here we hypothesized that soil microorganisms regulate the produc-225

tion of extracellular enzymes in order to maximize the biomass specific growth rate, while226

all other physiological parameters (e.g., maximum uptake rate Umax, biomass specific227

maintenance rate rB) are considered constant, or better that they do not vary with kE .228

The hypothesis is supported for circumneutral pH soils by experimental observations.229

To better understand this optimal regulation of enzyme production from a phys-230

ical point of view, we can further analyze Eq. 7, focusing in particular on k∗U (= (KU ·231

δE)/(α SOC2)). As a half-saturation constant for the functional response of microbial232

uptake to kE (see Eq. 5), k∗U measures how effective an increase in kE would be in in-233

creasing microbial C uptake. A high value of k∗U indicates that external conditions are234

not favorable to the action of enzymes and the formation of DOC (i.e., lower SOC) and235

that there is a relatively low number microorganisms available to produce enzymes. In236

turn, when k∗U is high a microorganism needs to invest more in enzymes to catalyze the237

formation DOC and uptake it. By contrast, a low value of k∗U is indicative of favorable238

environmental conditions and higher microbial biomass, such that a microorganism can239

reallocate more resources to growth. Interestingly, inside the square root, k∗U is then mul-240

tiplied by the C gains (in terms of growth, U∗ = Umax(1−rU )) and divided by the C241

costs (1+rE) of producing more enzymes. This emphasizes the fact that microorgan-242
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Figure 4. A Trade-off relationship between CUE and biomass specific enzyme production.

The continuous line is computed from Eq. 8. B Derived relationship between microbial CUE and

specific growth rate, reflecting a resource acquisition strategy (Lipson, 2015). The experimental

observations of biomass specific enzyme production rate and CUE are from (Malik et al., 2019).

isms both evaluate whether producing more enzymes is actually necessary to increase243

uptake (through k∗U ) and weigh C benefits and costs (through the ratio U∗/(1+rE)).244

Resource allocation strategies have the potential to greatly impact SOC sequestra-245

tion and ecosystem functioning, for instance by affecting the relation between growth246

rate and yield (here CUE) (Lipson, 2015; Ferenci, 2016). Interestingly, our optimality247

hypothesis (investment in extracellular enzymes to maximize the growth) leads to a pos-248

itive relationship between the CUE and the specific growth rate (i.e., µ = UmaxηCUE),249

in agreement with what hypothesised by Lipson (2015) for a resource acquisition strat-250

egy. This is also in line with what was observed in these soils through metaproteomics251

(Malik et al., 2018), which indicated higher investment in growth and in resource acqui-252

sition in higher SOC and lower SOC soils, respectively. The observations follow the pre-253

dicted trend (Figure 4B), at least up to a growth rate of ≈ 0.3 (d−1), after which the254

CUE tends to decrease. However, the regulation of enzyme production is only one of the255

multiple factors determining the CUE vs. growth rate relationship. Across the sampled256

soils, there might be multiple strategies occurring simultaneously and, while resource ac-257

quisition may be more important at lower growth rates and CUE (i.e., the increasing branch258

of the curve in Fig. 4B), fast and energy-wasting growth might affect the CUE at higher259

growth rates (i.e., the decreasing branch of the curve). Nevertheless, observations span260

a variety of soils with their own specific properties (e.g., microbial diversity, carbon sources,261

etc.) and each measurement averages out multiple microbial species and their different262

strategies within a given soil sample. These factors make it difficult to fully interpret the263

relationship between CUE and growth rate shown in Figure 4B.264

Due to the nonlinear, intertwined interactions between microbial processes and SOC265

dynamics, the effects of microbial regulation of extracellular enzymes production can also266

propagate in scale and impact the long-term SOC dynamics (Wieder et al., 2015). In-267

deed, microbial carbon models have been developed to account for the importance of mi-268

crobial extracellular enzyme production and depolymerization of SOC, a possible rate-269

limiting step in SOC decomposition (Bengtson & Bengtsson, 2007; Conant et al., 2011),270

and improve SOC projections in response to global warming (Allison et al., 2010; Wieder271

et al., 2015). Here we explored whether improving the representation of enzyme produc-272

tion using our optimality hypothesis gives rise to a different response to warming. To273

this end, we considered the temperature dependence of the depolymerization and up-274

take rates, the maintenance respiration, and the half-saturation constants, and analyzed275

–8–
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the steady state SOC content as a function of a temperature increase. The results read-276

ily show that the SOC depletion upon warming is substantially more pronounced when277

using koptE than with a constant kE (see Figure 5), suggesting that the representation of278

enzyme production can considerably alter SOC projections. The optimality hypothesis279

in fact introduces a positive feedback on SOC depletion. As the SOC content decreases,280

microbial communities produce more extracellular enzymes and accelerate the depoly-281

merization, further enhancing SOC depletion.282

Figure 5. Depletion in steady state soil SOC pool as

a function of temperature, highlighting the important role

that enzyme production regulation plays in SOC projec-

tions. We used default parameters provided by (Hagerty

et al., 2018), Q10 values from (Sihi et al., 2016), and tem-

perature dependence of half-saturation constants from

(Allison et al., 2010).

283

While these results high-284

light the importance of integrat-285

ing microbial regulation of ex-286

tracellular enzyme production287

in microbial models, Figure 5288

should still be interpreted with289

caution since additional pro-290

cesses affect SOC projections.291

First, the interaction between292

biomass (e.g., necromass) and293

mineral surfaces may contribute294

to SOC stabilization and reg-295

ulate its depletion under higher296

temperatures. This may be par-297

ticularly important in situations298

(e.g., regeneration of degraded299

soils) in which microbial com-300

munities can switch strategy and301

start investing more in growth302

(higher CUE), which will even-303

tually lead to more production304

of microbial necromass that can305

be stabilized on mineral surfaces.306

Second, while temperature does307

not affect how koptE decays with SOC, it may affect the coefficient γ, which here was cal-308

ibrated so as to obtain the same steady state SOC as “traditional” microbial models with309

constant kE at 15 ◦C. This assumption may thus have affected the depletion in SOC con-310

tent at higher temperatures. There are other possible mechanisms –often not taken into311

account– that can alter the response to warming, such as the fact that there might be312

a limited number of SOC-enzymes reaction sites or that microbial communities may feed313

on free enzymes (Sihi et al., 2016). Microbial communities may also adapt to changes314

in temperature and regulate their CUE (Allison, 2014), a strategy that may have an im-315

pact on resource acquisition investments such as on extracellular enzymes production.316

Experiments on the effects of soil warming on microbial traits (CUE, kE , µ) (J. Li et al.,317

2019; Nottingham et al., 2020) and microbes-mineral interactions (Kleber et al., 2021)318

may provide additional clues to understand the impact of warming on microbial processes319

more holistically.320

Lastly, integrating resource allocation strategies in microbial carbon models (such321

as Eqs. 8 and 9) may improve their prediction of SOC dynamics, not only in response322

to warming but also when soils experience temporal variability in resources, such as agri-323

cultural ecosystems (Wei et al., 2014; Smith et al., 2016; Sanderman et al., 2017). In these324

systems the continuous regulation of extracellular enzyme production as resource avail-325

ability vary might not be captured by a constant kE value, likely introducing uncertainty.326

Improving the parameterization of microbial processes in these cases might help better327

understand the effect of regeneration practices as well as design suitable agricultural prac-328

tices for preserving soil health (Kallenbach et al., 2019).329
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5 Conclusions330

There are still large uncertainties in the representation of microbial processes in331

microbial models, causing them to diverge in their C projections under warming (e.g.,332

(Sihi et al., 2016; Sulman et al., 2018)). Here we focused on the production of extracel-333

lular enzymes for the depolymerization of SOC and showed, by interpreting experimen-334

tal observations, that soil microbes regulate enzyme production so as to maximize their335

specific growth rate for given SOC content. While microbes invest largely in resource ac-336

quisition (i.e., extracellular enzymes) at low SOC contents, they adjust their resource337

allocation to invest more on biosynthesis of new biomass at higher SOC contents, lead-338

ing to higher microbial CUE. Our analysis also provided a mathematical expressions for339

including the regulation of extracellular enzyme production into microbial models and340

showed that this optimal regulation may result in considerably different SOC projections341

under warming from those of models assuming a constant biomass specific production342

rate. Future investigations will explore how to improve parameterization of extracellu-343

lar enzyme production in state-of-the-art soil microbial and ecosystem models, especially344

considering mineral-microbes interactions.345
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