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Abstract

We assess the detectability of COVID-like emissions reductions in global atmospheric CO2 concentrations using a suite of large

ensembles conducted with an Earth system model. We find a unique fingerprint of COVID in the simulated growth rate of CO2

sampled at the locations of surface measurement sites. Negative anomalies in growth rates persist from January 2020 through

December 2021, reaching a maximum in February 2021. However, this fingerprint is not formally detectable unless we force

the model with unrealistically large emissions reductions. Internal variability and carbon-concentration feedbacks obscure the

detectability of short-term emission reductions in atmospheric CO2. COVID-driven changes in the simulated interhemispheric

CO2 gradient and column-averaged dry air mole fractions of CO2 (total column or XCO2) are eclipsed by large internal

variability. Carbon-concentration feedbacks begin to operate almost immediately after the emissions reduction; these feedbacks

reduce the emissions-driven signal in the atmosphere carbon reservoir and further confound signal detection.
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Key Points:12

• Climate model simulations suggest a lagged response in the growth rate of atmo-13

spheric CO2 due to COVID-19 emissions reductions14

• Detection of this reduction in observations is hampered by internal variability com-15

bined with reduced ocean and land uptake of CO216

• Our results foreshadow the challenges of detecting the effects of CO2 mitigation ef-17

forts to meet the Paris climate agreement18
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Abstract19

We assess the detectability of COVID-like emissions reductions in global atmospheric CO220

concentrations using a suite of large ensembles conducted with an Earth system model. We21

find a unique fingerprint of COVID in the simulated growth rate of CO2 sampled at the loca-22

tions of surface measurement sites. Negative anomalies in growth rates persist from January23

2020 through December 2021, reaching a maximum in February 2021. However, this finger-24

print is not formally detectable unless we force the model with unrealistically large emissions25

reductions. Internal variability and carbon-concentration feedbacks obscure the detectability26

of short-term emission reductions in atmospheric CO2. COVID-driven changes in the sim-27

ulated interhemispheric CO2 gradient and column-averaged dry air mole fractions of CO228

(total column or XCO2) are eclipsed by large internal variability. Carbon-concentration feed-29

backs begin to operate almost immediately after the emissions reduction; these feedbacks30

reduce the emissions-driven signal in the atmosphere carbon reservoir and further confound31

signal detection.32

Plain Language Summary33

COVID pandemic lockdowns suddenly slowed the rate at which we burned fossil fuels and34

released carbon dioxide into the atmosphere, yet we cannot find any significant reductions35

in the growth of carbon dioxide in the atmosphere from our measurements. Here we provide36

some reasons to explain this conundrum. We use a climate model to mimic the changes in37

atmospheric carbon that would occur with different amounts of reductions in fossil fuel burn-38

ing. We find that it is hard to see the change in fossil fuel burning in atmospheric carbon or39

its growth because of a large background component of natural variability. In addition, once40

we reduce our fossil fuel burning and the amount of carbon dioxide in the atmosphere de-41

creases, the ocean and land also stop taking up as much carbon as normal. As we will soon42

lower our fossil fuel burning on purpose to slow climate change, our findings forewarn of the43

difficulties of detecting the effects of this in measurements of atmospheric carbon dioxide.44

1 Introduction45

Falling energy demand during the COVID-19 pandemic led to rapid decreases in energy-46

related carbon dioxide (CO2) emissions. In 2020, global annual CO2 emissions fell by 7% to47

2011 levels (9.3 Pg C yr−1), and the rapid decline in emissions during the first half of 202048

surpassed the rate of emission declines during any previous economic recession or World49

War II [Le Quéré et al., 2020; Forster et al., 2020; Liu et al., 2020; Friedlingstein et al.,50

2020]. Global annual CO2 emissions are forecast to remain below 2019 levels through 2021,51

and subsequent recovery of emissions is expected within a few years [International Energy52

Agency, 2021; Le Quéré et al., 2021]. The precipitous and short-lived drop in emissions dur-53

ing the COVID pandemic offers a unique opportunity to assess the detection of these types of54

emissions declines in observations of the global carbon cycle.55

While the COVID-related CO2 emissions reductions had a measurable impact on re-56

gional atmospheric CO2 concentrations [Chevallier et al., 2020; Tohjima et al., 2020; Turner57

et al., 2020; Buchwitz et al., 2021; Liu et al., 2021; Wu et al., 2021], as of this writing, there58

is no indication of a global-scale decrease in the atmospheric CO2 mixing ratio or its growth59

rate due to the emissions reductions [World Meteorological Organization, 2020; NOAA Global60

Monitoring Laboratory, 2021]. Even with a robust global measurement system, the de-61

tection of COVID-related emissions reductions in global CO2 or its growth rate is chal-62

lenging due to two factors: (1) internal variability in the climate system, and (2) carbon-63

concentration feedbacks. Internal variability is unforced climate variability that arises from64

the coupled interactions of the atmosphere and ocean [e.g., El Niño-Southern Oscillation65

(ENSO); Deser et al., 2012a]. The role of internal variability in the growth rate of CO2 has66

been well documented in the literature [e.g., Keeling et al., 2001; Sarmiento and Gruber,67

2002; Frölicher et al., 2013], and multiple studies implicate this variability in our inabil-68
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ity to detect emissions changes in measurements of atmospheric CO2 [e.g., Peters et al.,69

2017]. Carbon-concentration feedbacks manifest from the sensitivity of the ocean and land70

carbon reservoirs to changing CO2 [Friedlingstein et al., 2006; Arora et al., 2013, 2020].71

Recent studies suggest that the ocean carbon reservoir rapidly responds to perturbations in72

CO2 [McKinley et al., 2020; Ridge and McKinley, 2021], and this can further confound the73

detection of emissions changes in measurements of atmospheric CO2. It is critical that we74

develop a deeper understanding of the role of internal variability and carbon feedbacks on75

the detectability of emissions changes to inform both near-term (1-10 year) predictions of the76

carbon cycle [Ilyina et al., 2021] and the verification of future emissions reductions [Peters77

et al., 2017; Ridge and McKinley, 2021].78

Initial-condition large ensembles of Earth system models are a relatively new tool that79

provide a means to quantify the anthropogenic influence on the Earth system in the presence80

of internal climate variability [Deser et al., 2020]. These large ensembles are a set of simu-81

lations with a single Earth system model: each simulation or ensemble member is initialized82

slightly differently to create diverging climate trajectories, while all ensemble members are83

externally forced with a common emission scenario or radiative forcing prescription [Deser84

et al., 2012b]. Multiple studies have used large ensembles to account for the role of inter-85

nal variability in long-term climate trends [e.g., Deser et al., 2012a,b, 2016]. Most recently,86

large ensembles have been used to estimate the anthropogenic influence on short-term cli-87

mate signals [such as for the COVID pandemic, see, e.g., Fyfe et al., 2021; Gettelman et al.,88

2021; Jones et al., 2021], and to make Earth system predictions over the near-term [1-1089

years; Yeager et al., 2018]. However, no studies have used a large ensemble framework to90

assess the detectability of short-term CO2 emissions reductions from atmospheric CO2 mea-91

surements.92

Here, we develop an understanding of the role of internal variability and carbon feed-93

backs on the detectability of a short-lived CO2 emissions reduction in the atmospheric mix-94

ing ratio of CO2 (jCO2) using output from an initial-condition large ensemble of an Earth95

system model. This 30-member ensemble evolves the Earth system under three, short-term96

emissions reduction scenarios of differing magnitudes. We investigate the detectability of the97

emissions reduction using several modeled parameters that characterize atmospheric CO2:98

the interhemispheric jCO2 difference, the jCO2 growth rate, the column-averaged CO2, and99

the atmospheric carbon reservoir.100

2 Methods101

We utilize the Canadian Earth System Model version 5 (CanESM5), which consists of102

coupled atmosphere, ocean, sea-ice, land surface, and land/ocean carbon cycle model com-103

ponents [Swart et al., 2019]. The atmospheric model in CanESM5 is version 5 of the Cana-104

dian Atmospheric Model (CanAM5) that has an approximate 2.8◦ horizontal resolution and105

49 vertical levels of varying thickness on a hybrid sigma-pressure vertical grid, and similar106

physical parameterizations as its predecessor [CanAM4; Swart et al., 2019]. The land com-107

ponent of CanESM5 consists of the Canadian Land Surface Scheme (CLASS) and the Cana-108

dian Terrestrial Ecosystem Model (CTEM) that produce fluxes of energy, water, and carbon109

dioxide at the land-atmosphere interface via the simulation of physical and biogeochemical110

processes, including the CO2 fertilization of photosynthesis [Swart et al., 2019]. The ocean111

physical and biogeochemical components of CanESM5 used in this study are the CanNEMO112

physical model coupled to the Canadian Model of Ocean Carbon (CMOC), which simulates113

ocean carbon and its exchange with the atmosphere at approximately 1◦ horizontal resolution114

[Swart et al., 2019]. In our study, the concentration of CO2 in the CanESM5 atmosphere is115

modeled as a three-dimensional, prognostic passive tracer that responds to air-sea and air-116

land CO2 fluxes from the coupled land and ocean carbon cycle components, and to specified117

CO2 emissions.118
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Figure 1. Annual-mean, de-trended interhemispheric difference in jCO2 (Mauna Loa minus South Pole;
ppm) from (purple) observations, (gray/black) the CanESM5 historical simulations, and (red) the CanESM5
COVID-like simulations. Gray lines show individual model ensemble members, and thick black line shows
the ensemble mean. Red dot and range illustrates the mean, maximum, and minimum interhemispheric dif-
ference in 2020 from the CanESM5 COVID-like ensemble. Numbers in parenthesis on legend correspond to
the number of ensemble members plotted. Periods of marked emissions declines are indicated by dashed red
vertical lines.
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We analyze output from five ensembles of CanESM5. In each case, ensemble members119

are initialized with slightly perturbed climate states to simulate a range of internal variabil-120

ity, but each member in a given ensemble experiences identical external forcing. The first121

ensemble (the historical ensemble) covers the period from 1750 to 2014 and consists of 9 en-122

semble members of CanESM5 forced with a global historical emission data set of CO2 and123

other climate-relevant gases and aerosols - this was devised for emissions-driven historical124

simulations in Phase 6 of the Coupled Model Intercomparison Project [CMIP6; Figure S1a;125

Hoesly et al., 2018]. The second ensemble (the control ensemble) covers the period 2015-126

2100 and consists of 30 ensemble members of CanESM5 integrated under the esm-SSP2-127

4.5 emissions scenario [Figure S1b; O’Neill et al., 2016]. The remaining 3 ensembles span128

2019-2040 and consist of 30 members each that are forced with COVID-like CO2 emissions129

reductions beginning in December 2019 and resolving in December 2021; peak emissions re-130

ductions of 25% (COVID-like), 50% (2 × COVID-like), and 100% (4 × COVID-like) occur131

in May 2020 (Figure S1b). Hereafter, we refer to these later three ensembles collectively as132

the CanESM5-COVID ensemble, as described in Fyfe et al. [2021] and Lovenduski et al.133

[2021]. The CO2 emissions in the historical and control ensembles have spatial and sea-134

sonal variability; emissions are highest near urban centers in the Northern Hemisphere (Fig-135

ure S2a) and peak in boreal winter when energy consumption in the Northern Hemisphere136

is at a maximum (Figure S2b). Emissions are scaled uniformly for the COVID ensembles137

to maintain this spatial and seasonal variability. In the CanESM5-COVID ensemble output138

we analyze here, emissions of CO2 from other sources (e.g., land use change) and emissions139

of other climate relevant gases and aerosols are prescribed from the esm-SSP2-4.5 scenario,140

i.e., these emissions do not change due to COVID.141

The global carbon cycle in CanESM5 compares well with observational metrics and149

is thus an appropriate tool for the study of the detectability of short-term emissions reduc-150

tions in atmospheric jCO2. Air-sea and air-land CO2 fluxes from the historical simulation of151

CanESM5 were previously evaluated in Swart et al. [2019]. Briefly, Swart et al. [2019] illus-152

trate high skill and low root mean square error between simulated and observed spatial pat-153
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Figure 2. Temporal evolution of the growth rate of de-seasoned, monthly jCO2 from the CanESM5
COVID ensemble sampled at (a) Mauna Loa, and (b) the average of 12 flask sites [as in Cadule et al., 2010]
over 2020-2024. Growth rate is calculated as the difference in jCO2 for a given month relative to the same
month in the previous year. Thin lines show individual ensemble members, and thick lines show the ensemble
mean for each emissions scenario. Red dot and range illustrates the mean and 2f (95%) confidence interval in
February 2021 for the COVID-like emissions scenario. Subplots show the temporal correlation coefficients of
individual ensemble members with the ensemble mean over Jan 2020 - Dec 2021 for each emissions scenario.
Small circles show the correlation coefficients across the 30 ensemble members, large circles show the mean
correlation coefficients, and dashes indicate 2f (95%) confidence intervals.
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terns of Gross Primary Production (GPP) and air-sea CO2 flux over 1981 to 2010. CanESM5154

tends to overestimate GPP in sub-saharan Africa and underestimate GPP in the Amazon155

rainforest, likely due to precipitation biases [Swart et al., 2019]. Historical CanESM5 air-156

sea CO2 fluxes are biased high in the North Atlantic and low in the Southern Ocean, such157

that the globally integrated air-sea CO2 flux exhibits little bias as compared to observations158

[Swart et al., 2019]. CanESM5 captures the broad features of the amplitude and phasing of159

the seasonal cycle of jCO2 measured at Barrow (BRW), Mauna Loa (MLO), and South Pole160

(SPO), though the seasonal drawdown of CO2 occurs too early at Point Barrow, and the am-161

plitude is biased high at Mauna Loa (Figure S3; the model is sampled at the approximate162

latitude, longitude, and height of the flask sample in the real world). Finally, the CanESM5163

control ensemble mean exhibits a similar growth rate in jCO2 (2.4 ppm yr−1 over 2015-164

2019; see Figure 2) as calculated from observations (2.57 ± 0.08 ppm yr−1 over 2015-2019;165

https://gml.noaa.gov/ccgg/trends/gl_gr.html). The actual growth rate derived from observa-166

tions is slightly higher due to the impact of the 2015-2016 El Ni=̃o event on the carbon cycle167

[Chatterjee et al., 2017; Liu et al., 2017].168

3 Results169

The de-trended interhemispheric gradient in observed, annual mean jCO2 exhibits179

large annual-to-decadal fluctuations over 1960-2020 that are generally replicated by the180

model but have little correlation with past periods of marked emissions reductions (Figure 1).181

The interhemispheric gradient (here expressed as the interhemispheric difference, Mauna182
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Loa minus South Pole) can be a useful indicator of the sources and sinks of CO2 [Dargav-183

ille et al., 2003], and its time-varying behavior can indicate changes in CO2 sources or sinks184

[Ciais et al., 2019], such as fossil fuel emissions. However, fluctuations in the observed inter-185

hemispheric difference display no correlation with past periods of emissions reductions, nor186

with the ongoing emissions reductions due to COVID (Figure 1; emissions history in Fig-187

ure S1a). The de-trended interhemispheric difference in the CanESM5 historical ensemble188

members encapsulate the observations and the ensemble mean replicates the decadal varia-189

tions in the observations, though the interannual variance of individual ensemble members190

is greater than that of the observational record (Figure 1). The CanESM5 COVID-like en-191

semble mean simulates a negative anomaly in the interhemispheric difference in 2020, with192

more than 50% of the ensemble members showing a negative anomaly (Figure 1). This is in193

disagreement with the observational record, akin to a single ensemble member in the large194

ensemble framework, for which we observe a small positive anomaly in the interhemispheric195

difference in 2020 (Figure 1).196

The 30-member CanESM5 COVID ensemble predicts a decrease in the de-seasoned,201

monthly growth rate of jCO2 from January 2020 through February 2021, followed by an202

increase in growth rate from February through December 2021 under all of the COVID emis-203

sion scenarios when sampled at both Mauna Loa and 12 global flask sites [flask sites as in204

Cadule et al., 2010, Figure 2]. The decrease in the growth rate is largest for the 4 × COVID-205

like emissions scenario and smallest for the COVID-like emissions scenario and peaks in206

February 2021 under all COVID scenarios (Figure 2). Meanwhile, the control ensemble207

exhibits little change in its growth rate over this period (Figure 2). This suggests that the208

jCO2 growth rate is highly sensitive to the magnitude of the emissions reduction and that209

growth rate anomalies at Mauna Loa and across the global flask network tend to be largest210

∼9 months after the peak emissions reduction (May 2020; Figure S1b). Under the 4 × COVID-211

like scenario, the growth rate exceeds the control growth rate from 2022 through 2024 before212

returning to control values (Figure 2). Figure 2 also reveals that internal variability tends to213

obscure the emissions reduction signal in jCO2 at an individual site more than in the global214

average (cf. Figures 2a and 2b); averaging across multiple sites tends to dampen the effects215

of internal variability that manifest most strongly at local and regional scales [Hawkins and216
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Sutton, 2009]. As a result, the ensemble-mean February 2021 COVID-like jCO2 growth rate217

is significantly different from the control ensemble mean in the average of the 12 flask sites,218

but not at Mauna Loa (Figure 2; significance calculated using a 2f (95%) confidence inter-219

val across the COVID-like ensemble members). If we wish to detect a signal of the COVID-220

driven emissions reduction in the real-world growth rate of jCO2, our modeling study sug-221

gests that we are most likely to find it in early 2021 by averaging across measurements col-222

lected in the global flask network.223

Is it possible to detect the change in the de-seasoned, monthly jCO2 growth rate from229

flask observations in the real world, where we have only a single “ensemble member”? To230

answer this question, we turn to a formal statistical detection framework, where we use the231

unique ensemble mean “fingerprint” of the growth rate in the model sampled at flask sites232

(i.e., the V-shaped dip and recovery in the ensemble-mean growth rate over January 2020 to233

December 2021 in Figure 2) and quantify the correlation of each individual ensemble mem-234

ber with this fingerprint for each emissions scenario. This statistical detection approach for235

hypothetical observations (we haven’t yet measured the growth rate in December 2021, for236

example) is identical to the one outlined in Lovenduski et al. [2021] and mimics the approach237

for the detection of a climate change signal in real-world observations [Bindoff and Stott,238

2013]. The resulting correlation coefficients are shown in the subplots of Figure 2, where239

small circles show the set of 30 Pearson’s correlation coefficients (A) with the ensemble mean240

fingerprint across the 30 ensemble members, and large circles show the mean correlation241

coefficients [calculated using a Fisher’s I transform; see Lovenduski et al., 2021] for each242

COVID-like emissions scenario. For the model sampled at Mauna Loa, the mean correlation243

coefficient for the COVID-like ensemble is 0.4 with a wide range; stronger emissions reduc-244

tions increase the mean correlation coefficient and narrow the range (subplot in Figure 2a),245
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suggesting a higher probability of detecting the fingerprint from a single ensemble member246

or hypothetical observational record under higher emissions reductions. Indeed, the range247

of correlation coefficients is only statistically different from zero under the 2 × COVID-like248

and 4 × COVID-like emission scenarios (subplot in Figure 2a), indicating that significant de-249

tection of the COVID fingerprint is only formally possible in cases with more extreme emis-250

sions reductions than those that occurred during the COVID pandemic. Similar patterns are251

observed when the model is sampled at 12 flask sites (Figure 2b), though the correlations are252

overall higher due to reduced internal variability.253

Model-estimated, column-averaged dry-air mole fraction of jCO2 [referred to as XCO2254

by the satellite community; Crisp et al., 2004] averaged over the extratropical Northern and255

Southern Hemispheres (20◦N-55◦N and 20◦S-55◦S, respectively) shows only a small sig-256

nal of COVID-like emissions reductions amid large internal variability (Figure 3). While257

the emissions reduction signal is more pronounced in the Southern Hemisphere extratrop-258

ics, there is large overlap of the various model ensemble members from the various emission259

scenarios (Figure 3b), and only the 4 × COVID-like ensemble mean is significantly different260

from the control ensemble mean at the 2f (95%) level (not shown). The vertical integration261

of the atmospheric column and the diffusive nature of atmospheric transport makes the mod-262

eled column concentrations less sensitive to changes in the surface emissions signal [Rayner263

and O’Brien, 2001; Miller et al., 2007], thus making the signal more difficult to detect in the264

column.265

Carbon-concentration feedbacks further obscure the detection of COVID emissions266

reductions in the atmospheric carbon reservoir. Figure 4 shows the anomaly in the ensemble-267

mean cumulative change in the modeled atmosphere, ocean, and land carbon reservoirs from268

December 2019 to December 2040, where the anomaly is calculated relative to the control269

ensemble mean. In the atmosphere, the cumulative reservoir anomaly is negative for the du-270

ration of the simulations regardless of emissions scenario (Figure 4a), indicating that each271

of the COVID-like emissions perturbations leads to a forced change in the cumulative at-272

mospheric reservoir lasting well beyond the emissions recovery in 2022 (cf. Figure 4a and273

Figure S1b). For both the 2 × COVID-like and 4 × COVID-like scenarios, the atmosphere274

reservoir anomaly falls outside of the ensemble spread due to internal variability (gray shad-275

ing) for several years. Meanwhile, the ocean and land carbon reservoirs also respond to the276

COVID-like emissions reductions – the ocean carbon sink immediately slows with decreas-277

ing jCO2 under all COVID-like scenarios [Figure 4b; Lovenduski et al., 2021], and the land278

carbon sink also weakens, most noticeably under the 2 × COVID-like and 4× COVID-like279

scenarios (Figure 4c). The ocean reservoir anomaly falls outside of the spread due to internal280

variability only in the 2 × COVID-like and 4 × COVID-like scenarios [Figure 4b; Lovenduski281

et al., 2021]. The land carbon sink anomaly is fully within the internal variability bounds282

(Figure 4c), due to high internal variability in the land-air CO2 flux [Denman et al., 2007].283

Nevertheless, these results suggest that COVID emissions reductions cause both the ocean284

and land to absorb less carbon than usual in our model, thus reducing the perturbation in285

the atmosphere. To illustrate this point further, we estimate the ensemble-mean, cumulative286

change in the atmospheric carbon reservoir due only to emissions changes and plot the re-287

sulting reservoir anomaly as dashed lines in Figure 4a. This illustration reveals a critical role288

for carbon-concentration feedbacks in the detection of COVID-driven emissions reductions:289

if not for the slowing ocean and land carbon sinks, the COVID-like emissions reduction sig-290

nal in the atmospheric carbon reservoir would have been detectable above the noise of inter-291

nal variability for three consecutive years (2022-2025), and for longer durations with larger292

emission perturbations (Figure 4a).293

4 Conclusions and Discussion294

We use an initial-condition large ensemble of an Earth system model to assess the de-295

tectability of the COVID-driven emissions reductions signal in measurements of atmospheric296

CO2 above the noise of internal variability and carbon-concentration feedbacks. We find a297
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unique fingerprint in atmospheric CO2 growth rates calculated from simulated jCO2 mea-298

surements under COVID-like emissions reductions. The largest negative anomalies in the299

atmospheric jCO2 growth rate appear in February 2021, ∼9 months after the peak emissions300

reductions. This growth rate signal is more likely to be detected above the noise of inter-301

nal variability when averaging over global flask network sites, rather than at an individual302

site. However, this unique fingerprint is not formally detectable using a climate signal de-303

tection statistical approach, unless we force the model with unrealistically large emissions304

reductions. Internal variability obscures the detection of change in the interhemispheric305

difference of simulated jCO2 from flask measurements and the simulated extra-tropical306

column-average XCO2 from satellite observations. Carbon-concentration feedbacks further307

reduce the emissions signal in the atmospheric carbon reservoir. When we omit the effects of308

these feedbacks on the atmospheric carbon reservoir, the signal in the cumulative reservoir309

anomaly is detectable above the noise of internal variability over a three consecutive year310

period (2022-2025).311

Our study illuminates the challenges associated with detecting brief CO2 emissions312

reductions in global-scale atmospheric CO2 from our established observational measure-313

ment systems. In order to see the emergence of the signal of COVID-driven emissions re-314

ductions in atmospheric CO2, one needs to first remove the influence of internal climate315

variability and carbon-concentration feedbacks from the atmospheric CO2 measurements.316

While we are getting closer to quantifying the internal contribution to the total signal from317

our measurements and producing near-real time estimates of this variability [e.g., Betts et al.,318

2016, 2020], we are not yet capable of quantifying carbon feedbacks from our current, ex-319

ploratory observational system [e.g., Sellers et al., 2018]. Further, the ocean and terrestrial320

carbon reservoirs are only sparsely observed and, with the exception of a few surface ocean321

pCO2 buoys [Sutton et al., 2019], the high-quality estimates of changing air-sea and air-land322

CO2 fluxes that are available in a historical context are not yet available in near-real time323

due to the high costs of fast data dissemination and other impediments. As we move into a324

world characterized by intentional emissions reductions associated with international climate325

change mitigation policies, we should consider this measurement infrastructure in the ocean326

and terrestrial biosphere to detect the signal and monitor the impact of intentional emissions327

reductions in atmospheric CO2.328
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Figure S1. Global-mean, de-seasoned CO2 emissions (Pg C yr−1) (a) over the historical period, and (b)
for the (black) control / SSP2-4.5, (red) COVID-like, (green) 2 × COVID-like, and (blue) 4 × COVID-like
scenarios.
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Figure S2. (a) Spatial distribution of 2020 annual-mean CO2 emissions for the control (SSP2-4.5) en-
semble (kg m−2 yr−1). (b) Seasonally varying 2020 global-mean CO2 emissions for the control (SSP2-4.5)
ensemble (Pg C yr−1).
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Figure S3. Monthly jCO2 anomaly (ppm) relative to the time-mean jCO2 from (gray) the CanESM5
control ensemble and (purple) observations during 2015 at (a) Point Barrow, (b) Mauna Loa, and (c) South
Pole stations.
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