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Ruggieri4, Wolfgang A. Müller5, and Johanna Baehr6

1Deutscher Wetterdienst
2ICARUS
3CMCC
4University of Bologna
5Max Planck Institute for Meteorology
6Universität Hamburg, Center for Earth System Research and Sustainability

November 22, 2022

Abstract

Variability of the North Atlantic Oscillation (NAO) drives wintertime temperature anomalies in the Northern Hemisphere.

Dynamical seasonal prediction systems can skilfully predict the winter NAO. However, prediction of the NAO-dependent

air temperature anomalies remains elusive, partially due to the low variability of predicted NAO. Here, we demonstrate a

hidden potential of a multi-model ensemble of operational seasonal prediction systems for predicting wintertime temperature by

increasing the variability of predicted NAO. We identify and subsample those ensemble members which are close to NAO index

estimated from initial autumn conditions. In our novel multi-model approach, the correlation prediction skill for wintertime

Central Europe temperature is improved from 0.25 to 0.66, accompanied by an increased winter NAO prediction skill of 0.9.

Thereby, temperature anomalies can be skilfully predicted for the upcoming winter over a large part of the Northern Hemisphere

through increased variability and skill of predicted NAO.
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Abstract18

Variability of the North Atlantic Oscillation (NAO) drives wintertime temperature anoma-19

lies in the Northern Hemisphere. Dynamical seasonal prediction systems can skilfully pre-20

dict the winter NAO. However, prediction of the NAO-dependent air temperature anoma-21

lies remains elusive, partially due to the low variability of predicted NAO. Here, we demon-22

strate a hidden potential of a multi-model ensemble of operational seasonal prediction23

systems for predicting wintertime temperature by increasing the variability of predicted24

NAO. We identify and subsample those ensemble members which are close to NAO in-25

dex estimated from initial autumn conditions. In our novel multi-model approach, the26

correlation prediction skill for wintertime Central Europe temperature is improved from27

0.25 to 0.66, accompanied by an increased winter NAO prediction skill of 0.9. Thereby,28

temperature anomalies can be skilfully predicted for the upcoming winter over a large29

part of the Northern Hemisphere through increased variability and skill of predicted NAO.30

Plain Language Summary31

Accurate prediction of wintertime temperature anomalies in the Northern Hemi-32

sphere is closely connected to the ability of a dynamical prediction system to predict the33

North Atlantic Oscillation (NAO). While ensemble-based dynamical seasonal prediction34

systems have been shown to skilfully predict the winter NAO, the prediction for the NAO-35

dependent anomalies of the air temperature remains elusive. One of the main reasons36

is that the high correlation prediction skill, commonly used as a measure of prediction37

quality for the NAO, represents only a part of real NAO behavior, namely a good tim-38

ing of the NAO phases. However, as we show in this study, the strength of the predicted39

NAO phase is the most important characteristic for the accurate prediction of winter-40

time temperature anomalies. Here, we demonstrate a hidden potential of existing op-41

erational seasonal prediction systems in predicting wintertime temperature by increas-42

ing the strength of the predicted NAO phase. We use a novel multi-model subsampling43

approach for the identification and subsampling of ensemble members, which are close44

to NAO index estimated from analysis of initial autumn conditions. We show that tem-45

perature anomalies can be skilfully predicted for the upcoming winter over a large part46

of the Northern Hemisphere.47
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1 Introduction48

In the Northern Hemisphere, the development of wintertime temperature anoma-49

lies is governed mainly by large-scale weather regimes in the North Atlantic sector (Vautard,50

1990; Hertig & Jacobeit, 2014). While ocean and atmosphere act on di↵erent time scales,51

they are both important for the formation of specific winter conditions (Rodwell et al.,52

1999; Cassou et al., 2004). The large-scale coupled ocean-atmosphere dynamics is well53

represented by the variability of sea level pressure (SLP) over the North Atlantic, known54

as the North Atlantic Oscillation (NAO). The winter NAO regimes impact the European55

wintertime weather not only in terms of the seasonally averaged values of temperature56

or precipitation (Hurrell, 1995; Hurrell et al., 2003; Thompson et al., 2003), but also in57

terms of the occurrence of extreme weather conditions (Scaife et al., 2008; Jung et al.,58

2011a; Maidens et al., 2013) such as the anomalies of wintertime air temperature.59

While ensemble-based dynamical seasonal prediction systems (hereafter SPSs) are60

known to skilfully predict the winter NAO index for a season ahead (Scaife et al., 2014;61

O’Reilly et al., 2017; Athanasiadis et al., 2017), they are less successful in the predic-62

tion of the NAO-dependent temperature anomalies over the North-Atlantic sector. In-63

creasing ensemble size, on the one hand, improves the prediction skill of the NAO (Butler64

et al., 2016). On the other hand, this improvement is limited by the ability of models65

to accurately reproduce the sources of the NAO predictability (Jung et al., 2011b; Årthun66

et al., 2017; Scaife et al., 2017). Recently, a multi-model approach demonstrates an abil-67

ity to increase the NAO prediction skill by combining several prediction systems into one68

large ensemble (Athanasiadis et al., 2017). However, for already large ensembles, with69

about 30-40 members, a further increase of the ensemble size does not only demonstrate70

any potential for a further significant increase in the prediction skill of the winter NAO71

but also tends to suppress the variability of the predicted NAO index. This can be partly72

attributed to well-known underestimation of the signal-to-noise ratio in prediction sys-73

tems (Scaife & Smith, 2018) which leads to an underestimation of predicted variability74

in the ensemble mean. In turn, the strength of the winter NAO phase directly impacts75

the formation of temperature anomalies, both for positive and negative NAO phases (Heape76

et al., 2013). Therefore, the low amplitude of the predicted ensemble mean NAO phase77

decouples the NAO from the formation of temperature anomaly and will produce only78

weakly pronounced wintertime temperature anomalies.79
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Here, we demonstrate a hidden potential of existing SPSs in skilful predicting the80

wintertime temperature anomalies in the Northern Hemisphere by increasing the vari-81

ability of predicted NAO using a multi-model subsampling approach. Instead of follow-82

ing the traditional practice of averaging all ensemble members, we make use of the in-83

trinsic memory of the Earth system, analysing initial autumn conditions to identify en-84

semble members with well-established relationships between initial autumn conditions85

and the winter NAO (Dobrynin et al., 2018). Only these ensemble members are consid-86

ered afterward in a subsampled ensemble mean, resulting in increased variability and pre-87

diction skill of the winter NAO index. We make a step forward from the NAO index pre-88

diction and predict wintertime temperature anomalies in the Northern Hemisphere us-89

ing the well-predicted winter NAO index as a criterion for subsampling of a large dynam-90

ical ensemble. This enforces the link between the NAO and temperature anomalies and91

significantly improves the prediction skill of temperature in the Northern Hemisphere.92

2 Prediction systems, data and methods93

2.1 Copernicus Climate Change Service multi-model ensemble94

In this study, we use a multi-model ensemble built from five SPSs contributing to95

Copernicus Climate Change Service (C3S) (hereafter C3S ensemble). The C3S ensem-96

ble covers the period from 1994 to 2014 and consists of 138 members provided by the97

Deutsche Wetterdienst (DWD, 30 members), UK Met O�ce (UKMO, 28 members), Eu-98

ropean Centre for Medium-Range Weather Forecasts (ECMWF, 25 members), Meteo99

France (15 members), and Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC,100

40 members). All members are combined in one ensemble of 138 members without im-101

plementation of a bias correction procedure.102

We use monthly mean data of sea level pressure (SLP) and 2-meter air tempera-103

ture (T2m) provided by the C3S ensemble. Additionally, SLP, T2m, 100 hPa level air104

temperature (T100), sea surface temperature in the North Atlantic (SST), Arctic sea ice105

concentration (SIC) and snow cover in Eurasia (SNC) data are used from the ERA-Interim106

reanalysis (Dee et al., 2011). While averaged over December, January and February (DJF)107

monthly mean SLP and T2m data are used for the evaluation of model results, Octo-108

ber T100, SST and SNC, and September SIC represent the autumn predictors of the win-109

ter NAO index. Originally, autumn predictors were provided by an assimilation simu-110
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lation used for hindcast initialisation. Since assimilation simulations are not available111

for all C3S SPSs, in this study we use October T100, SST and SNC, and September SIC112

from ERA-Interim as predictors of first-guess of the next winter season DJF NAO in-113

dex for ensemble subsampling as adopted from Dobrynin et al. (2018).114

2.2 NAO index115

The NAO index is calculated using an empirical orthogonal function (EOF) anal-116

ysis (Barnston & Livezey, 1987). For all systems and for the ERA-Interim, seasonal (DJF)117

means of SLP are calculated prior to the EOF analysis. The region of SLP data is lim-118

ited to the latitude range 20�N to 90�N and to the longitude range 90�W to 60�E. The119

EOF is calculated in every system from a vector, where all ensemble members are merged120

over the entire time period. This approach of EOF calculation allows us to represent the121

entire ensemble in one EOF pattern. Further, taking into account a relatively short pe-122

riod of hindcasts, this approach is more reliable than conducting the EOF calculation123

for individual ensemble members separately. The first principal component of SLP is then124

decomposed back to the number of ensemble members, building an individual time se-125

ries for each ensemble member. The first principal component of SLP represents the NAO126

index (Kutzbach, 1970). All NAO indices are normalised by their respective standard127

deviations. The ERA-Interim NAO index is used as a reference for comparisons with other128

systems.129

2.3 Subsampling of the C3S multi-model ensemble130

Here we use two approaches for subsampling of the C3S multi-model ensemble in131

real forecast test: random and teleconnection-based. For both approaches, we use the132

range of ensemble sizes from 3 to 138 for a period of real forecast test from 2001 to 2014.133

In the first random statistical approach, we use 1000 samples (combinations) for each134

given ensemble size and then average them. In the second approach, we use a teleconnection-135

based subsampling technique (Dobrynin et al., 2018) selecting only ensemble members136

with well-represented links between the autumn NAO predictors and the winter NAO137

index. This requires a statistical estimation of the first-guess NAO value, therefore it can138

be considered as statistical-dynamical approach. We construct a first-guess DJF NAO139

index from the de-trended time series of area-weighted mean over regions with signifi-140

cant positive correlations between each autumn predictor and DJF NAO (Dobrynin et141
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al., 2018). We use training periods from 1994 until the year previous to forecasted year.142

Thereby, we calculate sets of four first-guess NAO values for subsampling of the C3S multi-143

model ensemble. For reasons of consistency, keeping the number of selected member con-144

stant for each year, only one, the SST - predictor of the NAO, is used here for the anal-145

ysis of skill and variability depending on the ensemble size. In contrast, for final anal-146

ysis of prediction skill and variability of the NAO index and T2m anomalies, all four pre-147

dictors are used for subsampling. The subsampling technique was also applied for indi-148

vidual C3S models. For this, the number of selected members per predictor was limited149

to 13, 8, 10, 5, and 9 members for CMCC, ECMWF, DWD, Meteo France, and UKMO150

system respectively.151

2.4 Results evaluation152

Results of SPSs are evaluated over two periods. First, for each model separately153

and for multi-model ensemble the DJF NAO prediction skill is calculated for the full pe-154

riod of hindcast from 1994 to 2014 as the correlation coe�cient between the ensemble155

mean and ERA-interim. T2m anomaly correlation coe�cient (ACC) is calculated for the156

multi-model ensemble mean for the same period. Second, we mimic a real forecast test157

for a period from 2001 to 2014 calculating the NAO index and T2m anomalies individ-158

ually for each year. Values of the NAO index and T2m for each particular year are then159

combined into time series. T2m anomalies for Northern Hemisphere and area-weighted160

regional mean anomalies for two regions Central Europe (45N-60N, 10W-30E and East-161

ern Canada (45N-60N, 90W-60W) are calculated by subtracting a mean value of T2m162

over a period from 1994 until 2014 or until each particular year in a real forecast test,163

depending on the end of the forecast period.164

For comparison between statistical and statistical-dynamical subsampling meth-165

ods, we calculated the NAO index as a mean value over four ERA-Interim predictors.166

We mimic a real statistical forecast for four periods from 1985 to 2014, with a training167

period starting from 1979 and until the year previous to the forecasted year, from 1985168

to 1999 starting from 1979, and from 2001 to 2014 starting from 1979. Also, we calcu-169

lated the first-guess NAO index for the real statistical forecast test for 2001 to 2014 start-170

ing from 1994, which is directly comparable to a dynamical ensemble.171
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3 C3S multi-model ensemble prediction of air temperature172

Prediction skill of the C3S ensemble for 2-meter air temperature in the Northern173

Hemisphere demonstrates high skill in the North Pacific sector, less skill in the eastern174

part of North America and in the North Atlantic sector, and low skill in Europe (Fig.175

1a). The prediction skill for the winter NAO is represented by a correlation of 0.39 be-176

tween the C3S ensemble mean (hereafter C3S-mean) and the ERA-Interim NAO index.177

The e↵ect of change of winter NAO phase on temperature (hereafter temperature response)178

is well known and can be demonstrated by a correlation between the DJF temperature179

and NAO index. A dipole structure with a negative correlation in the North Atlantic180

sector and positive correlation over Eurasia (Fig. 1d) highlights areas where cold and181

warm temperature anomalies can be formed depending on the NAO phase.182

However, despite a moderate NAO prediction skill, comparing the C3S ensemble183

mean predicted anomalies of temperature, it appears that for the strong positive and neg-184

ative NAO states in 2007 and 2010, the temperature anomalies are similar in terms of185

weakly pronounced amplitude (Fig. 1b and c) in regions where a strong e↵ect on tem-186

perature is expected. Comparing to ERA-Interim (Fig. 1d), the temperature response187

of the C3S ensemble (Fig. S1f) has a similar dipole structure combining all individual188

models (Fig. S1a–e). However, the negative correlation in the North Atlantic sector and189

positive correlation over Eurasia is underestimated. Simultaneously, a positive correla-190

tion over North America and the Pacific Ocean is overestimated. Thereby, the well-pronounced191

temperature response in the C3S ensemble demonstrates a potential for forming tem-192

perature anomalies following changes of the NAO phase.193

4 Skill and variability estimated from subsampling approaches194

The C3S ensemble underestimates the inter-annual variability of the NAO index195

calculated as a standard deviation (hereafter STD) of the ensemble mean (0.22 compar-196

ing to 1.00 for ERA-Interim NAO). The NAO STD tends to decrease with an increase197

of the ensemble size (Fig. 2a, grey dash line). Therefore, the full range of variability will198

not be covered even by the large multi-model ensemble C3S. On the contrary, individ-199

ual members from each SPSs reproduce very well the full range of the ERA-Interim NAO200

index (Fig. 2b). Thus, possible improvement in the variability and prediction skill of the201

NAO index and wintertime temperature can be achieved by ensemble subsampling, i.e.202
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considering only a part of the entire ensemble. We analyse the prediction skill and vari-203

ability of the NAO and temperature depending on ensemble subsampling size for both204

random and teleconnection-based subsampling approaches, in the real forecast test from205

2001 to 2014.206

4.1 Random versus teleconection-based subsampling approach207

Random and teleconnection-based subsampling approaches have two di↵erent goals.208

While the random approach provides an estimation of a possible change of the predic-209

tion skill and variability arising from increasing of ensemble size only, the teleconnection-210

based approach demonstrates an added value of including of initial conditions analysis211

into ensemble subsampling. We select two regions for the air temperature analysis, Cen-212

tral Europe (45N–60N, 10W–30E), known as a region of strong NAO impact, and East-213

ern Canada (45N–60N, 90W–60W) as a region with a weaker NAO impact (Fig. 1d). For214

both regions, we analyse the time series of the DJF NAO and wintertime averaged 2-215

meter air temperature, mimicking the real forecast for a period from 2001 to 2014.216

The prediction skill of the winter NAO of the full 138-member C3S ensemble in a217

random subsampling approach follows a logarithmic-like behaviour with a rapid increase218

of prediction skill from about 0.20 for 3-member ensemble to 0.40 for about one-third219

of the ensemble size (Fig. 2a, black dash line). Afterwards, the added value of the re-220

maining ensemble members is limited to 0.09. This results in a skill of 0.49 for the full221

C3S ensemble for a period from 2001 to 2014. In contrast, the teleconnection-based sub-222

sampling approach demonstrates a stable high level of prediction skill of about 0.90 start-223

ing from a 3-member ensemble to an about 70-member ensemble (Fig. 2a, black solid224

line). Afterwards, the skill is decreasing down to the C3S ensemble mean value of 0.49.225

Variability of the winter NAO index, denoted as the STD of the ensemble mean,226

in both approaches decreases with an increase of the ensemble size. However, while in227

random subsampling approach STD decreases by factor of 2 within 20 ensemble mem-228

bers from 0.6 to 0.3 (Fig. 2a, grey dash line), the teleconnection-based subsampling pro-229

vides a stable high, more than 0.6, level of STD for 50 ensemble members (Fig. 2a, grey230

solid line).231

For wintertime averaged 2-meter air temperature, the random subsampling approach232

demonstrates an increase of prediction skill as a function of ensemble size, similar to the233
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winter NAO (Fig. 3a, dash lines). Notably, the rapid growth of skill is also limited to234

about one-third of the ensemble size for both regions, but it results in a di↵erent ensem-235

ble mean prediction skill of 0.25 for Central Europe and 0.69 for Eastern Canada. The236

teleconnection-based subsampling for the air temperature uses the same members as se-237

lected for the winter NAO, therefore a clear di↵erence appears between the prediction238

skill for Central Europe and Eastern Canada as for a region of strong and weak NAO239

impact respectively. For Eastern Canada the high level of prediction skill of about 0.7240

can be achieved already by small ensemble size and the skill is not a↵ected by the chang-241

ing of the prediction skill of the winter NAO staying on the same level as for the full C3S242

ensemble mean (Fig. 3a, blue solid line). In contrast, for air temperature over Central243

Europe, the prediction skill tends to follow a decrease of the NAO prediction skill start-244

ing from about two-thirds of the ensemble size (Fig. 3a, red solid line).245

4.2 Teleconection-based subsampling approach for predicting of air tem-246

perature in Central Europe247

We analyse now the prediction skill for the winter NAO and air temperature anoma-248

lies in Central Europe in a real forecast test using the teleconnection-based subsampling249

approach (Dobrynin et al., 2018) for a period from 2001 to 2014 (see Methods). We limit250

the number of selected ensemble members to one-third of the C3S ensemble size, which251

is 46 members. The subsampled C3S ensemble shows a significant increase both in NAO252

prediction skill from 0.49 to 0.90 and in the variability (STD) of the ensemble mean NAO253

index from 0.22 to 0.57 (Fig. 2b).254

Following the increase of the NAO skill and variability, the air temperature skill255

is increased from 0.25 to a significant value of 0.66 (Fig. 3b). The variability (STD) of256

the air temperature is also improved from 0.19 to 0.41. Corrections of the NAO phases257

due to subsampling are most notable for years with strong NAO phase such as for ex-258

ample in 2005-2007 and 2010. In a more general context, the teleconnection-based sub-259

sampling approach significantly improves the C3S ensemble prediction skill of the sea260

level pressure and air temperature over an essential part of the Northern Hemisphere (Fig.261

S2). For the air temperature, the areas with mostly improved prediction skill (up to 0.8)262

are located in Eurasia (Fig. S2). Over these areas, a better representation of the win-263

tertime temperature anomalies related to NAO phases can be expected.264
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4.3 Statistical versus statistical-dynamical prediction265

For comparison to the dynamical subsampled C3S ensemble, we calculate statis-266

tical first-guess NAO prediction from all four NAO predictors based on the ERA-Interim267

only (Fig. S3). It appears that the length of the training period (TP, i.e number of years268

before forecast year) a↵ects the NAO prediction skill. For example, for a short TP of 6269

to 20 years starting from 1979 and for a following forecast period from 1985 to 1999, the270

NAO skill is 0.91, while for the full forecast period from 1985 to 2014 with a TP of 6 to271

35 years the value drops to 0.86 (Fig. S3). For a short forecast period from 2001 to 2014272

with a long TP of 22 to 35 years starting from 1979, the NAO prediction skill is 0.82 (Fig.273

S3). With a short TP of 7 to 20 years starting from 1994, the NAO skill is 0.92 – higher274

as from dynamical subsampled C3S ensemble for the same period. This can be partly275

attributed to equal consideration of all systems within the C3S ensemble. In this study,276

we consider the C3S models as one multi-model ensemble. Considering C3S models in-277

dividually, it appears that the subsampling has a di↵erent level of improvement of the278

winter NAO prediction skill for less and more skilful models (Fig. S4). For example, in279

the real forecast test from 2001 to 2014, for the DWD system this improvement is from280

0.48 to 0.90 and for the ECMWF system from 0.17 to 0.85 before and after subsampling281

respectively. Part of the di↵erence in improvement can be explained due to the fact that282

improvement for correlations is harder to gain the higher the actual correlation values283

are. However, we note that most likely a higher prediction skill can be achieved for a more284

skilful system and such high skill cannot be achieved for a less skilful system due to sub-285

sampling (Fig. S4). Most likely a combination of, for example, more skilful or systems286

with similar ensemble size, will have an e↵ect on the NAO prediction skill of dynami-287

cal subsampled C3S ensemble (not shown here).288

4.4 Improved prediction of wintertime temperature anomalies289

Finally, we calculated wintertime temperature anomalies for two selected years: 2007290

with a strong positive NAO phase, and 2010 with a strong negative phase from the sub-291

sampled C3S ensemble. As opposite to the C3S ensemble mean (Fig. 1b and c), the C3S292

subsampled mean predicts the temperature anomalies with a clear characteristic struc-293

ture for a positive NAO phase in 2007 and negative NAO phase in 2010 (Fig. 3c and d).294

Note, that the area a↵ected by better prediction of the NAO covers not only the North295

Atlantic sector but also an essential part of Eurasia. Predicted temperature anomalies296
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have a similar structure as compared to the ERA-Interim anomalies (Fig. 1e and f). How-297

ever, the exact prediction of the values of temperature anomaly at local scales remains298

challenging.299

5 Conclusions300

In summary, we found that the existing C3S operational prediction systems, be-301

ing combined in a multi-model subsampled ensemble, can skilfully predict winter tem-302

perature anomalies in Central Europe and over an essential part of the Northern Hemi-303

sphere for a season ahead. Moreover, the C3S subsampled ensemble can provide a very304

high NAO prediction skill of 0.90. This leads us to the conclusion that the existing op-305

erational prediction systems do not fully use the potential coming from the large num-306

bers of ensemble members in the prediction of wintertime temperature. Following a tra-307

ditional ensemble mean approach, all C3S systems suppress the variability of predicted308

winter NAO index and temperature. From our analysis, we conclude that even a sub-309

stantial increase of the ensemble size will not automatically improve the prediction skill310

and especially the variability of the NAO and temperature. Instead, the implementa-311

tion of the NAO teleconnection-based subsampling approach to existing ensembles im-312

proves significantly the prediction skill and variability of the winter NAO index and tem-313

perature in the Northern Hemisphere. Moreover, our subsampling approach, being de-314

veloped for the improvement of seasonal prediction of existing prediction systems, high-315

lights also a need for a rethinking of ensemble generation methods in general, for bet-316

ter NAO prediction from each ensemble member keeping a realistic ensemble size. A re-317

duction of noise introduced by a large number of ensemble members is necessary to in-318

crease the variability of predicted NAO and avoid the decoupling of NAO from the for-319

mation of wintertime temperature anomalies.320
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a) b) c)

d) e) f)

C3S skill                                                            C3S DJF anomaly 2007                                        C3S DJF anomaly 2010                                       

ERA-Interim DJF anomaly 2007                    ERA-Interim DJF anomaly 2010                        ERA-Interim correlation with NAO                     

Figure 1. Prediction skill of the C3S ensemble and anomalies of wintertime tem-

perature. a) C3S ensemble prediction skill of 2-meter temperature calculated for a period from

1994 to 2014 as compared to ERA-Interim; b) and c) DJF anomalies of 2-meter temperature

for a strong positive (2007) and negative (2010) NAO phase as calculated from C3S ensemble;

d) correlation map between DJF 2-meter temperature and NAO index in ERA-Interim; e) and

f) same as b) and c) but from ERA-Interim. Regions that are significant at the 95% confidence

level are indicated by dots on the maps in the left column.
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a)

b)

Figure 2. Prediction skill, variability and subsampling of the multi-model ensem-

ble C3S for the NAO index in a real forecast test from 2001 to 2014 a) prediction skill

(black lines) and variability denoted as standard deviation (STD, grey lines) calculated for the

C3S ensemble using two approaches: random selection of ensemble members (dashed lines) and

NAO teleconnection-based subsampling (Dobrynin et al., 2018) (solid lines); b) subsampling of

the C3S ensemble for the winter NAO (orange line) comparing to the C3S ensemble means (grey

lines) and the the ERA-Interim (black lines). Open circles denote each C3S ensemble member,

filled circles indicate subsampled due to NAO teleconnection-based approach ensemble members.
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a)

b)

c) d)C3S Sub DJF 
anomaly 2007                                        

C3S Sub DJF anomaly 2010C3S Sub DJF anomaly 2010
C3S Sub DJF 
anomaly 2010                                        

Figure 3. Prediction skill and subsampling of C3S ensemble for the wintertime

temperature in a real forecast test from 2001 to 2014. a) prediction skill calculated for

the C3S ensemble for two regional means in Central Europe (red) and in the Eastern Canada

(blue) using two approaches: random selection of ensemble members (dashed lines) and NAO

teleconnection-based subsampling (Dobrynin et al., 2018) (solid lines); b) subsampling of the C3S

ensemble in Central Europe (orange line) comparing to the C3S ensemble means (grey lines) and

the the ERA-Interim (black lines). Open circles denote each C3S ensemble member, filled circles

indicate subsampled due to NAO teleconnection-based approach ensemble members; c–d) DJF

anomalies of 2-meter temperature for a strong positive (2007) and negative (2010) NAO phase as

calculated from subsampled C3S ensemble.
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a) b) c)

d) e) f)

Supplementary Figure S1. Response of wintertime (DJF) 2-meter temperature

on the NAO variability. Correlation between 2-meter DJF temperature and NAO index for

individual models (a–e), and for multi-model ensemble C3S (f).
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Supplementary Figure S2. Subsampling of the multi-model ensemble C3S. Anoma-

lies correlation coe�cient between C3S ensemble mean (left column) and C3S subsampled mean

(middle column) and the ERA-Interim calculated for 2-meter temperature (upper panel) and sea

level pressure (lower panel) in a real forecast test from 2001 to 2014. Regions that are significant

at the 95% confidence level are indicated by dots on the maps in the left and middle column.

Hashing on the di↵erences plots (right column) indicates regions that became significant after

subsampling.
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a)

b)

c)

Supplementary Figure S3. ERA-Interim first-guess of the winter NAO index. Sta-

tistically predicted from the ERA-Interim predictors winter NAO index for three periods: a)

from 1985 to 2014, b) 14 years similar to real test period starting from 1985 to 1999, and c) real

forecast test from 2001 to 2014. The training period from 1979 until the year previous to forecast

year was used for all plots. Values of significant at the 95% confidence level correlation between

the NAO index and each autumn predictor sea surface temperature in the North Atlantic (SST),

Arctic sea ice concentration (SIC), snow cover in Eurasia (SNC) and 100 hPa level air tempera-

ture (T100), and for mean predictor (Pred. mean) are given in parentheses.
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Supplementary Figure S4. Subsampling of individual models from C3S. NAO pre-

diction skill of individual C3S models for the NAO index in a real forecast test from 2001 to 2014

as calculated from subsampled ensemble (orange line) and from ensemble mean (gray line) com-

pared to the EAR-Interim (black line). Open circles denote each C3S ensemble member, filled

circles indicate subsampled due to NAO teleconnection-based approach ensemble members. 13,

8, 10, 5, and 9 members for each predictor were selected for CMCC, ECMWF, DWD, Meteo

France, and UKMO system respectevelly.
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Supplementary Figure S5. Normalised winter (DJF) NAO index. Prediction skill

of the winter NAO index is calculated as a correlation between the ERA-Interim NAO and the

ensemble mean for each prediction system, and for the C3S ensemble mean. Correlations and

standard deviation of ensemble means (STD) are given in parentheses. The range of the NAO

prediction skill varies from 0.05 to 0.43 when all systems are individually considered. In general,

all models individually and as a multi-model ensemble underestimate the variability of the NAO

index calculated as a standard deviation (hereafter STD) of the ensemble mean. The NAO STD

varies from 0.29 to 0.39 for individual models comparing to 1.00 for ERA-Interim NAO. The Uni-

versität Hamburg (UniHH-30) seasonal prediction system is not a part of the multi-model C3S

ensemble and shown here for information only.
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