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Abstract

Image-based pore-scale modeling is an important method to study multiphase flow in permeable rocks. However, in many

rocks, the pore size distribution is so wide that it cannot be resolved in a single pore-space image, typically acquired using

micro-computed tomography (micro-CT). Recent multi-scale models therefore incorporate sub-voxel porosity maps, created by

differential micro-CT imaging of a contrast fluid in the pores. These maps delineate different microporous flow zones in the

model, which must be assigned petrophysical properties as input. The uncertainty on the pore scale physics in these models is

therefore heightened by uncertainties on the representation of unresolved pores, also called sub-rock typing. Here, we address

this by validating a multi-scale pore network model using a drainage experiment imaged with differential micro-CT on an

Estaillades limestone sample. We find that porosity map-based sub-rock typing was unable to match the micrometer-scale

experimental fluid distributions. To investigate why, we introduce a novel baseline sub-rock typing method, based on a 3D map

of the experimental capillary pressure function. By incorporating this data, we successfully remove most of the sub-rock typing

uncertainty from the model, obtaining a close fit to the experimental fluid distributions. Comparison between the two methods

shows that in this sample, the porosity map is poorly correlated to the multiphase flow behavior of the microporosity. The

validation method introduced in this paper serves to separate and address the uncertainties in multi-scale models, facilitating

simulations in complex geological reservoir rocks important for e.g. geological storage of CO2 and renewable energy.
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Abstract 18 

Image-based pore-scale modeling is an important method to study multiphase flow in permeable 19 

rocks. However, in many rocks, the pore size distribution is so wide that it cannot be resolved in a 20 

single pore-space image, typically acquired using micro-computed tomography (micro-CT). 21 

Recent multi-scale models therefore incorporate sub-voxel porosity maps, created by differential 22 

micro-CT imaging of a contrast fluid in the pores. These maps delineate different microporous 23 

flow zones in the model, which must be assigned petrophysical properties as input. The uncertainty 24 

on the pore scale physics in these models is therefore heightened by uncertainties on the 25 

representation of unresolved pores, also called sub-rock typing. Here, we address this by validating 26 

a multi-scale pore network model using a drainage experiment imaged with differential micro-CT 27 

on an Estaillades limestone sample. We find that porosity map-based sub-rock typing was unable 28 

to match the micrometer-scale experimental fluid distributions. To investigate why, we introduce 29 

a novel baseline sub-rock typing method, based on a 3D map of the experimental capillary pressure 30 

function. By incorporating this data, we successfully remove most of the sub-rock typing 31 

uncertainty from the model, obtaining a close fit to the experimental fluid distributions. 32 

Comparison between the two methods shows that in this sample, the porosity map is poorly 33 

correlated to the multiphase flow behavior of the microporosity. The validation method introduced 34 

in this paper serves to separate and address the uncertainties in multi-scale models, facilitating 35 

simulations in complex geological reservoir rocks important for e.g. geological storage of CO2 and 36 

renewable energy.  37 

 38 

Plain Language Summary 39 

Understanding multiphase flow within heterogeneous reservoir rocks is crucial for geological 40 

reservoir management. These rocks usually have intricate microstructures (unresolved or sub-41 

resolution pores) which are difficult to quantify and have a strong impact on fluid flow. Pore-scale 42 

modelling combined with imaged-based experiments can be a useful tool to describe complex pore 43 

structures, which is of key importance in the subsequent simulation and prediction of multiphase 44 

flow behavior. In this study, we focus on improving the representation of unresolved porous 45 

regions of a heterogeneous rock sample (also called sub-rock typing). A drainage experiment was 46 

performed and imaged by micro-computed tomography (micro-CT) to characterize the multiphase 47 
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distribution at increasing capillary pressures. The predictions of two multi-scale models, which 48 

were generated according to distinct sub-rock typing methods on the same sample, were compared 49 

with the drainage experimental data. We found that the model obtained by the “classical” sub-rock 50 

typing method was unable to simulate the correct arrangement of fluids in this sample, while the 51 

new method performed better, which illustrates the importance of rock type identification to pore-52 

scale modelling. The validation workflow presented in this paper can be extended and served as a 53 

reliable reference to improve simulations in other complex geological materials. 54 
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1 Introduction 55 

Multiphase flow through rocks plays an important role in numerous earth science applications, 56 

such as hydrocarbon recovery (Olayiwola & Dejam, 2019; Wang et al., 2020), carbon dioxide 57 

storage (Arif et al., 2017), remediation of polluted aquifers (Bortone et al., 2013) and subsurface 58 

energy storage in the form of hydrogen or compressed air (Amid et al., 2016, Mouli-Castillo et al., 59 

2019). Many reservoir rocks, notably carbonates and clay-bearing sandstones, exhibit complex 60 

pore geometries with very wide pore size distributions. The petrophysical properties of such rocks 61 

often do not obey classical correlations (Prodanović et al., 2015; Shanley et al., 2004), spurring 62 

pore-scale studies of their fluid flow behavior (Mehmani et al., 2020). This can be done based on 63 

images of the pore space, obtained with for example micro-computed tomography (micro-CT) and 64 

(FIB-)SEM imaging (Bultreys et al., 2016b; Bera et al., 2011; Ciobanu et al., 2011; Cnudde & 65 

Boone, 2013; Wirth, 2009). 66 

Despite the wide interest in simulating fluid flow in complex, multi-scale pore spaces, the trade-67 

off between image size and resolution in most imaging techniques complicates the development 68 

of suitable image-based approaches (Blunt et al., 2013). Typical imaging workflows identify 69 

resolved pores and zones with unresolved porosity (below the µm scale) in micro-CT images of 70 

mm-scale samples, which usually capture the largest pore features. Unresolved porosity is visible 71 

in these images as zones with grey values that are intermediate between solid and void, due to their 72 

intermediate density (Cnudde & Boone, 2013). These regions can then be imaged by higher-73 

resolution techniques, that are then correlated back to the lower-resolution micro-CT scan (De 74 

Boever et al., 2015; Devarapalli et al., 2017; Lin et al., 2019). The unresolved pores, which we 75 

will by definition refer to as the microporosity, can play a crucial role in the sample’s multiphase 76 

flow behavior (Bultreys et al., 2016c; Mehmani et al., 2020). Therefore, specialized multi-scale 77 

models are required that fuse the resolved pores with information on the microporosity features, 78 

typically obtained using higher-resolution images on small sub-sections of the sample (Menke et 79 

al., 2019).  80 

Multi-scale models are an extension of pore-scale, image-based modelling techniques, consisting 81 

of either direct numerical simulations (Alhashmi et al., 2015; Pan et al., 2004; Raeini et al., 2012) 82 

or pore network models (PNMs) (Blunt et al., 2013; Dong & Blunt, 2009). Direct numerical 83 

simulations of multiphase flow usually require large computational resources and therefore 84 
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struggle to capture capillary-dominated flow on large images (Blunt et al., 2013). PNMs feature 85 

higher computational efficiencies due to simplifications on the geometry and the fluid 86 

displacement physics, which makes them well-suited for multi-scale simulations. Networks 87 

obtained at different resolutions or scales can be extrapolated in space and fused to reconstruct a 88 

multi-scale pore network (Jiang et al., 2013; Mehmani & Prodanovic, 2014), resulting in detailed 89 

but very large networks. Alternatively, the micropores can be treated as a continuous porous 90 

medium with specific petrophysical properties to reduce the size of the network while still 91 

representing the connectivity caused by microporosity (Bultreys et al., 2015; Bauer et al., 2012; 92 

Youssef et al., 2008). 93 

Despite the progress in representing multi-scale pore networks, it remains difficult to assess the 94 

model uncertainties. Multi-scale pore network models depend on a significant amount of uncertain 95 

input information to describe the microporosity behavior, which complicates the validation of the 96 

physical assumptions in the model itself (e.g. quasi-static fluid displacement). An important aspect 97 

of the input uncertainty is that only a limited volume of microporosity is typically imaged at the 98 

highest resolutions, while there is often significant heterogeneity in its properties. Recent 99 

approaches have addressed this information gap by incorporating sub-voxel porosity maps 100 

(Ruspini et al., 2016, 2021). The porosity map can be generated based on differential imaging: 101 

measuring the calibrated grey value change when the pore space is filled with a high-contrast fluid 102 

such as high-concentration potassium iodide or cesium chloride (Boone et al., 2014; Ghous et al., 103 

2007, Lin et al., 2016). The resulting map is then used for “sub-rock typing”: identifying and 104 

characterizing zones with different microporosity properties in the model. The common approach 105 

is to perform a segmentation on dry images or differential images directly to separate distinct 106 

phases, sometimes followed by a series of image processing operations to alleviate artifacts at 107 

phase boundaries (Bauer et al., 2012; Bultreys et al., 2015). However, there is still a lack of 108 

validation to reveal whether these approaches can provide a reasonable representation for 109 

unresolved pores and how much uncertainty they introduce into the multi-scale PNM simulations. 110 

Recent work on single-scale pore network models has illustrated how pore-by-pore validation of 111 

the fluid distributions during drainage or imbibition can serve to study model uncertainties 112 

(Bultreys et al., 2018, 2020, Øren et al., 2019). A similar principle used to generate porosity maps 113 

can be used to track the fluid saturation in microporous regions during multiphase flow 114 

experiments (Lin et al., 2016, Gao et al., 2017). In this paper, we propose a pore-by-pore validation 115 
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workflow for multi-scale PNM by comparing fluid distributions in the model to a differential 116 

micro-computed tomography (micro-CT) based drainage experiment on a heterogeneous 117 

Estaillades limestone (as shown in Figure 1). Using this data, we validate the porosity-map based 118 

workflow, and explain its uncertainties by comparing to a novel data-based model, which takes its 119 

microporosity information from the micro-CT drainage experiment. The experiment and the image 120 

processing workflows are introduced in Section 2.1. Then, the multiscale PNM workflow 121 

including the two sub-rock typing methodologies (porosity-based and drainage-based methods) 122 

are explained in Section 2.2. In Section 3, we compare the predictions from the two models with 123 

experimental data and discuss the reasons that may lead to simulation uncertainties. Section 4 124 

discusses the conclusion and the outlook for our future research. 125 

 126 

 127 
Figure 1. The validation workflow for multi-scale pore network model. 128 

 129 

2 Materials and Methods 130 

2.1 Experiment 131 

The main goal of the experiment presented here is to measure the brine and decane distribution 132 

within both macropores and microporous regions of the sample during capillary drainage. In the 133 
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following, the sample and fluid preparation, the set-up, the experimental procedure and data 134 

processing workflow will be discussed in detail. 135 

2.1.1. Rock samples and fluid preparation 136 

The rock sample used in the experiment is Estaillades limestone, which has a complex pore 137 

structure featuring a bi-modal pore size distribution. The broad pore size distribution has two peaks 138 

with modes of respectively 390 nm and 19 µm (Han et al., 2007). Estaillades limestone is 139 

composed of 99% calcite (Alyafei & Blunt, 2016). A sample with a diameter of 6 mm and a length 140 

of 20 mm was cored and vacuum-saturated with deionized water to ensure that all the air was 141 

removed from the pores before the experiment.  142 

As fluid phases in the drainage experiment, we used KI-brine and decane. The former acted as 143 

wetting phase, while the latter was the non-wetting phase. The brine was made from deionized 144 

water doped with 25 wt% potassium iodine (KI) as a contrast agent due to its high X-ray 145 

attenuation coefficient. This solution provided a strong contrast to identify the fluid phases in the 146 

micro-CT images. 147 

2.1.2. Drainage experiment 148 

The experimental apparatus and flow lines are shown in Figure 2. The rock sample was placed on 149 

top of a water-wet ceramic porous plate (Cobra Technologies B.V., NL) and then wrapped in a 150 

Viton sleeve. The hydrophilic porous plate had a breakthrough pressure of 1300 kPa to prevent 151 

early breakthrough of the non-wetting phase. This assembly was placed in an X-ray transparent 152 

flow cell made out of PEEK (RS Systems, Norway), connected to high-precision syringe pumps 153 

supplying the experimental fluids. A differential pressure transducer (Keller PD-33X) was 154 

connected to the inlet and outlet of the sample. The flow cell was then placed on the Environmental 155 

Micro-CT (EMCT) scanner at Ghent University’s Centre for X-ray Tomography (UGCT) (Dierick 156 

et al., 2014; Bultreys et al., 2016a). This scanner consists of a rotating source-and-detector gantry, 157 

meaning the flow cell remained static during the full experiment. Throughout the experiment, the 158 

X-ray beam was filtered with 1 mm aluminium to reduce the beam hardening effect. The 159 

experiment was performed by executing the following steps: 160 

 161 
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1. A confining pressure of 3500 kPa was set to compress the Viton sleeve, to avoid fluid 162 

bypassing along the wall of sample. 163 

2. The water-saturated sample was scanned by micro-CT at room temperature and pressure. 164 

The imaging settings were: 6.5 µm voxel size, 2400 projections, 1150 ms integration time 165 

per radiograph; 110 kV and 8 W X-ray tube settings. Since water has a low grey value 166 

similar to air in the images, we will refer to this as the “dry scan” or “dry image” in 167 

following sections for convenience. 168 

3. The water was flushed out by brine, which was injected through the sample with a 169 

maximum flow rate of 0.075 ml/min for 4 hours and left overnight. A high-quality micro-170 

CT scan was conducted to capture the sample’s 100% brine saturated state (same imaging 171 

settings as step 2).  172 

4. The drainage was started by injecting decane from the top of the flow cell at a low flow 173 

rate (0.001 ml/min). To set a constant pressure drop over the sample, which at vanishing 174 

flow rates yields a set capillary pressure in the sample, the flow rate was subsequently 175 

gradually lowered based on manual inspection of the pressure transducer reading. This 176 

proved to be more reliable than using automated constant-pressure settings on the syringe 177 

pump, particularly at low set pressures. The experiment remained capillary dominated at 178 

all times during this equilibration procedure, as the maximum capillary number was 6.2 × 179 

10-8. 180 

5. Radiographs of the sample were collected and subtracted from each other to track the 181 

saturation change in the sample during the equilibration (supporting information Figure 182 

S1). In addition, a short micro-CT scan (6.5 µm voxel size, 2400 projections, 115 ms 183 

exposure time) was performed every hour to further compare flow distribution changes. 184 

When no more changes were found from both the differential radiographs and the 185 

subsequent micro-CT images at the target pressure, a high-quality scan (imaging settings 186 

see step 2) was taken. 187 

6. Steps 4 and 5 were repeated with gradually increasing pressure. We performed 6 capillary 188 

pressure steps during the experiment, at 8, 14, 80, 180, 220 and 400 kPa. Equilibration took 189 

between 4 and 7 hours for the different pressure steps, in all cases having reached very low 190 

final flow rates (below 0.0003 ml/min). 191 

 192 
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 193 
Figure 2. Experimental apparatus used in the drainage experiment. 194 

 195 

2.1.3. Micro-CT image processing 196 

The acquired tomograms, which represent the 3D distribution of X-ray attenuation coefficients in 197 

the sample, were reconstructed using Octopus Reconstruction software (Tescan-XRE, Belgium). 198 

After reconstruction, the image processing was performed using Avizo 2020.2 (ThermoFisher, 199 

France). The brine-saturated and drainage-step images were all registered to the dry image using 200 

normalized mutual information and resampled using the Lanczos algorithm to make sure all the 201 

images are aligned in space. The images were then filtered with a non-local means edge-preserving 202 

filter to reduce the image noise. As shown in Figure 3, the pores in the dry scan image are dark 203 

grey and have significantly lower grey values than solid calcite grains. In the brine-saturated image, 204 

the brine-invaded pores are brighter than other phases in the sample. A cross-section of the fluid 205 

distribution in the 6 capillary pressure steps is shown in Figure 3(c). With the increase of drainage 206 

pressure, the brine is displaced by decane, and brighter pores gradually become “black”. 207 
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(b) 
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(c) 

Figure 3. (a) Dry san. (b) KI saturated scan. (c) Drainage scans at 6 capillary pressures. 208 

 209 

Although the KI-brine visually already indicates the presence of different fluid phases within 210 

macropores, further processing is necessary to quantify the brine saturation in the unresolved 211 

porosity. We propose an improved workflow here based on differential imaging with normalized 212 

water-filled and brine-filled images to calculate the sub-resolution saturation in voxels that contain 213 

microporosity.  214 

The image normalization is based on selecting fixed grey values for two known materials, setting 215 

them to the same value in the different images, and doing a linear rescaling of everything in 216 

between. To normalize the brine-saturated image to the dry image, we first cropped 3 region-of-217 

interests (ROI) of solid grain to determine the upper normalization value, and an ROI in the sleeve 218 

(which has a low grey value) for the lower value. The rescaled image was calculated following 219 

equation (1), which is adapted from Lin et al, (2017): 220 

 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛 = (𝐼𝐼 − 𝑝𝑝𝑠𝑠_𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛) ∙ 𝑝𝑝𝑔𝑔_𝑑𝑑𝑑𝑑𝑑𝑑−𝑝𝑝𝑠𝑠_𝑑𝑑𝑑𝑑𝑑𝑑

𝑝𝑝𝑔𝑔_𝑏𝑏𝑑𝑑𝑏𝑏𝑏𝑏𝑏𝑏−𝑝𝑝𝑠𝑠_𝑏𝑏𝑑𝑑𝑏𝑏𝑏𝑏𝑏𝑏
+ 𝑝𝑝𝑠𝑠_𝑑𝑑𝑑𝑑𝑑𝑑 (1) 221 

Where Inew is the rescaled image, I is the image before normalization, pg_dry is the average mode of 222 

the 3 solid grain ROIs from the dry image, ps_dry is the mode of the grey value histogram of the 223 

sleeve ROI from the dry image, pg_brine is the average mode of the 3 solid grain ROIs from the 224 

brine saturated image, and ps_brine is the mode of the sleeve ROI from the brine saturated image. 225 
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For the drainage images, we first cropped 3 ROIs in solid grains and 3 ROIs in water-filled resolved 226 

pores from the dry and the 6 drainage images, extracted their grey value histograms and calculated 227 

their modes. The drainage images were then rescaled according to equation (2): 228 

 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛 = (𝐼𝐼 − 𝑝𝑝𝑑𝑑_𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏𝑛𝑛) ∙ 𝑝𝑝𝑔𝑔_𝑑𝑑𝑑𝑑𝑑𝑑−𝑝𝑝𝑤𝑤_𝑑𝑑𝑑𝑑𝑑𝑑

𝑝𝑝𝑔𝑔_𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏𝑏𝑏−𝑝𝑝𝑑𝑑_𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏𝑏𝑏
+ 𝑝𝑝𝑛𝑛_𝑑𝑑𝑑𝑑𝑑𝑑 (2) 229 

Where pg_dry is the average mode of 3 solid grain ROIs in the dry image, pw_dry is the average mode 230 

of 3 water-invaded-pore ROIs from the dry image, pg_drain is the average mode of 3 solid grain 231 

ROIs from the drainage images, pd_drain is the average mode of 3 decane-invaded-pore ROIs from 232 

drainage images. 233 

Then, the differential image was obtained by calculating the differences between the rescaled 234 

drainage- or brine saturated images and the water-filled image: 235 

 𝐼𝐼𝑑𝑑𝑏𝑏𝑑𝑑𝑑𝑑_𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏𝑛𝑛 = 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛_𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏𝑛𝑛 − 𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑 (3) 236 

 𝐼𝐼𝑑𝑑𝑏𝑏𝑑𝑑𝑑𝑑_𝑏𝑏𝑑𝑑𝑏𝑏𝑛𝑛𝑛𝑛 = 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛_𝑏𝑏𝑑𝑑𝑏𝑏𝑛𝑛𝑛𝑛 − 𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑 (4) 237 

The dry-brine differential image was used to quantify sub-resolution porosity in the image, due to 238 

the assumed linear dependence of the grey value in the differential image and the volume 239 

percentage of brine present in each voxel. We denote the thresholds set for solid (0% porous) and 240 

open porosity (100% porous) voxels as CT1 and CT2, respectively. CT1 was determined based on 241 

the valley between the grey value distributions of the solid and microporous phase in the histogram. 242 

CT2 was found by masking the differential image with the macropores segmented from the dry 243 

image, and finding the peak of the associated grey value histogram (supporting information Figure 244 

S2). Voxels with grey values equal to or less than CT1 are assigned 0% porosity, those equal to or 245 

higher than CT2 are assigned 100% porosity, the microporous region between CT1 and CT2 is 246 

assigned 0~100% porosity, using: 247 

 𝜑𝜑𝑚𝑚𝑏𝑏𝑚𝑚𝑑𝑑𝑚𝑚 = 𝐼𝐼𝑑𝑑𝑏𝑏𝑑𝑑𝑑𝑑_𝑏𝑏𝑑𝑑𝑏𝑏𝑏𝑏𝑏𝑏−𝐶𝐶𝐶𝐶1
𝐶𝐶𝐶𝐶2−𝐶𝐶𝐶𝐶1

 (5) 248 

Where φmicro is the porosity within microporous voxels. The total porosity can be calculated by: 249 

 250 

 𝜑𝜑𝑡𝑡𝑚𝑚𝑡𝑡𝑑𝑑𝑡𝑡 = 𝑉𝑉𝑚𝑚𝑑𝑑𝑚𝑚𝑑𝑑𝑚𝑚+𝑉𝑉𝑚𝑚𝑏𝑏𝑚𝑚𝑑𝑑𝑚𝑚∗𝜑𝜑𝑚𝑚𝑏𝑏𝑚𝑚𝑑𝑑𝑚𝑚
𝑉𝑉𝑠𝑠𝑑𝑑𝑚𝑚𝑠𝑠𝑠𝑠𝑏𝑏

 (6) 251 

Where Vmacro is the number of  macropore voxels, Vmicro is the number of micro-pore voxels, Vsample 252 

is the number of voxels in the whole sample. 253 

Simarly to the porosity map, we also calculated the brine saturation map at each capillary pressure 254 

step using the equation (7): 255 
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 S𝑛𝑛_𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏𝑛𝑛 = 𝜑𝜑𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏𝑏𝑏
𝜑𝜑𝑚𝑚𝑏𝑏𝑚𝑚𝑑𝑑𝑚𝑚

= 𝐼𝐼𝑑𝑑𝑏𝑏𝑑𝑑𝑑𝑑_𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏𝑏𝑏−𝐶𝐶𝐶𝐶1
𝐼𝐼𝑑𝑑𝑏𝑏𝑑𝑑𝑑𝑑_𝑏𝑏𝑑𝑑𝑏𝑏𝑏𝑏𝑏𝑏−𝐶𝐶𝐶𝐶1

 (7) 256 

With this method, the porosity distribution map was obtained, shown in Figure 4(b), which 257 

provided a 3D distribution of the porosity variation within the microporous phase. Table 1 shows 258 

the porosity calculation results. The total porosity of this sample was 25.43%, of which the sub-259 

resolution porous regions contributed 78.53%. The 3 components, macropores, microporous 260 

regions and solid grains, were extracted from this porosity map (Figure 4(c) and supporting 261 

information Figure S3). 262 

 263 

   
 264 
                           (a)                                                      (b)                                                        (c) 265 
Figure 4. Porosity distribution map. (a) A slice from the filtered dry image (b) The corresponding porosity 266 
distribution map at the same slice (c) Three-phase segmentation of the sample into macropores (red), 267 
microporous regions (yellow) and solid (blue). 268 

 269 
Table 1. Porosity calculation 270 

Phase Threshold Voxel 
(×108) 

Voxel*Porosity 
(×108) 

Average 
porosity 

Volume 
fraction Contribution Total 

porosity 
macro >1 0.42576  1 0.05463  0.05463  

0.2543  micro 0-1 5.01773 1.55637 0.31017  0.64381  0.19969  
grain <0 2.35033  0 0.30156  0 

 271 
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2.2 Multi-scale model 272 

2.2.1 Sub-rock typing 273 

Multi-scale models of multiphase flow depend on the classification of regions with sub-resolution 274 

porosity. To identify these regions, and inform their description in the model, a recently proposed 275 

method is to segment a sub-resolution porosity map of the sample into different “sub-rock types”. 276 

We will refer to this as the “porosity-based” method. A crucial first step is to generate an accurate 277 

porosity map (Figure 4(b)). Figure S4 in supporting information depicts the histogram of the 278 

porosity distribution in the sample. Two thresholds (0.2 and 0.4) were manually selected to divide 279 

the sample into 3 microphase regions or 3 rock types (3RT), based on trial-and-error to obtain 280 

realistic simulation results for the capillary pressure curve (see further). The sub-rock typing result 281 

is shown in Figure 6. 282 

The downside of porosity-based sub-rock typing is that it is based on the assumption that porosity 283 

is closely correlated to the multiphase flow properties of the microporosity. This is not necessarily 284 

the case. Therefore, we introduce a new method here to perform rock typing based directly on  285 

experimental multiphase flow data. To this end, we determined the invasion capillary pressure (Pct) 286 

distribution within the microporous phase. First, the saturation map at each drainage pressure step 287 

was calculated (Section 2.1.3). The saturation variation with the increase of pressure of every 288 

individual voxel was thus obtained. Next, these saturation maps were mean-filtered and 289 

downsampled by a factor 2 to reduce the noise dependency and computational load. Then, a 290 

Brooks-Corey-type Pc formulation (Brooks & Corey, 1964) was fitted to the capillary pressure-291 

saturation data points of each voxel using a least-squares approach in Matlab. This yielded a 292 

relation of the following form for each voxel: 293 

 𝑃𝑃𝑚𝑚 = 𝑃𝑃𝑚𝑚𝑡𝑡 �
1
𝑆𝑆𝑤𝑤
�
1
𝜆𝜆 (8) 294 

Where Pc is the capillary pressure, Pct is the fitted invasion capillary pressure, λ is a fitted parameter 295 

related to the pore size distribution and Sw is water saturation. 296 

In this way, Pct and λ values were derived for all microporous voxels. The fitted curves for two 297 

representative voxels are shown in Figure 5(a). Figure 5(c) presents the Pct map and the λ map, 298 

showing the 3D variation of the capillary pressure behavior in the sample. We primarily used the 299 

Pct map here due to its easier interpretability and lower noisiness than the λ-map. We considered 300 
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both porosity and Pct together by performing a k-means clustering on the (φ, Pct) points of all the 301 

voxels (Figure 5(b)). This was used to divide the voxels into 5 clusters, representing 5 microporous 302 

subrock types, next to the microporous and solid voxels in the image. 303 

 304 
(a) 305 

 306 

 307 
(b)  308 
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 309 

   
(c) 310 

Figure 5. Pct-based sub-rock typing workflow. (a) The diagram of data fitting of two representative voxels. (b) 311 
A plot of Pct versus porosity. (c) Porosity map (left), Pct distribution map (middle) and λ distribution map (right). 312 

 313 

2.2.2 Pore network extraction and simulations 314 

Two multi-scale PNMs of the sample were extracted using the porosity map and the sub-rock type 315 

maps as input. These PNMs consist of four types of network elements: resolved nodes (“pores”) 316 

and links (“throats”) that represent the macroporosity and unresolved (“Darcy”) nodes and links 317 

that represent the microporosity. The extraction is based on skeletonization and maximal ball 318 

clustering of the resolved pore space and each of the microporosity sub-rock types in order to find 319 

the centers of nodes and links, as described in Øren et al. (2019). These are then connected together 320 

to honour the connectivity of the multi-scale pore-space. Geometrical properties (e.g. inscribed 321 

radius, volume, shape factor) of the network elements are subsequently determined. For Darcy 322 

nodes and links, the geometrical properties are supplemented by the local porosity determined 323 

from the porosity map, and local petrophysical properties based on user input for each sub-rock 324 

type (see Section 2.2.3). Full details on the method can be found in Ruspini et al. (2021). We 325 

extracted two different PNMs of the same sample, based on respectively the porosity-based sub-326 

rock typing map and the Pct-based sub-rock typing map (Figure 6). The properties of these PNMs 327 

are shown in Table 2. The total porosity was 26.2% with 5.6% contributed by macropores and 328 

20.6% by micropores, which honours the micro-CT results (Table 1).  329 

 330 
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Figure 6. Dry image (left), porosity-based sub-rock typing result (middle) and Pct-based sub-rock typing result 331 
(right). The red and black in both sub-rock typing maps refer to macropores and solid grain. In porosity-based 332 
map: RT1, RT2 and RT3 show high, middle and low microporosity regions respectively. In Pct-based map: RT1 333 
to RT5 represent lower to higher Pct microporous regions. 334 

 335 

After extraction, the resulting PNMs were used to predict permeability and pore-scale fluid 336 

distributions during drainage. Permeabilities were calculated by assigning a conductivity value to 337 

each element (based on Poisseuille flow in resolved network elements and Darcy’s law in Darcy 338 

elements, taking the local microporosity’s permeability) and solving a set of mass balance 339 

equations (Ruspini et al., 2021). Drainage was simulated quasi-statically by calculating an 340 

intrusion capillary pressure for each network element, and then performing an invasion-percolation 341 

(i.e. progressively invading accessible network elements in ascending order of their intrusion 342 

capillary pressure). Invasion capillary pressures for resolved pores and throats were calculated by 343 

assuming triangular, square or cylindrical cross-sectional shapes (Mason & Morrow, 1991). In 344 

Darcy elements, the invasion pressure was found from input capillary pressure curves of the sub-345 

rock type (scaled according to the local porosity and permeability using the Leverett-J-curve). The 346 

simulation took fluid connectivity through wetting layers into account, and assumed a fluid to be 347 

connected through a Darcy element as long as the local relative permeability to the fluid was larger 348 

than zero. Full details are provided in Ruspini et al. (2021). 349 

 350 

 351 
Table 2. Properties of extracted PNMs 352 
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Properties Porosity-based model Pct-based model 
Nodes 666543 658120 
Links 4334582 5006058 

Darcy pore 4898310 5561272 
Total porosity 0.2625 0.2624 

Resolved porosity 0.0564 0.0563 
Unresolved porosity 0.2061 0.2061 

 353 

2.2.3 Petrophysical properties  354 

The petrophysical properties taken into account to represent unresolved porosity in each Darcy 355 

node of the PNM are porosity, permeability, relative permeability and capillary pressure curve (Pc-356 

curve). The local porosity in each element was determined from the porosity map. Compared with 357 

the traditional way of assigning an average porosity value to the whole microporosity phase, the 358 

introduction of the porosity map captures more realistic porosity heterogeneity. The permeability 359 

for each node was calculated from a power correlation 𝑘𝑘 = 𝑎𝑎 ∗ 𝜑𝜑𝑏𝑏, where a and b are supplied as 360 

input values for each sub-rock type. Parameter b was set to 3.37 for all types based on a nm-scale 361 

imaging study performed by Menke et al. (2019) on microporosity in Estaillades. Since the 362 

microporosity’s permeability values affect the intrusion capillary pressure curve of Darcy nodes 363 

through Leverett-J scaling, parameter “a” was tuned to match the output Pc-curve of the PNM 364 

simulations with our experimental Pc-curve measurement (Section 2.1). Note that anchoring 365 

simulations to available experimental data is common practice for multi-scale models, in order to 366 

allow better predictions of more difficult-to-obtain properties. 367 

The determination of the relative permeability curve for each rock type is a challenging task, as 368 

this property is difficult to measure directly. Here, the Brooks-Corey model (Brooks & Corey, 369 

1966) was used to assign the same relative permeability curves to all Darcy elements, in order to 370 

decrease its uncertain influence on the drainage simulation results. Approaches to obtain more 371 

accurate relative permeability curves for different micro-regions are the subject of future 372 

investigations. 373 

For the porosity-based PNM, the Brooks-Corey-type Pc formulation (Brooks & Corey, 1964) was 374 

fitted to the experimental Pc-measurement to obtain Pc-curves for each microporosity type. The 375 

fitted curve was split into three parts, corresponding to the three microporosity regions from the 376 

porosity map (see Section 2.2.1). The saturation range of each of these parts was then rescaled to 377 
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a range between 0 and 1, to serve as input Pc-curves for the sub-rock types, where the curve with 378 

the lowest Pc-range was assigned to the rock type with the highest porosity. Note that this 379 

workflow represents a coarse fit of the input properties to the experimental Pc-data (see e.g. 380 

Bultreys et al. 2015), but that this may not generally yield good results for all samples, and that 381 

there is no set way to divide the experimental Pc-curve into the individual sections (in this work, 382 

this was done by trial-and-error, until a satisfactory fit was found between the simulated and the 383 

experimental Pc-curves). For the Pct-based PNM, the input Pc-curves of each rock type were 384 

calculated directly from the imaging data, that is, the average saturation within each sub-rock type 385 

was determined at each capillary pressure step. This significantly reduced the input uncertainty of 386 

the simulations compared to the porosity-based workflow. 387 

3 Results 388 

3.1 Simulation results 389 

The permeability values simulated with the Pct-based model and porosity-based model were 69.93 390 

mD and 9.54 mD respectively, compared to literature values of 95.5 mD to 283.6 mD (Alyafei et 391 

al., 2015; Bultreys et al., 2015; Nono et al., 2014) and minipermeameter values 202.4 ± 86.9 mD. 392 

To validate the experimental workflow and the image analysis results from it, we compared the 393 

drainage results with a capillary pressure curve obtained using mercury intrusion capillary pressure 394 

(MICP) method (Bultreys et al., 2015), rescaled to the water-decane interfacial tension (48.3 mN/m) 395 

and contact angle (0o). As shown in Figure 7, the evolution of the saturation from the imaging with 396 

the capillary pressure imposed in our experiment agreed well with the MICP data, indicating that 397 

the experimental operation and data processing methods were reasonable and reliable. Furthermore, 398 

the simulated capillary pressure curves also showed a good match with our experiment, and the 399 

input parameters were thus considered to be reasonable for the further pore-by-pore evaluation of 400 

the model. 401 

 402 
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 403 
Figure 7. Comparison of capillary pressure curve obtain from MICP experiment, our drainage experiment, and 404 
simulations. 405 

 406 

3.2 Model validation of fluid distributions 407 

Figure 8 shows the slice-average probile of the brine saturation along the flow direction in the 408 

sample. Visual comparision indicates that the distribution simulated by the Pct-based model 409 

generally fits more closely to the experimental measurements. 410 

 411 

 412 
(a) 413 
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 414 
(b) 415 

Figure 8. Brine saturation slice-average profiles along fluid flow direction. (a) Experimental results. (b) 416 
Comparision of experiment and model predictions at 1 to 4 drainage steps. 417 

 418 

The simulations were then compared to each step of the imaging experiment at a matching total 419 

saturation. Figure 9 shows the comparison between saturation distributions of the experiment and 420 

the two model cases. In the first and second drainage stage, due to the low capillary pressure, large 421 

macro pores and well connected micropores are invaded by oil, while other macro pores remain 422 

uninvaded or partially invaded. From the third capillary pressure on, the displacement takes place 423 

almost completely in the microporous regions. This general trend was captured by both models. 424 

However, visual inspection of the fluid saturation maps shows that the new Pct-based model 425 

performs significantly better than the classical porosity-based model in predicting the fluid 426 

distribution. 427 

The observed discrepancy in the porosity-based model is related to the fact that the porosity-based 428 

model (similarly to most classical multi-scale models) assumes that regions with higher porosity 429 

have larger pore sizes and are more easily drained. Contrary to this classical assumption, the 430 

experiment shows that the sub-rock type with the lowest average porosity has the lowest water 431 

saturation at high capillary pressure steps (Figure 10). While the model contained enough degrees 432 

of freedom for it to be tuned to the sample-averaged capillary pressure curve in Figure 7, this is 433 

not the case for the pore-scale distribution of the fluids. Matching this distribution is known to be 434 

a crucial issue to obtain reliable relative permeability curves from the model (Bultreys et al., 2020; 435 

Gharbi & Blunt, 2012; Ruspini et al., 2017). Comparison to the novel Pct-based method, which is 436 
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directly based on the breakthrough pressure of each pore and provides a much better match, shows 437 

that the fluid distribution discrepancy can be resolved by avoiding the basic assumption that higher 438 

porosities are related to lower intrusion capillary pressures in the sub-rock typing.  439 

 440 

Step Experiment Porosity-based model Pct-based model 

1 

   

2 

   

3 
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4 

   

5 

   

6 

   

Figure 9. Saturation map comparison at each drainage pressure. The left column is experimental results. The 441 
middle and right column are simulation results in porosity-based and Pct-based pore network model. 442 

 443 
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 444 
Figure 10. Average experimental saturation for the 3 micro-phase regions determined by the porosity-based sub-445 
rock typing, for each capillary pressure step. These are the high (0.4-1), middle (0.2-0.4) and low (0-0.2) porosity 446 
regions respectively. 447 

 448 

3.3 Saturation error 449 

To investigate the accuracy of the predicted saturations further, we compared the simulations to 450 

the experiment directly on the image by calculating the squared saturation error in each voxel: 451 

�𝑆𝑆𝑛𝑛_𝑛𝑛𝑒𝑒𝑝𝑝 − 𝑆𝑆𝑛𝑛_𝑚𝑚𝑚𝑚𝑑𝑑�
2
. Cross-sections of these saturation error maps are are shown in Figure 11(a). 452 

The Pct-based model generally shows higher accuracy than the porosity-based model, especially 453 

unresolved regions at high capillary pressures. 454 

The saturation error in certain open pores and in pores just above the image resolution is relatively 455 

large in the beginning of drainage in both models (pressure steps 1-3). To explain this, Figure 12 456 

shows the pore radius distribution of water filled macropores and throats in the experiment and in 457 

the Pct-based model. We define the discrepancy of the filling state as the percentage of network 458 

elements that were occupied by a different fluid in the simulation than in the experiment (Bultreys 459 

et al., 2018). If more than half of the fluid within a single pore or throat was wetting phase, the 460 

pores or throats were considered to be wetting phase occupied, otherwise, they were classified as 461 

non-wetting phase filled. As expected, the non-wetting phase invaded large open pores and throats 462 

in the beginning, and almost all the brine within them was displaced before increasing to the fourth 463 
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pressure. Similar to single-scale models (Bultreys et al., 2018), the pores and throats with 464 

intermediate size had the largest filling discrepancy. At the first drainage pressure, the occupancy 465 

for pores with large radius (>12 μm) had a close match. However, the simulation predicted that all 466 

small pores were wetting-filled while the experiment did not show this behaviour. The throat filling 467 

error also reached 18.14% in this step. As shown in previous studies (Bultreys et al., 2018), the 468 

experimental fluid distribution and filling states at the pore scale are generally not fully 469 

reproducible, even in repeated experiments. Some of the pore-by-pore errors are likely caused by 470 

wrong intrusion pressure predictions in throats that are only just above the resolution. Furthermore, 471 

we only imaged the central part of the sample and the boundary conditions are therefore not exactly 472 

the same in the model and the experiment, which increased the pore-by-pore uncertainty of the 473 

simulation. 474 

To quantitatively compare the saturation errors at each drainage step, we calculated the absolute 475 

average root mean square error (δAbs) and the volume weighted average root mean square error 476 

(δVolWei) of the models over the entire image: 477 

 𝛿𝛿𝐴𝐴𝑏𝑏𝑠𝑠 = �∑�𝑆𝑆𝑤𝑤_𝑏𝑏𝑒𝑒𝑠𝑠−𝑆𝑆𝑤𝑤_𝑚𝑚𝑚𝑚𝑑𝑑�
2

𝑁𝑁
 (9) 478 

 𝛿𝛿𝑉𝑉𝑚𝑚𝑡𝑡𝑉𝑉𝑛𝑛𝑏𝑏 = �∑��𝑆𝑆𝑤𝑤_𝑏𝑏𝑒𝑒𝑠𝑠−𝑆𝑆𝑤𝑤_𝑚𝑚𝑚𝑚𝑑𝑑�∙𝜑𝜑�
2

𝑁𝑁
 (10) 479 

Where Sw_exp and Sw_mod are brine saturation of each voxel from experimental measurments and 480 

simulations respectively, φ is the corresponding porosity of each voxel, N is the total number of 481 

pore voxels. 482 

Figure 11(b) indicates that the saturation error in the porosity-based model at high drainage 483 

pressures is significantly higher than that at low pressures, while the Pct-based model shows a 484 

smoother trend and lower errors, decreasing from 0.34 to 0.26 with the increase of pressures. The 485 

volume-weighted error in the porosity-based model is almost twice as high as in the Pct-based 486 

model in drainage steps 3 to 6. 487 

 488 

Step 
Pct-based model error map Porosity-based model error map 

X-Y plane X-Z plane X-Y plane X-Z plane 
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2 

  

3 

  

4 

  

5 

  



manuscript submitted to Water Resources Research 

 

6 

  

(a) 489 

  
(b) 490 

Figure 11. Saturation error. (a) Saturation error map. The left two columns (X-Y plane and X-Z plane maps 491 
respectively) are saturation discrepancy between experiment and Pct-based model simulations. The right two 492 
columns (X-Y plane and X-Z plane maps respectively) are saturation discrepancy between experiment and 493 
porosity-based model simulations. The balck is solid grain. The blue color represents the simulated saturation 494 
error is very small, while the red color denotes the error is large. (b) Absolute saturation error (left) and volume 495 
weighted saturation error (right) predicted by the two models. 496 

 497 
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Figure 12. Water-filled open pore (top) and throat (bottom) size distribution after each drainage step. 498 

 499 

4 Conclusions 500 

In this work, we proposed a multi-scale PNM validation workflow using drainage experiments 501 

imaged with micro-CT, to study the factors that influence the uncertainty of pore-scale modelling 502 

and simulation. The differential imaging technique was used to quantify the porosity map and the 503 

saturation distribution during capillary-dominated drainage in an Estaillades limestone sample. A 504 

“classical” porosity-based and a novel invasion-capillary-pressure-based sub-rock typing methods 505 

were used to characterize the microporosity, followed by a multi-scale PNM extraction. The 506 

continuum scale properties and pore-scale multiphase distribution from the two models were then 507 

compared to experimental data. 508 

We showed that the Pc-curves simulated by both models matched our image-based capillary 509 

pressure curve and an MICP curve of the rock type. The porosity-based model performed poorly 510 

in simulating multiphase fluid distribution at the pore-scale, while the novel Pct-based model 511 

significantly improved the prediction of pore filling states. This indicated that the multiphase 512 

transport behavior within sub-resolution pores was poorly correlated to the sub-voxel porosity. 513 

Further research should indicate if this is due to micropore geometry variations or due to dynamic 514 

effects inside the microporosity, e.g. inhomogeneous drainage due to extremely low brine 515 

conductivities that slow down the invasion to very long time scales. The methodology presented 516 

in this work was proven to be a robust approach in decreasing the uncertainty of pore-scale 517 

modelling and can be extended to other complex reservoir rocks modelling, to provide more 518 

insights on, for example, CO2 sequestration and reservoir management. 519 

Despite the improved results obtained with the Pct-based method, the determination of input 520 

petrophysical properties for microporous flow zones is still challenging and was shown to be a key 521 
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factor affecting the reliability of the simulation. Furthermore, this current “best-fit” model is 522 

generated based on the fact that we have the full information of the drainage experiment. While 523 

this may be useful as a hybrid workflow to calculate properties that are difficult or impossible to 524 

measure in unsteady-state experiments, notably relative permeability, performing the experiment 525 

itself is time-consuming and complex. Therefore, further work should point out if the Pct-based 526 

rock-typing can serve as a baseline to develop more straightforward sub-rock typing methods. 527 
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Figure S1 shows fluid flow variation on X-ray radiograph. 
Figure S2 shows the grey value histogram of differential image between dry scan and brine 
saturated scan. 
Figure S3 shows the three-phase segmentation based on the porosity distribution map. 
Figure S4 shows microporosity distribution of the sample. 
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Figure S1. Fluid flow variation on X-ray radiograph to track the saturation change in the sample 
during the equilibration. 

 

 

Figure S2. The grey value histogram of differential image between dry scan and brine saturated 
scan. The CT1 and CT2 are denoted as the thresholds for solid (0% porous) and open porosity 
(100% porous) respectively.  
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Figure S3. Segmentation based on the porosity distribution map. (a) Segmentation for the 
whole sample. The red is macropore, the yellow represents microporous region and the blue is 
solid grain. (b) Macropore overlap on the image. (c) Boundary of the microporous region.   
 

 

Figure S4. Microporosity distribution of the sample. 
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