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Abstract

Glaciers cover nearly 10 percent of the earth’s surface but are melting at an inexorable rate. Antarctica’s Doomsday Glacier’

is melting faster and could raise global sea levels by two feet. As three-quarters of the earth’s fresh water is stored in glaciers,

its melting depletes freshwater resources for millions of people. Glaciers also play a huge role in the climate crisis. Silica

microspheres are promising materials to prevent glacier melting as it reflects most of the sun’s radiation. When spread in layers

over the glacier, it can slow the rate of melt and aid in new ice formation. However, currently, no modeling is available to show

the amount of silica needed and its effectiveness in advance. This paper introduces a novel method SPF ICE that models the

silica amount based on glacier’s properties by testing reinforcement learning agents in a custom OpenAI Gym environment.

The environment simulates a real-world model of a glacial setting using specific data, such as the glacier’s mass balance, average

accumulation, and ablation. After testing RL agents like DQN and SARSA, the proposed solution modeled the silica amount

that reduced glacial melting by an average of 60.40% extending its lifetime by many years. The results indicate SPF ICE is a

promising and cost-effective solution to curb glacier melting.
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Key Points:6

• The reinforcement learning agents and a custom OpenAI Gym environment are7

used to determine ideal amounts of silica to preserve glaciers8

• The RL agents, DQN and SARSA, act in an OpenAI Gym environment, which9

simulates the real-life conditions of a glacial setting10

• The proposed solution reduced glacial melting by an average of 60.40% using the11

determined amount of silica12
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Abstract13

Glaciers cover nearly 10 percent of the earth’s surface but are melting at an inexorable14

rate. Antarctica’s Doomsday Glacier’ is melting faster and could raise global sea levels15

by two feet. As three-quarters of the earth’s fresh water is stored in glaciers, its melt-16

ing depletes freshwater resources for millions of people. Glaciers also play a huge role17

in the climate crisis. Silica microspheres are promising materials to prevent glacier melt-18

ing as it reflects most of the sun’s radiation. When spread in layers over the glacier, it19

can slow the rate of melt and aid in new ice formation. However, currently, no model-20

ing is available to show the amount of silica needed and its effectiveness in advance. This21

paper introduces a novel method SPF ICE that models the silica amount based on glacier’s22

properties by testing reinforcement learning agents in a custom OpenAI Gym environ-23

ment. The environment simulates a real-world model of a glacial setting using specific24

data, such as the glacier’s mass balance, average accumulation, and ablation. After test-25

ing RL agents like DQN and SARSA, the proposed solution modeled the silica amount26

that reduced glacial melting by an average of 60.40% extending its lifetime by several27

years. The results indicate SPF ICE is a promising and cost-effective solution to curb28

glacier melting.29

1 Introduction30

1.1 Glacial Melting31

Glaciers are receding and shrinking at a rapid phase. While melting glaciers are32

caused by climate change, glacier melting further increases the temperatures across the33

globe. The phenomenon is called ’ice-albedo feedback’ (Curry et al., 1995). This feed-34

back arises from the simple fact that ice is more reflective than land or water surfaces.35

Therefore, as global ice cover decreases, the reflectivity of Earth’s surface decreases, more36

incoming solar radiation is absorbed by the surface, and the surface warms. According37

to new research, the melting of glaciers as a result of climate change has even knocked38

the Earth off its axis (Deng et al., 2021).39

Currently, the scale and speed of ice melting are extraordinary. In the summer of40

2019, Arctic sea ice levels were tied for the second-lowest ever recorded. During a heat-41

wave in June, Greenland lost nearly 60 billion tons of ice in five days. In 2012, satellite42

observations reveal that melt occurred across 98.6% of the Greenland ice sheet (Nghiem43

et al., 2012). Climate models predict that Arctic summers could be close to ice-free in44

the next 70 years.45

It is the glaciers and ice sheets that are absorbing the brunt of the climate crisis.46

Preserving glaciers is crucial for various environmental reasons, but the most important47

one is that it is the source of freshwater for millions of people around the world.48

About three-quarters of Earth’s fresh water is stored in glaciers. Therefore, glacier49

ice is the second-largest reservoir of water and the largest reservoir of fresh water on Earth.50

Glaciers are critical to water management, fisheries, and flood prevention. With shrink-51

ing glaciers, less water will be available for nearby river systems when rainfall is low. In52

some parts of the world, millions of people could lose their primary water supplies. In53

the Pacific northwest US, if glaciers melted entirely, that could reduce the flow of cer-54

tain watersheds by up to 15% in dry months of August and September (Menounos et55

al., 2019). In Asia, 700 million people will face water problems by 2100 due to melting56

glaciers in that region. The pace of retreat and loss of certain glaciers is most rapid within57

the Tropical Andes (Johansen et al., 2018). This melting of South America’s glaciers and58

ice fields poses a threat to water supplies and agriculture from Bolivia to Chile.59

Rising sea levels can also introduce new or exacerbate existing saltwater intrusion60

into freshwater resources. Both groundwater and surface water sources are at risk in coastal61
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cities posing challenges for drinking water treatment facilities and water resource man-62

agers. Melting glaciers are contributing to rising sea levels flooding coastal cities through-63

out the world (Cazenave et al., 2018). Glaciers had predictable seasonal changes, los-64

ing mass in the summer and regaining it in the winter. In recent years they are losing65

more than they accumulate through new snowfall, ultimately adding more water to the66

oceans, leading to a rise in sea level. Global mean sea level has risen about 8–9 inches67

since 1880, with about a third of that coming in just the last two and a half decades, and68

from 2018 to 2019, global sea level rose 0.24 inches (Douglas et al., 2000).69

1.2 Silicon Dioxide70

Silica, silicon dioxide, is a compound of the two most abundant elements in Earth’s71

crust: silicon and oxygen. The mass of Earth’s crust is nearly 59 percent silica, and it72

is the main constituent of more than 95 percent of the identified rocks. Silica can reflect73

most of the radiation from the sun’s rays, making it an optimal option to prevent glacier74

melting. Also, it sticks to ice and water the moment it hits the surface. When sprayed75

over water, the reflective sand creates a white slush that mimics the reflective proper-76

ties of ice meaning that heat from the sun can be reflected outward rather than being77

absorbed into the ice and sea. It is chemically unreactive, which means it is not prone78

to a chemical reaction. Since it is hydrophilic, it does not attract any oil-based pollu-79

tants. Sand silica can benefit the global silica cycle and ecosystems as long as its size is80

not large enough to be deemed harmful. Most silica microspheres average between 35-81

60 micrometers above the health risk threshold (Flörke et al., 2008). This choice is also82

safe in desired amounts for animals and ecosystems.83

1.3 Proposed Solution84

No single glacier or ice sheets are similar in mass balance, debris, density, thermal85

conductivity, and absorption; a single standard approach of preserving it with silica is86

not ideal. The proposed solution is novel as it reduces glacial melt using silica intelli-87

gently, taking into account all the characteristics and properties of the glacier. Further-88

more, current machine learning algorithms only provide the evolution and mapping of89

glaciers (Bolibar et al., 2020) with no solution providing intervention and treatment of90

glacier melting like SPF ICE. With this novel approach using reinforcement learning, an91

area of machine learning, the glacial melt can be efficiently reduced by determining the92

amount of silica needed for adequate reflection of UV rays. As users enter specific prop-93

erties of a glacier and additional metrics like temperature, average accumulation, and94

average ablation of the area, the algorithm will accurately determine the amount of sil-95

ica desired to prevent the melt. Determining the amount of silica is crucial as it not only96

very cost-effective but also helps reduce any effects of silica on the environment.97

2 Related Work98

The Arctic Ice Project utilizes silica beads that were tested in Alaska have shown99

promising results. In a paper published by the American Geophysical Union, one field100

test reported a 15 to 20 percent increase in reflectivity due to the beads. In the Arctic,101

that could translate into a 1.5 degree Celsius temperature reduction, a 3-degree reduc-102

tion in sea temperatures, and an increase in ice thickness up to 20 inches (Field et al.,103

2018). The Arctic project solution strategically applied in the Arctic can allow the world104

to buy up to 15 more years to decarbonize the economy and draw down greenhouse gas105

from the atmosphere (Chamberlin et al., 2020).Since there is no modeling to forecast the106

amount and effectiveness of silica, SPF ICE can help intelligently and quickly select the107

amount of silica through glacial modeling.108

–3–
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3 SPF ICE: Overview of Structure109

The project’s software development occurred in two phases: the construction of the110

custom OpenAI Gym environment and the reinforcement learning (RL) agents, Deep Q111

Network, and SARSA.112

3.1 OpenAI Gym Environment113

3.1.1 Initialization and Timesteps114

The first component is the custom OpenAI gym environment, which simulates the115

real-life conditions of a glacial setting. The initialization of every OpenAI gym environ-116

ment consists of an observation space, action space, and the environment’s current state.117

In this scenario, the observation space is the observed mass balance of the glacier, and118

the action space is represented as a Box, an array of integers from 1-20, referring to the119

thickness of silica in centimeters. The current state of the environmental attributes to120

the annual melt rate of the glacier. Other factors defined are the season of the year, tem-121

perature, average accumulation, and average ablation. Users can enter values specific to122

their glacier or use predetermined values for prominent glaciers across the world like Matanuska,123

Mendenhall, Vatnajökull, and the Lambert glacier.124

After the initialization of the environment is complete, each timestep must be de-125

fined, which aligns with the seasons of the year. Since glacial conditions are not simi-126

lar during fall-winter and spring-summer, the timesteps are divided into these two groups.127

For the fall-winter timesteps, as snowfall is more likely, the accumulation rate is added128

to the average melt rate. Based on the amount of silica chosen by the RL agent, a new129

melt rate is calculated using the conductive heat flux formula: Qc = k∆T/hd. The melt130

rate is then calculated by M = Qc/Lf (Hock, 2005).131

3.1.2 Reward System132

The reward system is calculated based on how effective the silica is in preventing133

additional melt. For this research, it is hypothesized that silica could reduce glacial melt134

by greater than 50%. Therefore, if silica can reduce the melt rate by at least 50% than135

the current rate, a positive reward is given. However, to constrain the use of an exces-136

sive amount of silica, the size of the positive reward is inversely proportional to the thick-137

ness of silica. Using more silica yields a smaller positive reward, and using less silica re-138

turns a higher reward. If the silica cannot reduce the melt rate by at least 50% of the139

predicted melt rate, the silica is given a negative reward. The size of the negative reward140

is directly proportional to the amount of silica used. Using more silica returns a larger141

negative reward, and using less silica yields a smaller negative reward. In both cases, us-142

ing more silica is punished more severely than using less silica.143

As the ultraviolet radiation intensity increases during the spring-summer timestep,144

the additional ablation melt is added to the annual melt rate. The new melt rate and145

the reward system are calculated using the amount of silica similar to the fall-winter time146

step. Each episode starts at the defined mass of the glacier and ends when the glacier’s147

mass reaches zero. After the end of each episode, the environment is reset.148

–4–
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Figure 1: Interaction between RL Agent and Environment

3.2 DQN RL Agent149

The second component of the software is the reinforcement learning agents: Deep150

Q Network and SARSA. DQN agent uses two neural networks: the main and target net-151

work. Both networks have the same architecture but use different weights to provide sta-152

bility to the learning process. The neural networks map the input state to the (action,153

Q-value) pairs (Fan et al., 2020). The neural network architecture consists of five lay-154

ers, including three hidden dense layers of 256 units with the ReLU activation function.155

The final layer has 20 units for each thickness of silica that could be applied. Using the156

current state as its input, DQN uses the Boltzmann policy to output the Q-values for157

all possible actions. The action associated with the highest Q-value is chosen. The agent’s158

decisions or actions will affect the rewards it obtains. During each episode, Deep Q Net-159

work attempts to maximize the rewards that it receives.160

3.3 SARSA RL Agent161

The SARSA agent works differently from the DQN agent. It uses an on-policy learn-162

ing algorithm, where in the current state (S), it chooses the best possible action (A) and163

receives a reward (R). It arrives in a new state (S1) and takes action (A1) in that state,164

creating the tuple (S, A, R, S1, A1). The Q values represent the possible reward in the165

next time step after taking the chosen action in the current state, plus the discounted166

future reward received in the next state. The Q-values are updated based on the action167

A1 taken in state S1. SARSA also attempts to maximize the rewards that it receives.168

4 Proof Of Concept169

4.1 Results170

Below are results averaged over 32 episodes for comparing both agents to the mass171

of the glacier over time and their rewards to the most optimal policy using the follow-172

ing hyperparameters. These hyperparameters are approximate values of the Vatnajökull173

glacier found in southeastern Iceland.174

Total Mass of Glacier = 3,000,000,000 Tonnes175

Total Area of Glacier = 8,000,000 Meters176

Average Accumulation = 17,500 Tonnes177

Average Ablation = 20,000 Tonnes178

Thermal Conductivity of Silica = 1.11179

Latent Heat of Energy of Silica = 50.55180

–5–
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Figure 2: Plot comparing the glacial melt with and without silica applied the DQN
agent. Without silica, the glacier’s lifetime is about 4058 time-steps or about 1014.70
years. Using the amount of silica applied by the DQN agent, the lifetime of the glacier is
extended by 26549.55 years.

Figure 3: Plot comparing the glacial melt with and without silica applied the SARSA
agent. Without silica, the glacier’s lifetime is about 4048 time-steps or about 1012 years.
Using the amount of silica applied by the SARSA agent, the lifetime of the glacier is
extended by 17439.25 years.
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(a) (b)

Figure 4: Figure 4.a compares the average melt rate applying silica using DQN compared
to the average melt rate without silica. Figure 4.b presents evidence that silica decreases
the glacier’s melt rate between 1500% and 1000%. Time-Steps, where accumulation oc-
curred, were removed.

(a) (b)

Figure 5: Figure 5.a compares the average melt of the glacier applying silica using the
SARSA agent compared to the average melt rate without it. Figure 5.b presents evidence
that silica decreases the glacier’s melt rate between 1250% and 500%. Time-Steps, where
accumulation occurred, were removed.
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(a) (b)

Figure 6: Both DQN and SARSA achieved high amounts of reward. Figure 6.a displays
the average reward for DQN and Figure 6.b for SARSA. The SARSA agent typically
achieved higher rewards than the DQN agent.

(a) (b)

Figure 7: Plots showing the usage of silica over time. As the glacier continues to recede
in size, less silica is used to prevent glacial melt. Figure 7.a shows the amount of silica
used by DQN and 7.b for SARSA. The SARSA agent uses less silica can the DQN agent.

The agents were also tested changing the following hyperparameters, which are rep-181

resentative of cirque glaciers (small glaciers found in bowl-shaped depressions near moun-182

tains). The agents were only tested across 100 time-steps.183

Total Mass of Glacier = 2000 Tonnes184

–8–
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Average Accumulation = 10 Tonnes185

Average Ablation = 25 Tonnes186

(a) (b)

Figure 8: Figure 8.a compares the average melt rate applying silica using the SARSA
agent (blue) compared to the average melt rate without it (red) across 100 episodes. As
evident in Figure 8.b, using silica significantly reduced the melt rate.

(a) (b)

Figure 9: Figure 9.a compares the average melt of the glacier applying silica using the
DQN agent compared to the average melt rate without it. Figure 9.b presents evidence
that silica decreases the glacier’s melt rate between 58.75% and 70.35%.

–9–
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(a) (b)

Figure 10: The most optimal policy obtains the highest amount of reward possible in
an episode. Below the best policy is indicated in red and the agents in blue. Figure 10.a
displays the average reward for DQN and Figure 10.b for SARSA.

4.2 Discussion187

As shown in the results section, both reinforcement learning agents reduced the glacier’s188

melt rates substantially from the current melt rate. More importantly, silicon dioxide189

had a bigger impact on preserving the larger glacier compared to the smaller one. Both190

agents reduced the melt rate by nearly 1000% for the larger glacier compared to 60% for191

the smaller glacier. For the Vatnajökull glacier, the DQN agent performed better than192

the SARSA agent. DQN was able to extend the lifetime of the glacier by nearly 9,000193

years because it reduced the melt rate significantly more than SARSA. However, DQN194

uses sightly more silicon dioxide than SARSA as indicated in Graph 8.a. For the smaller195

glacier, silicon dioxide had a smaller effect. The SARSA agent reduced the melt rate from196

an average of 175.54 to 64.29 using silicon dioxide. This difference amounts to an aver-197

age decrease of 63.38% in melt rate. The DQN agent achieved similar results to the SARSA198

agent. Deep Q Network reduced the melt rate from an average of 172.83 to 68.44, an av-199

erage decrease of 60.40% in the glacial melt. Although Deep Q Network performs slightly200

lower than the SARSA agent, DQN had less variability in percent difference than SARSA.201

This statistic could be critical, especially in real-world glacial environments, where mi-202

nor differences in melt could lead to severe consequences, such as rising sea levels, habi-203

tat loss, and loss of glacier stability. Both agents were successful in their usage of sili-204

con dioxide. They used silicon dioxide proportional to the melt rate of the glacier as shown205

in Figure 11.a and 11.b. SPF ICE is able to model the mass of the glacier over time and206

provide the amount of silica to preserve glaciers at a specific point in time.207

For further analysis of the RL agents, their reward per episode can be compared208

to the most optimal policy. The best policy achieves the highest amount of reward per209

episode. Therefore, it is imperative that both the DQN and SARSA agents have poli-210

cies that align most closely to the optimal policy. When comparing the RL agents to the211

most optimal policy, Deep Q Network performs better than SARSA. DQN can better212

maximize the amount of reward that it receives than SARSA. All of the graphs indicate213

that DQN is better suited in determining the correct amount of silica to reduce glacial214

melt across the world.215

Future work includes gathering and testing more real-time glacier data from Na-216

tional Snow and Ice Data Center to augment the modeling to provide the best perfor-217
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mance in larger scale field tests. This data set consists of glacier regime parameters ob-218

served between 1945 and 2003. Data include annual mass balances, ablation, accumu-219

lation, and equilibrium-line altitude of mountain and subpolar glaciers outside the two220

major ice sheets. All available sources of information, such as publications, archived data,221

and personal communications, have been collected and include time series of more than222

300 glaciers. Data have been digitized and quality checked (Dyurgerov, 2002). The data223

collected will be fine-tuned based on the year, categorized based on glaciers’ specific prop-224

erties such as average mass balance, accumulation, and ablation, and then inputted into225

the OpenAI Gym environment. Using these values, the RL agent will be tested over sev-226

eral episodes.227

The values defined in the SPF ICE’s OpenAI Gym are exact and are not variable228

to change over time. However, this is not typical in the real-world glacial setting. There229

will be more variability and randomness in a real-world glacial environment, increasing230

the glacial melt rate and reducing the lifetime of the glaciers.Modeling additional prop-231

erties like temperature and solar reflectivity will make SPF ICE more accurate.232

5 Conclusion233

SPF ICE is a revolutionary and novel solution to preserve glaciers worldwide us-234

ing reinforcement learning and OpenAI Gym to determine the amount of silica needed235

for adequate reflection of UV rays based on the season, temperature, and mass balance236

of the glacier without using thousands of time-consuming calculations. Determining the237

right amount of silica is crucial as it is cost-effective and helps reduce any adverse effects238

of silica on the natural environment. SPF ICE is customizable for any glacier as users239

can enter data specific to their glaciers, such as average mass balance, accumulation, and240

ablation. It is scalable to easily add more prevention techniques for glacial melting, mod-241

ifying only specific formulas and values defined in the OpenAI Gym environment. With242

its immense benefits, this accurate and effective solution can be helpful for people around243

the world that depend heavily on glacial freshwater, prevent flooding of coastal cities,244

and helps reduce extreme weather events.245

Acronyms246

RL Reinforcement Learning247

SARSA State–action–reward–state–action248

DQN Deep Q Network249
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