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Abstract

Accurate and high-resolution air temperature prediction is important in many different applications. Hourly air temperature

forecasting in mountainous areas is necessary and important because mountainous areas are becoming increasingly important

areas of human activities. At present, scientists successfully employ numerical weather prediction (NWP) models, such as

the WRF model, to achieve reliable forecasts. However, air temperature forecasting and modeling over complex geographical

zones are difficult tasks. The WRF model is a mesoscale model and does not adequately account for the influence of terrain

on the air temperature. It is important to downscale larger-scale models to a much finer scale. In this paper, a statistical

temperature downscaling method based on geographically weighted regression (GWR) and diurnal temperature cycle (DTC)

models is proposed. A statistical downscaling scheme is designed to forecast the hourly air temperature, at a 30-m spatial

resolution, up to 24 h in advance. Compared to WRF simulations, RMSE of the combined downscaling model decreased 1.01

at the automatic weather station level and 0.80 at the spatial level, and MAE decreased by 0.81 and 0.69 , respectively, at these

two levels. The results reveal that the combined downscaling model performs very well in correcting and downscaling the air

temperature in WRF simulations in mountainous areas.
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Abstract

The accurate and high-resolution prediction of air temperature is important
in many different applications. Hourly air temperature forecasting in moun-
tain area is necessary and important because mountain area is becoming an
important area of human activity. At present scientists are successfully using
Numerical Weather Prediction (NWP) models, such as WRF, to achieve a reli-
able forecast. However, air temperature forecasting and modeling over complex
geographical zones are difficult, WRF is a mesoscale model and not adequately
account for the influence of terrain on air temperatures. It is important to down-
scale from larger scale models to a much finer scale. In this paper, a statistical
temperature downscaling method based on geographically weighted regression
(GWR) and diurnal temperature cycle (DTC) model is proposed. The statisti-
cal downscaling scheme was designed to forecast hourly air temperature, with
30-m spatial resolution, up to 24 h in advance. Compare to WRF simulation,
RMSE of combined downscaling model decreased 1.01 ℃ at automatic weather
stations level and 0.80 ℃ at spatial level, and MAE decreased by 0.81 ℃ and
0.69 ℃ at two levels, respectively. The results reveal that the combined down-
scaling model performance very well to correct and downscaling air temperature
of WRF simulation in mountain area.

Keywords

air temperature forecasting; WRF; diurnal temperature cycle; Geographically
Weighted Regression (GWR); statistical downscaling; bias correction; mountain
area

1. Introduction

Air temperature is one of the most measured meteorological parameters. Air
temperature forecasting has been a crucial climatic factor required for many dif-
ferent applications in areas such as agriculture, industry, energy, environment,
tourism, etc. (Abdel-Aal 2004; Cifuentes et al., 2020). Some of these appli-
cations include short-term load forecasting for power utilities (Li et al., 2016),
protection against freezing injury of fruits (Chung et al., 2006), adaptive temper-
ature control in greenhouses (Dombaycı and Gölcü, 2009), prediction of cooling
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and energy consumption in residential buildings (Ben-Nakhi and Mahmoud,
2004), and establish a planning horizon for infrastructure upgrades, insurance,
energy policy, and business development (Smith et al., 2007). Therefore, ac-
curate forecast of air temperature with higher spatio-temporal resolution has
always been an important goal for the meteorologists and weather forecasters.

Nowadays, many Numerical weather prediction (NWP) models are available
for air temperature prediction; e.g., the European Centre for Medium-Range
Weather Forecasts (ECMWF) model, the fifth-generation mesoscale model
(MM5), and the Weather Research and Forecasting (WRF) model. All these
NWP models allow day-ahead air temperature prediction, which is usually
adopted in practice. However, uncertainties from model inputs, model param-
eter estimation, and the model structure are unavoidable in NWP modeling.
These uncertainties make it difficult for the accuracy of NWP models used in
air temperature prediction to meet the increasing needs of grid systems (Xu
et al., 2021). Meanwhile, due to their coarse spatial resolution, mostly lower
than 1km (Caldwell et al., 2009; Yan et al., 2020), NWP is mainly used for
developing climate change scenarios and for large scale studies. Obviously, this
kind of model cannot be used to represent climate variability at the local scale,
such as in vineyard areas and mountain areas, so it is important to downscale
from larger scale models to a much finer scale in order to investigate climate
variability at a more appropriate resolution (Cheng et al., 2008; Le Roux et al.,
2018).

Mountain area is also an important area of human activity, such as fruit plant-
ing, tourism, skiing in winter season. So hourly air temperature forecasting in
mountain area is necessary and important. Meanwhile high-resolution air tem-
perature is also very important. Unlike the plain areas, the topography of the
mountain area is very complex. Complex terrain can cause air temperature to
change in a smaller terrain unit. In a 1-km grid, assuming that the slope of the
grid is 0.5, the difference of altitude at the top and foot of the slope can be as
much as 500m, and the temperature difference can be as high as 3℃. Air tem-
perature forecasting and modeling over complex geographical zones are difficult,
because temperature is influenced by several nonlinear processes such as the
interaction of large-scale circulation of air masses with local air flows, airflow-
topography interaction, and the interplay between radiation and topographic
shading, among others.

As a result, a variety of techniques, such as downscaling methods, have been
developed to bridge the gap between the scale at which data is available and the
scale at which it is needed for assessment. Downscaling methods can be split into
two broad groups: dynamical downscaling and statistical downscaling. One of
the main issues for dynamical downscaling is the large amount of computing time
needed to achieve fine scale resolution. It’s essential to improve the resolution of
climate model without increasing the resources required in the modelling process.
Statistical downscaling uses observed relationships between variables at different
spatial scales to predict regional-scale model fields from coarser data (Caldwell
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et al., 2009; Le Roux et al., 2018). Compared to other downscaling methods
(e.g. dynamical downscaling), the statistical method is relatively easy to use
and provides station-scale climate information from NWP output (Wilby et al.,
2002; Cheng et al., 2008). It has been shown that the statistical method has
comparable accuracy to that of dynamical downscaling (Schoof and Pryor, 2001).
Spatial interpolation methodologies, such as inverse distance weighted (IDW)
method and kriging techniques, are now widely used for statistical downscaling.
However, large uncertainties arise when applying them to complex-terrain areas
(Jiang et al., 2021), while the geographically weighted regression (GWR) method
is more effective when analyzing the nonstationary spatial parameters and is
widely used (Zhou et al., 2019).

Although there have been many studies on statistical downscaling, most of the
previous studies focused only on daily and monthly air temperature downscaling
(Cheng et al., 2008). For example, some studies have studied downscale of daily
mean air temperature (Hofer et al., 2015, Wang et al., 2020), daily minimum air
temperature (Holden et al., 2011) and maximum air temperature (Wang et al.,
2020; Viggiano et al., 2019). To better extend climate change impacts analysis
in estimates of future synoptic weather types and meteorological variables, not
only daily, but also hourly, climate scenarios are necessary. There have been
studies on hourly air temperature forecasting in urban area (Yi et al., 2018),
however, rarely studies in mountain areas. Despite the above uncertainty, it has
been shown that regression functions can be used to represent the relationship
between temperature and terrain (Schoof and Pryor, 2001). Therefore, in order
to achieve the purpose of downscaling, we can use high-resolution terrain data
to improve the spatial resolution of WRF data by constructing the relationship
between air temperature and terrain.

In order to obtain hourly temperature, air diurnal temperature cycle (DTC)
model is an effective method. Maximum and minimum air temperature with
some other parameters, such as hourly air temperature, could be estimated by
DTC, as a parametric method (Duan et al., 2012; Gholamnia et al., 2017; Hu et
al., 2020). The DTC model can be used to improve inputs for numerical weather
models or assimilated data (Gholamnia et al., 2019). The shape of the diurnal
temperature curves has been modeled in a variety of ways that vary from simple
curve-fitting models based upon sine curves to more sophisticated techniques
utilizing Fourier analysis and complex energy balance models (Reicosky et al.,
1989; Gholamnia et al., 2019). Therefore, the DTC model can be constructed
by observation data of weather station, and then build multiple linear regression
model between DTC model coefficients and local parameters, such as altitude,
slope, and aspect, etc. Through this process, high spatial resolution hourly
forecasts were then obtained by stretching/contracting this DTC model.

The statistical downscaling scheme in this study was designed to forecast hourly
air temperature, with 30-m spatial resolution, up to 24 h in advance in a moun-
tain area from WRF. This study develops a multi-step downscaling and correc-
tion model to improve WRF performance on air temperature prediction. The
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steps are as follows: 1) build DTC model of with observation data from auto-
matic weather stations (AWSs) and determine how to use the DTC in forecast;
2) downscaling WRF air temperature at the height of 2-m with the spatial reso-
lution of 1 km to 30-m via GWR method; 3) correct daily mean air temperature
of WRF downscaling results combined with ground observation data; 4) used
multiple linear regression to spatialization the daily mean air temperature cor-
rection model and the DTC model; 5) combined with the downscaling results
via GWR, the spatialized multiplicative correction model, and the spatialized
DTC model to predict air temperature of the study area.

2. Study area and data

2.1 Study area

This study area is in Chongli District, Zhangjiakou City, Hebei Province of
China (Fig. 1), and covers around 2300 km2. The bounding coordinates of
the study area are 114.8◦-115.6◦E, 40.8◦-41.3◦N. This area belongs to a semi-
arid monsoon climate zone. The complex terrain of Chongli District has an
elevation range from about 812 m to about 2169 m, with a mean elevation
of 1485 m.The study area is one of the venues for the 2022 Beijing Winter
Olympic Games. In the future, the region will be a hot spot of tourism and
sports. Therefore, providing correct and high spatial and temporal resolution
air temperature forecast in this area is quite necessary.

Fig. 1. Elevation diagram of the simulation area. The distribution of 76 auto-
matic weather stations (AWSs) is shown by black dots.

2.2. ASTER DEM

In this study, ASTER DEM was used to get 30-m resolution altitude of the
whole study area, and to calculate slope and aspect. The ASTER DEM version
2 is a global one arc-second elevation dataset that was released in October 2011
by METI, Japan and NASA. The ASTER DEM was generated using optical
imagery of 15 m resolution collected in space with the METI ASTER sensor
mounted on NASA’s Terra satellite (Abrams et al., 2010). The sensor has three
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spectral bands in the visible infrared spectrum, six bands in the short wavelength
infrared spectrum as well as in the thermic infrared spectrum. The first, 1 Arc
second (~30-m) GDEM1 was released in June 2009 and covered the globe from
83◦N latitude to 83◦S latitude. GDEM1 was derived from approximately 1.2
million images and had a vertical accuracy of 20 m at the 95% confidence level
(ASTER GDEM Validation Team, 2009).

2.3. WRF simulations

The WRF model is a numerical weather prediction model for mesoscale weather
systems developed by the United States for simulation and real-time forecasting.
It uses scale analysis to solve fluid dynamics and thermodynamic equations that
express atmospheric motion in predicting the future atmospheric circulation and
weather (Xu et al., 2021).

In this study, the WRF version 3.7.1 with the center located at 108◦E, 38◦N
was configured with three domains at 9km, 3km and 1km horizontal resolu-
tions, respectively. The model’s vertical resolution was discretized with 50 full
terrain-following � levels with the model top at 50 hPa for all domains. There
are 550 grid points in the east-west and 484 grid points in the north-south direc-
tions for Domain 03 (d03). The National Centers for Environmental Prediction
(NCEP) Global Forecast System (GFS) Final (FNL) operational global analy-
ses of 0.5◦ resolution was used for initial conditions with ingestion every 6 h.
Each episode is initialized at 12:00 UTC and it is independently run-in periods
of 36 h. The first six hours are considered as spin-up time. The various phys-
ical parameterization options utilized in the present study are as follows: the
Thompson parametrization is chosen for the microphysics; the Yonsei University
(YSU) as the Planetary Boundary Layer (PBL) scheme; the RRTM longwave
scheme and the Dudhia shortwave scheme are used for radiation; finally, the
Noah land-surface model is used as the surface layer scheme. The time range
of the simulation data is from January 15, 2020 to January 19, 2020, a total of
five days.

2.4. Ground Observation data

Observed hourly 2-m air temperature at 76 automatic weather stations (AWSs)
(see Fig. 1) in Chongli District, Zhangjiakou City, Hebei Province of China
are used in this study. These observations are part of records from gradually
evolving AWSs that are owned and maintained by the Hebei Meteorological
Administration. These stations are located at an average altitude of about 1500
m. These data were reviewed through a quality control procedure to identify
any invalid values and missing data.

3 Methods

Fig. 2 summarizes the overall procedure we followed in this study. As shown
in Fig. 2, firstly, downscaling WRF air temperature to 30-m spatial resolution
via geographically weighted regression (GWR) method, where, WRF simulation
air temperature is dependent variable, aspect, slope, and altitude are indepen-
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dent variables. Then, combined with ground observation data to build daily
air temperature cycle (DTC) model, and used multiple linear regression to spa-
tialization the DTC model. Next, combined with ground observation data to
correct the downscaled WRF simulation daily mean air temperature and used
multiple linear regression to spatialization the correction model. Finally, com-
bined with the downscaling results, the spatialized correction model, and the
spatialized DTC model to predict air temperature of the study area. Every step
in Fig. 2 is described in details below.

Fig. 2. The flow chart of this study.

3.1 Geographically weighted regression method

In this study, geographically weighted regression (GWR) was used to downscale
WRF air temperature and spatial interpolation of observation data which was
used to compare results of downscaling and WRF simulation. The GWR is a lo-
cal modeling technique appropriate for spatial data with some degree of spatial
dependence (Georganos et al., 2017). It effectively deals with the coexistence of
spatial correlation and spatial heterogeneity. GWR model is looking for deter-
mine the existence of spatial non-stationarity between a dependent variable and
set of independent variables (Khosravi et al., 2017). GWR calculates regression
coefficients at each individual location towards the ordinary least squares (OLS)
model that calculates the coefficients for the whole study area (Fotheringham
et al., 1997). The GWR model is expressed as:

𝑦(𝑚) = 𝛽0 + ∑𝑝
𝑘=1 𝛽𝑘𝑥𝑘(𝑚) + 𝜀(𝑚) (1)

where 𝑦(𝑚) is the value of the response variable 𝑦 at location 𝑚; 𝑥𝑘 is the
value of the kth independent variable; 𝛽0 is the regression constant; 𝛽𝑘 is the
correlation coefficient for the independent predictor variable 𝑥𝑘; and 𝜀(𝑚) is
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the random error term association with location 𝑚 (Fotheringham et al., 2016).
In this study, the response variable is air temperature, and the independent
variables are slope, aspect, and altitude.

3.2 Air diurnal temperature cycle model

According to the Fourier series theory, a complex periodic function or periodic
sequence is formed by the superposition of sine waves with different amplitudes
and phases. Air diurnal temperature cycle (DTC) model is based on this method
of extracting known periodic changes of elements and analyzing the law of se-
quence changes. DTC model has been widely applied to capture key diurnal
characteristics, e.g., daily maximum, with a high degree of accuracy, and other
applications, such as cloud screening, emissivity estimations, and capturing di-
urnal patterns of urban heat islands over a short time period (Duan et al., 2014,
Zhou et al., 2013). DTC model is often used to fit and repair historical data,
but rarely for temperature forecast. In this paper, we try to use this model to
forecast air temperature.

We used the Fourier Transform method to convert diurnal temperature variation
into a set of harmonics (Wang et al., 2018). Periodic air temperature variation
can be transformed into the sum of harmonics with different frequencies, as
follows:

𝑇 (𝑡) = 𝑇 + ∑𝑀
𝑘=1 �𝑇 𝑘 sin(𝜔𝑘𝑡 + 𝜑𝑘) (2)

where, 𝑇 (𝑡) is the air temperature of time 𝑡, 𝑡 is the local solar time of a day and
its value range 0-23, 𝑇 is the daily mean temperature, 𝑀 is the order of Fourier
function, �𝑇 is the amplitude, 𝜑 is the phase and 𝜔 = 2𝜋/𝑃 is the fundamental
angular frequency, with the period P equals 24 hours for the daily cycle.

For daily air temperature cycle, daily and semi-daily harmonics representing
the fundamental periodic variation. The strong signal for the daily harmonics
reflects the primary forcing mechanism, solar radiation. The semi-daily cycle is
mainly imposed by the abrupt night-time zeroing of solar radiation in addition
to the heat storage of the soil and atmosphere. The observations for a day can
be treated as two periodic variations and other random variations, as follows:

𝑇 (𝑡) = 𝑇+�𝑇 𝑑1 sin( 2𝜋
24 𝑡 + 𝜑𝑑1) + �𝑇 𝑑2 sin( 2𝜋

12 𝑡 + 𝜑𝑑2) (3)

The major parameters are the daily mean temperature 𝑇 , amplitude �𝑇 di and
phase 𝜑di of the daily harmonic (24-h harmonic, i=1) and the semi-daily cycle
(12-h harmonic, i=2). 𝜑 can be calculated by the peak/bottom temperature
occurring time. According to the statistical data of observation data, the har-
monics performance best when set the peak temperature of the study area in
a daily cycle occurs at 14:00 and bottom temperature occurs at 7:00. All the
harmonic functions of 76 AWSs of previous day were built via curve fitting.

In order to apply harmonics to air temperature forecast, the next day’s mean
temperature and amplitude �𝑇 di are key parameters. Excluding the daily mean
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temperature from the harmonics, the rest of the harmonics represents the varia-
tion of temperature difference between the daily mean temperature and temper-
ature of each local solar time. Through experiment, the temperature difference
of next day can be better predicted by multiplying the harmonics of the previous
day by a scaling factor. The scaling factor would be adjusted as follows:

𝑟 = 𝑇 𝑓
𝑇 𝑜

(4)

Where, 𝑇 is mean air temperature, 𝑓 forecast day, and 𝑜 is observation of
previous day.

However, the daily mean air temperature of forecast day is unknown when to
forecast air temperature. In this study we tried to use daily mean temperature of
WRF simulation as the daily mean air temperature of forecast day. It will lead
to a large error in the result if daily mean air temperature of WRF simulation
is directly used, because there is random error of WRF simulation. So, we first
revised the WRF daily mean air temperature using the following correction
method.

3.3 Multiplicative correction for WRF simulation

The daily mean temperature of forecast day is the key variable when use DTC
model to forecast air temperature. Bias correction of WRF is a useful method
to get daily mean temperature of forecast day. Error correction models have
been developed to improve the accuracy of numerical output by training the
relationship between prediction errors and related variables (Xu et al., 2021).
Application of bias correction techniques has become increasingly popular to
perform local correction of the deterministic model outputs with empirical for-
mulae. These empirical formulae include additive correction (mean bias subtrac-
tion), multiplicative correction, hybrid model, model output statistics (MOS),
and Kalman filter-based correction (Mok et al., 2017). The additive correction
adjusts the forecast for a particular monitoring station by adding the tempo-
ral average of the measured biases during the previous days to the forecast of
the deterministic model (Monteiro et al., 2013; Wilczak et al., 2006), while
the multiplicative correction is performed by multiplying a ratio to the forecast
(Borrego et al., 2011; Monteiro et al., 2013). This ratio is obtained from di-
viding the sum of observed concentrations at the station during the past few
days by the sum of the forecasted concentrations of the deterministic model
during the same period. The hybrid forecast is a special case of the additive
correction, which only uses the bias of the previous day to perform correction
(Neal et al., 2014; Silibelo et al., 2015). For MOS, a correction model based
on linear regression is generated between the measured pollutant concentration
and the forecast (Monteiro et al., 2013) or a set of independent variables such as
meteorological measurements (with their respective parameters) (Konovlav et
al., 2009), and is applied to the posterior processing after trained with historical
data. Kalman filter based bias correction, the additive and the multiplicative
model biases are estimated adaptively at each time step based on the weighted
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combination between the prior estimates and the contribution from the new
measurement (Borrego et al., 2011).

Multiplicative correction, also called linear correction, is a simple bias-correction
technique. It uses a scaling factor between the observations and the simulation
in the calibration period to reduce the future bias (Ines and Hansen, 2006). In
this method, assuming that the ratios between field measurement (observation)
and WRF simulation of the previous day and the forecast day are the same,
then air temperature of next day can be corrected by the ratio of the previous
day. The forecast air temperature corrected from WRF simulation would be
adjusted as follows:

𝑇 = ∑𝑛
𝑖=1 𝑇𝑜

∑𝑛
𝑖=1 𝑇𝑚

× 𝑇𝑚−𝑓 (5)

where T is the air temperature of either observation (o) or model (m) for a
historic training period, f means the forecast day, n represents the number of
days of historical data.

In this paper, we used the equation (5) to correct the WRF mean air tempera-
ture. So, 𝑇𝑜 was replaced by mean air temperature of historical data of AWSs,
𝑇𝑚 was replaced by mean air temperature of historical data of WRF, and 𝑇𝑚−𝑓
was replaced by mean air temperature of forecast data of WRF. All the WRF
value used in here was downscaling results via GWR. In this study as the nearest
grid point of WRF value is forecast value of AWSs.

As the WRF daily mean air temperature calculated via equation (5) is the daily
mean temperature of forecast day. Combine the equations (3), (4), and (5), the
forecast equation would be adjusted as follows:

𝑇 (𝑡) = ∑𝑛
𝑖=1 𝑇 𝑜

∑𝑛
𝑖=1 𝑇 𝑚

×𝑇 𝑚−𝑓{1+ 1
𝑇 𝑜

× (�𝑇
𝑑1

sin( 2𝜋
24 𝑡 + 𝜑𝑑1)+ �𝑇 𝑑2 sin( 2𝜋

12 𝑡 + 𝜑𝑑2))} (6)

where, 𝑡 is local solar time, range from 0 to 23, T is forecast temperature.

3.4 Spatialization of DTC model and daily mean air temperature
correction model

All the above models are based on observation data and WRF simulation of
AWSs. They can only forecast temperature at AWSs. It is not enough to cor-
rect and downscale at AWSs, the goal is to make a spatial prediction for the
entire study area. Therefore, the DTC model and daily mean air temperature
correction model need spatialization. For spatialization, spatial interpolation
methodologies are widely used, such as inverse distance weighted (IDW) method
and kriging techniques. However, large uncertainties arise, and most of WRF
grids are not used properly when applying them to complex-terrain areas. Al-
though there is bias in WRF simulation, the result of interpolation is not better
than that of WRF. Therefore, all grid data of WRF need to be corrected before
forecasting in the entire study area. At the same time, DTC model of AWSs
were also need to be spatialized. Then, the air temperature at each moment of
the entire study area can be predicted in the forecast day.
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As shown in formula (5), the formula can be divided into two parts, which the
left part is a scaling factor calculated by the WRF and the observation data of
the previous day. The scaling factor would be adjusted as follows:

𝛼 = ∑𝑛
𝑖=1 𝑇𝑜

∑𝑛
𝑖=1 𝑇𝑚

(7)

where 𝛼 is correction coefficient for WRF simulation of next day.

It has been shown that regression functions can be used to represent the rela-
tionship between air temperature and terrain (Schoof and Pryor, 2001). Then
we build a multiple linear regression for �, where the � is dependent variable and
altitude, slope, and aspect are independent variables. The � would be adjusted
as follows:

𝛼 = 𝑎1𝐻 + 𝑎2𝑆 + 𝑎3𝐴 + 𝑏 (8)

where, 𝐻 is altitude, 𝑆 is slope, and 𝐴 is aspect of AWSs, a and b are the
coefficients of the regression equation.

Through formula (8), bring independent variables of all grid of WRF into the for-
mula, the corrected air temperature of all grid could be obtained. The corrected
WRF data was used as the basic data for DTC model.

The multiple linear regression model for �𝑇 di was also built, where the �𝑇 di was
dependent variable and altitude, slope, and aspect are independent variables.
The �𝑇 di would be adjusted as follows:

�𝑇 di = 𝑐𝑖1𝐻 + 𝑐𝑖2𝑆 + 𝑐𝑖3𝐴 + 𝑑 (9)

where, 𝐻 is altitude of AWSs, c and d are the coefficients of the regression
equation.

Then, air temperature spatial distribution of study area at each local solar time
would be forecasted combine the above formula.

4. Results and discussion

4.1. DTC fit performance at AWSs

The DTC model can represent most of the daily variations, as shown in Fig.
3. The root-mean-square error (RMSE) between DTC model results and the
observed data is 0.601℃ for daily cycle over all 76 AWSs. The mean RMSE
histogram of all 76 AWSs shows that most RMSE is less than 1℃ and the mean
RMSE of all stations in the five days is 1.03℃.
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Fig. 3. DTC model and observed air temperature curve of all 76 AWSs hourly
mean value (time range from 15 Jan to Jan 19, left side figure) and mean RMSE
(between DTC model result and observed data, time range from 15 Jan to Jan
19) histogram of all 76 AWSs (right side figure).

Excluding the daily mean temperature from the DTC model, the rest of the DTC
model represents the difference between daily mean temperature and tempera-
ture of each local solar time. The scatter for simulated temperature difference
of four previous day against measured value of all AWSs can be seen in Fig. 4.
Results show very high accuracy of reconstruction (R2 >0.89) for air tempera-
ture difference. The distribution of DTC-simulated results can be observed as
well-fitted to the one-to-one line. The DTC model has a very good performance
on fit diurnal air temperature.

Fig. 4. Scatter plots for observation air temperature of AWSs (ΔT-observation)
and DTC simulated air temperature (ΔT-DTC-Simulated) difference between
hourly air temperature and daily mean temperature in model building day.
(From left to right are the results of January 15, 16, 17 and 18, respectively.)

The DTC model was applied to forecast day, the performance can be seen in
Fig. 5. In four forecasting day, all R2 of DTC-simulated results is greater than
0.65. The distribution of DTC-simulated results can be observed as well-fitted
to the one-to-one line, also. The DTC model has a very good performance on
fit diurnal air temperature of forecast day. So, the downscaling model can be
used to forecast and correct air temperature of forecast day.
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Fig. 5. Scatter plots for observation air temperature of AWSs (ΔT-observation)
and DTC simulated air temperature (ΔT-DTC-Simulated) difference between
hourly air temperature and daily mean temperature in model forecasting day.
(From left to right are the results of January 16, 17, 18 and 19, respectively.)

4.2. Performance of multiplicative correction method at AWSs

In this paper, daily mean air temperature as the meteorological variable has
been corrected. The corrected daily mean air temperature in the next 24 hours
for all AWSs was calculated by formula (5). The accuracy of the corrected
results was verified by the observation data. Root-mean-square error (RMSE)
is calculated to assess the performance of the results. The smaller the value of
RMSE, the more accurate the correction.

The original RMSE of WRF simulation (WRF-simulated) and RMSE of the
multiplicative correction results (WRF-corrected) were calculated respectively.
The results are shown in Table 1. With the increase of n, the result does not
get better. Therefore, n set equals to one for the following research. So far,
daily mean temperature used to predict next day’s temperature has also been
obtained.

Table 1

RMSE (℃) of WRF simulation (WRF-simulated) and multiplicative correction
method results (WRF-corrected) (n represents the number of days of historical
data)

Date WRF-simulated WRF-corrected
n=1 n=2 n=3 n=4

Jan 16 2.77 1.33 -- -- --
Jan 17 1.43 2.22 1.09 -- --
Jan 18 1.25 0.75 2.67 1.68 --
Jan 19 2.78 2.02 2.14 3.91 2.65
mean 2.06 1.58 1.97 2.79 2.65

4.3. Combined downscaling model performance against AWSs

The only unknown variable is daily mean temperature of forecast day when
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to forecast temperature of next day at AWSs. The daily mean temperature of
forecast day will be obtained from WRF downscaling results via GWR. Combine
GWR results, multiplicative correction model, and DTC model as combined
model to predict air temperature of AWSs.

The predictive power of combined model is evaluated using the observation
data set extract from AWSs, these all 76 stations data are not involved in
building the model. Comparison of all the hourly values for all stations in
four consecutive days (January 16, 2020 - January 19, 2020). The relationship
between raw WRF simulation (WRF-simulated), combined model results (WRF-
downscaled) and measured values of AWSs were compared. Three different
statistical scores, among the most used accuracy measures, are calculated to
assess the performance of the results. These are coefficient of determination(R2),
root-mean-square error (RMSE) and mean absolute error (MAE). The statistical
results can be found in Table 2.

Table 2

WRF simulation (WRF-simulated) and combined model results (WRF-
downscaled) performance statistics against ground station observation data
over mean value of all AWSs.

Date WRF-simulated WRF-downscaled
R2 RMSE MAE R2 RMSE MAE

Jan 16 0.51 3.61 2.70 0.79 2.73 2.36
Jan 17 0.42 2.79 2.42 0.87 1.79 1.59
Jan 18 0.47 2.80 2.40 0.60 1.94 1.68
Jan 19 0.71 3.20 3.02 0.75 1.92 1.65
mean 0.53 3.10 2.63 0.75 2.09 1.82

As expected, we see a significant increase in performance metrics for the com-
bined model results to the WRF simulation. The R2 value is significant higher
from 0.53 to 0.75, the RMSE and MAE decreased by 1.01 ℃ and 0.81 ℃, respec-
tively. The combined model has a good performance at AWSs for correction
and downscaling of air temperature forecasting.

4.4 Downscaling model spatial uncertainty assessment

After verifying the correlation between AWSs, WRF simulation, and combined
model results, we can investigate the spatial correlation between WRF simula-
tion and combined model results where ground stations do not exist. For obser-
vation data of AWSs through GWR interpolation to get their spatial distribu-
tions (GWR-interpolation). In this section, the spatial distribution of WRF sim-
ulation (WRF-simulated), combined model results (WRF-downscaled), GWR-
interpolation air temperature value, and their spatial bias are compared.

The spatial forecasting data was calculated by the combined model, which coef-
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ficients were spatialized already. The independent variables of the GWR down-
scaling model were obtained by DEM with 30-m resolution, so we can get the
combined model results with 30-m spatial resolution. For spatial forecasting,
50 AWSs (about 2/3 of total) were selected to build the combined model, the
other 26 stations (about 1/3 of total) were used to validate the combined model.
RMSE of WRF-simulated and WRF-downscaled in four forecast days are shown
in Fig. 6. The combined model has a better performance than raw WRF simula-
tion. The WRF RMSE of January 16, 17, 18 and 19 is 3.90℃, 2.71℃, 2.42℃ and
3.29℃, respectively. Meanwhile, the combined model RMSE is 2.76℃, 2.03℃,
1.88℃ and 2.45℃, respectively. It has gone down 1.14℃, 0.68℃, 0.54℃ and
0.84℃, respectively. The RMSE of combined model decreased by an average of
0.8℃. For each local solar time, most of times the RMSE have decreased, only
a few times have increased.

Fig. 6. RMSE of combined model results (WRF-downscaled) and WRF simula-
tion (WRF-simulated) in four forecast days. (From left to right are the results
of January 16, 17, 18 and 19, respectively.)

Then, 2000 random points were generated, and raw WRF simulation, combined
model results and spatial measured values generated via GWR are extracted
by these random points. Next, compare these data sets at four local solar
times in a day, which are 02h, 08h, 14h and 20h, respectively. For each time,
three statistical measures (R2, RMSE, and MAE) were calculated as general
performance metrics. From the statistical results (Table 3), we can find that R2

of the combined model has a significant increase, except for a slight decrease
in individual moments. The mean value of all times increased from 0.45 to
0.73. And, most of the time, RMSE and MAE have a significant decrease, the
mean values are 2.26 ℃ and 1.96 ℃, respectively. Compared to WRF simulation,
RMSE and MAE of combined model results decreased by 0.80 ℃ and 0.69 ℃,
respectively.

Table 3

WRF simulation (WRF-simulated) and combined model results (WRF-
downscaled) performance statistics against ground observation data at four
different local solar times (02h, 08h, 14h and 20h) over mean value of random
points.

Time WRF-simulated WRF-downscaled
R2 RMSE MAE R2 RMSE MAE
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Time WRF-simulated WRF-downscaled
Jan 16-02h 0.43 3.19 2.62 0.76 1.93 1.54
Jan 17-02h 0.44 2.46 2.13 0.87 1.11 0.95
Jan 18-02h 0.55 1.93 1.54 0.68 2.18 1.81
Jan 19-02h 0.37 2.70 2.25 0.85 1.85 1.66
Jan 16-08h 0.40 3.77 3.18 0.89 4.16 3.94
Jan 17-08h 0.49 2.85 2.36 0.85 2.50 2.35
Jan 18-08h 0.19 3.94 3.43 0.42 2.21 1.78
Jan 19-08h 0.31 2.24 1.83 0.22 4.98 4.38
Jan 16-14h 0.66 3.78 3.48 0.52 3.50 2.90
Jan 17-14h 0.54 3.67 3.39 0.81 2.24 1.95
Jan 18-14h 0.45 1.87 1.52 0.63 1.85 1.56
Jan 19-14h 0.64 5.02 4.74 0.85 2.15 1.85
Jan 16-20h 0.63 1.81 1.52 0.92 1.33 1.09
Jan 17-20h 0.36 2.16 1.76 0.94 1.30 1.13
Jan 18-20h 0.46 3.56 3.13 0.64 1.90 1.60
Jan 19-20h 0.39 4.09 3.67 0.76 1.03 0.95

The scatter for WRF simulation (WRF-simulated) and combined model down-
scaling results (WRF-downscaled) of January 17 against GWR-interpolation
air temperature value at four times can be seen in Fig. 7. The distribution of
WRF-downscaled can be observed as well-fitted to the one-to-one line, but the
distribution of WRF-simulated is not so well-fitted to the line, meanwhile R2 of
WRF-downscaled is greater than WRF-simulated also. The results show that
the WRF-downscaled has a very good performance on correction and downscal-
ing of forecast air temperature in this mountain area.
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Fig. 7. Scatter plots for WRF simulation (WRF-simulated) and combined
model results (WRF-downscaled) air temperature at four local solar time of
January 17. (Left side is WRF simulation and right side is combined model
results. From up to down are the results of 02h, 08h, 14h and 20h, respectively.)

Although the spatial distribution of AWSs observation data interpolation re-
sults (GWR-interpolation) is not true value, it can represent the general distri-
bution. Here, we use the GWR-interpolation as a benchmark to compare the
spatial bias of WRF-simulated and WRF-downscaled. The spatial distribution
of WRF-simulated, WRF-downscaled and GWR-interpolation of 02h and 14h
are showed in Fig. 8 and Fig. 9. From Fig. 8 we know that WRF-simulated is
generally greater than GWR-interpolation at 02h of local solar time, the spatial
distribution of WRF-downscaled is closer to GWR-interpolation, and the WRF-
downscaled can display more detail air temperature change caused by terrain
change. Contrast with 02h, results of 14h (Fig. 9) show that WRF-simulated
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is generally lower than GWR-interpolation. The WRF-downscaled are like 02h,
they are closer to observation interpolation results, and can display detail change
cause by terrain. Through these spatial distributions, it can be found that the
spatial distribution of the combined model prediction results is closer to interpo-
lation results of observation data via GWR. The WRF-simulated temperature
overall on the high side than observation data of ground stations at night, and
overall low during the day time.

Fig. 8. Air temperature spatial distribution of WRF simulation (WRF-
simulated), combined model downscaling results (WRF-downscaled) and
observation data interpolation results (GWR-interpolation) at 02h. (From left
to right are January 16, 17, 18 and 19, respectively. From upper to bottom are
WRF-simulated, WRF-downscaled and GWR-interpolation, respectively.)
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Fig. 9. Air temperature spatial distribution of WRF simulation (WRF-
simulated), combined model downscaling results (WRF-downscaled) and
observation data interpolation results (GWR-interpolation) at 14h. (From left
to right are January 16, 17, 18 and 19, respectively. From upper to bottom are
WRF-simulated, WRF-downscaled and GWR-interpolation, respectively.)

The spatial distribution of bias between combined model downscaling results
(WRF-downscaled) and observation data GWR interpolation results (GWR-
interpolation) of 02h and 14h are showed in Fig. 10.
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Fig. 10. Spatial distribution of air temperature bias between GWR-
interpolation and WRF-downscaled. (From left to right are January 16, 17, 18
and 19, respectively. Upside is 02h, and downside is 14h. Circle dot represents
MAE bias less than 1℃, square dot represents MAE bias between 1℃ and 2℃,
and diamond dot represents MAE of bias greater than 2℃.)

For 02h, the bias of most area is negative, its meaning WRF-downscaled is
greater than GWR-interpolation. Combined with Fig. 8, we know that WRF
simulation is generally greater than GWR-interpolation at 02h of local solar
time. The generally negative bias is caused by this reason. The minimum
bias areas locate in the northeast and southeast of the study area in January
16, 17 and 18, these areas have higher altitudes than other area. Contrary
to those three days, the minimum bias area mainly locates in the southwest
in January 19, and the southwest has lower altitude in the whole study area.
We found that the bias of 02h mainly caused by temperature inversion, which
common occurs at night. As shown in Fig. 11, observation temperature of
AWSs increases with the increase of altitude in January 16, 17 and 18 (Under
normal conditions air temperature usually decreases with altitude). However,
WRF simulation fail to predict the temperature inversion. WRF simulation
temperature of AWSs decreases with the increase of altitude. This leads to
a bias increase with the altitude increase when temperature inversion occurs.
Despite temperature inversion occurs in January 17, the top of inversion layer
is about 1600m. The absolute bias of January 17 is lower than January 16 and
January 18 in high altitude area by this reason. Different from the three days,
inversion did not occur in January 19. The spatial pattern of January 19 is
different from the other three days, the maximum of absolute bias occurs in low
altitude area locate in the southwest of study area. In conclusion, temperature
inversion affects the accuracy of temperature forecast at night. How to predict
inversion and its intensity will help to improve the accuracy of air temperature
prediction in mountain area at night.
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Fig. 11. Scatter plots of WRF simulation (WRF-simulated), observation tem-
perature and altitude of all AWSs at 02h. (Upside is observation temperature,
and downside is WRF simulation. From left to right are January 16, 17, 18 and
19, respectively.)

For 14h, the bias of most area is positive, its meaning WRF-downscaled is lower
than GWR-interpolation. The generally positive bias is caused by the generally
lower of WRF simulation than GWR-interpolation at 14h showed in Fig. 9.
The MAE of WRF-simulated in 14h are 3.48℃, 3.39℃, 1.52℃, and 4.74℃ for
January 16, 17, 18 and 19, respectively, as shown in Table 3. The MAE of
14h is significantly higher than at other times. After downscaling, the MAE
of WRF-downscaled are 2.90℃, 1.95℃, 1.56℃, and 1.85℃ for January 16, 17,
18 and 19, respectively. There is a significant decrease in MAE for all forecast
days at 14h. However, MAE is still relatively higher of 14h than other local
solar times because the raw bias of WRF-simulated is too high at 14h. This
leads to the overall high bias of the spatial distribution of WRF-downscaled
at 14h. The combined downscaling model performance well when downscaling
air temperature in this mountain area, however its accuracy depends on the
accuracy of WRF simulation.

4. Conclusions

This study evaluated the use of combine GWR, bias correction, DTC model and
MLR for WRF downscaling and correction in a mountain area. To reduce bias
and improve the 2-m air temperature accuracy and spatial resolution of WRF
simulation. The 2-m air temperature series predicted using the WRF model is
first downscaling to 30-m from 1km grid via GWR. DTC model is used to fit the
diurnal variation curve of air temperature in a day and using the curve to predict
future 24-h hourly air temperature. The multiplicative correction is adopted to

20



correct GWR downscaling results and to improve accuracy of daily mean air
temperature of WRF simulation. MLR is employed in spatialization of all cor-
rection and DTC coefficients to train the relationship between these coefficients
and slope, aspect, and altitude of study area. We tested this approach using
ground observation data provided by the Hebei Meteorological Administration.

The combined downscaling model results (WRF-downscaled) can better express
the detail features of air temperature than WRF simulation. Meanwhile, the
influence of topography is reduced, and the forecasting accuracy is improved.
The scheme was designed to work with hourly time scale, which are generally
highly variable and more affected by weather conditions than daily or monthly
means. The research presented here shows that air temperature of WRF simu-
lation can be downscaled and corrected by this method, and the accuracy and
spatial resolution of temperature forecast be improved in this area. Compare to
WRF simulation, RMSE of WRF-downscaled decreased 1.01 ℃ at AWSs level
and 0.80 ℃ at spatial level, and MAE decreased by 0.81 ℃ and 0.69 ℃ at two
levels, respectively. Meanwhile, the correlation between WRF-downscaled and
observation data (or observation data GWR interpolation results) is more well-
fitted to the one-to-one line than WRF simulation. The spatial distribution
of WRF-downscaled is closer to that of observation data GWR interpolation
results than WRF simulation.

There are three major findings. First, multiplicative correction method is useful
for correct WRF simulation air temperature, and the accuracy of this method
is better to correct daily mean air temperature than hourly air temperature,
meanwhile for short-term forecast (in this study is a day forecast) set n equals
to one is better. Second, DTC model can represent most of the daily variations
and its performance well when to forecast. Third, the proposed 2-m air temper-
ature prediction model has high prediction accuracy and stability and provides
a day-ahead high-resolution prediction, and is suitable for actual temperature
production in this mountain area.

As the combined downscaling model in this paper does not require much time
and computational resource to implement, and the data source is also easy to
obtain, this methodology can easily be extended to other variables, regions,
and numerical models. With additional data, slope, aspect, and land cover, it
should be possible to improve spatialization of the models and overall model
performance. The anticipated to further develop high spatial and temporal
resolution temperature products across a large region of mountain area in the
North China.

Despite the combined downscaling model performance well, there also some
disadvantage, such as the smooth curve of DTC model is difficult to fit the
sudden change of temperature. This kind of sudden change of temperature is not
all random error, but it’s really exists in diurnal temperature cycle. Meanwhile,
temperature inversion has a great influence on the forecast of air temperature
at night. To forecast this kind of sudden change and prediction and elimination
of temperature inversion are not contain in this paper, it can be studied deeply
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in the follow-up research.
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