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Abstract

Accelerated loss of the sea-ice cover and increased human activities in the Arctic emphasize the need for skillful prediction of sea-

ice conditions at sub-seasonal to seasonal (S2S) time scales. To assess the quality of predictions, dynamical forecast systems can

be benchmarked against reference forecasts based on present and past observations of the ice edge. However, the simplest types

of reference forecasts –persistence of the present state and climatology– do not exploit the observations optimally and thus lead

to an overestimation of forecast skill. For spatial objects such as the ice-edge location, the development of damped-persistence

forecasts that combine persistence and climatology in a meaningful way poses a challenge. We have developed a probabilistic

reference forecast method that combines the climatologically derived probability of ice presence with initial anomalies of the

ice-edge location, both derived from satellite sea-ice concentration data. No other observations, such as sea-surface temperature

or sea-ice thickness, are used. We have tested and optimized the method based on minimization of the Spatial Probability Score.

The resulting Spatial Damped Anomaly Persistence forecasts clearly outperform both simple persistence and climatology at

sub-seasonal timescales. The benchmark is thus about as skilful as the best-performing dynamical forecast system in the S2S

database. Despite using only sea-ice concentration observations, the method provides a challenging benchmark to assess the

added value of dynamical forecast systems.
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Key Points:5

• We have developed a new method that combines climatological sea-ice probabil-6

ity and initial-state anomaly to forecast sea-ice presence.7

• Ice-edge forecasts derived from this method can outperform climatological bench-8

marks at lead times of up to 2 months.9

• Spatial damped anomaly persistence forecasts have a higher predictive skill than10

most models from the sub-seasonal to seasonal database.11
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Abstract12

Accelerated loss of the sea-ice cover and increased human activities in the Arctic empha-13

size the need for skillful prediction of sea-ice conditions at sub-seasonal to seasonal (S2S)14

time scales. To assess the quality of predictions, dynamical forecast systems can be bench-15

marked against reference forecasts based on present and past observations of the ice edge.16

However, the simplest types of reference forecasts – persistence of the present state and17

climatology – do not exploit the observations optimally and thus lead to an overestima-18

tion of forecast skill. For spatial objects such as the ice-edge location, the development19

of damped-persistence forecasts that combine persistence and climatology in a meaningful20

way poses a challenge. We have developed a probabilistic reference forecast method that21

combines the climatologically derived probability of ice presence with initial anomalies of22

the ice-edge location, both derived from satellite sea-ice concentration data. No other ob-23

servations, such as sea-surface temperature or sea-ice thickness, are used. We have tested24

and optimized the method based on minimization of the Spatial Probability Score. The25

resulting Spatial Damped Anomaly Persistence forecasts clearly outperform both simple26

persistence and climatology at sub-seasonal timescales. The benchmark is thus about as27

skilful as the best-performing dynamical forecast system in the S2S database. Despite using28

only sea-ice concentration observations, the method provides a challenging benchmark to29

assess the added value of dynamical forecast systems.30

Plain Language Summary31

The Arctic is becoming more ice free and seeing more human activities, which means32

it is important to have reliable forecasts of sea-ice conditions weeks to months ahead. The33

accuracy of a forecast system is typically compared against reference forecasts based on34

present and past observations of the ice-edge location. However, the most widely used35

references either simply maintain the current state or consider states at the same time of36

the year during previous years. Such simple benchmarks can lead to an overestimation37

of how “skilful” a forecast system is considered. In the case of sea-ice edge, creating a38

better reference forecast combining both historical and current observation information can39

be challenging. We have addressed this challenge and developed a method that combines40

the historical probability of ice presence with the current location of the ice edge. The new41

method clearly outperforms the simpler methods and remains slightly better than historical-42

based forecasts even 2 months ahead. Despite using only observed sea-ice concentration data43

(like the simpler benchmarks), the new benchmark is about as good as the best modern44

model-based forecast system. The method therefore provides a good reference to study how45

well the latest forecast systems are actually performing.46

1 Introduction47

Accelerated sea ice loss and the possibility of ice-free summers in the Arctic has in-48

creased the interest in potential human activities in the far North (Stephenson et al., 2011).49

To address the planning and safety concerns associated with this, government and private50

agencies need better predictions of sea-ice at sub-seasonal to seasonal time-scales (Jung et51

al., 2016). Over the past few years, many operational centers are already starting to pro-52

vide such forecasts with longer lead times, although the skill of these forecasts – and how53

to assess the skill in the first place – is still under question (Smith et al., 2015).54

There are numerous metrics to measure and quantify the accuracy of a forecast against55

observations, or ‘true’ conditions, depending on the variable in question (Wilks, 2019).56

Whether or not forecasts are considered skillful depends not only on the metric to measure57

the forecast error, but also what benchmark is used to measure skill against. The skill of58

the forecast produced by a particular forecast system can be compared against that of an59

earlier version of the same system (e.g., Balan-Sarojini et al., 2019), a different forecast60
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system (e.g., Zampieri et al., 2018, 2019), and also against a simpler reference forecast for61

benchmark (e.g., Woert et al., 2004; Pohlmann et al., 2004) .62

Model outputs are commonly compared against two observation-based reference fore-63

casts: Climatology and Persistence. Climatology is based on the historical records for the64

given time of the year. An ensemble constructed from previous years can give a probabilistic65

estimate of the target variable. In the presence of a significant seasonal cycle and for lead66

times longer than just a few days, a climatological forecast needs to change with lead time67

according to the evolving time of the year. Persistence, on the other hand, is maintaining68

the initial state of the variable - thus giving a constant output of the variable. A persistence69

forecast can also be constructed such that the seasonal evolution, estimated from previous70

years, is taken into account, resulting in an anomaly persistence forecast. For either of these71

benchmark approaches, a secular trend can be taken into account to derive a trend-adjusted72

variant of such a forecast (Van den Dool et al., 2006). By design, persistence has better73

forecast skill at shorter lead times, whereas climatology is more skillful at longer lead times74

when errors approach a saturation level due to chaotic error growth (Woert et al., 2004).75

Finally, a damped anomaly persistence forecast attempts to combine persistence and clima-76

tology in such a way that it gradually transitions from the persisted to the climatological77

state, thereby optimizing the skill of the forecast at intermediate lead times (Van den Dool78

et al., 2006).79

Anomaly persistence and damped anomaly persistence can be applied easily to contin-80

uous quantities on a grid-cell per grid-cell basis and have been used as benchmark forecasts81

for quantities such as sea-surface temperature on decadal timescale (e.g., Pohlmann et al.,82

2004) and sea-ice concentration on seasonal timescale (e.g., Blanchard-Wrigglesworth et al.,83

2011) . However, it is not trivial to transfer the concept of (damped) anomaly persistence84

to spatial objects such as the ice-edge location that corresponds to a binary, rather than85

a continuous, gridded field. For such a quantity, it can be difficult to establish meaningful86

autocorrelations at longer time scales; anomalies in this case tend to migrate spatially with87

the seasonal cycle (e.g., Goessling et al., 2016) , which means that initial anomalies at one88

location may not be relevant at the same location after some time, but they might still89

hold information about anomalies at a different nearby location. Properly utilising these90

anomalies for prediction thus requires consideration for how to transfer information across91

the domain and not just at increasing lead time.92

In case of the ice edge, an important variable for marine activities in the Arctic, the93

mismatch between the predicted and ‘true’ ice edge can be quantified using the Spatial94

Probability Score (SPS; Goessling & Jung, 2018). The SPS (and its deterministic counter-95

part, the Integrated Ice Edge Error; see Goessling et al., 2016) determines the area where96

ice is either under-forecast or over-forecast in comparison to the true outcome. Palerme et97

al. (2019) compared the SPS to the (modified) Hausdorff distance (MHD; Dukhovskoy et98

al., 2015), another commonly used verification metric, and determined that the SPS is more99

robust and less affected by isolated patches of ice. Therefore, we will primarily be using SPS100

as the comparison metric in this paper, but will also use MHD to test whether our results101

are robust with respect to the choice of the metric.102

In terms of lead-times, Zampieri et al. (2018, 2019) have shown that some operational103

subseasonal-to-seasonal (S2S) forecast systems are more skillful than climatology in predict-104

ing the location of the ice edge several weeks ahead. After 1.5 months, however, even the105

most skilful forecast system is not performing better than climatology. This can be compared106

against perfect-model studies that suggest that the ice-edge position can be predictable up107

to 6 months ahead (Goessling et al., 2016), suggesting that forecast calibration (not applied108

in Zampieri et al., 2018, 2019) and/or forecast system improvements should in principle109

be possible. Moreover, simple initial-state persistence tends to outperform these dynamical110

systems for at least the first 3-4 days, leaving a temporal window between about 4 to 45111

days where the best system can be considered skilful beyond the simple benchmark methods112

(Zampieri et al., 2018, 2019). However, given the simplicity of strict initial-state persistence113
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and climatology, the term skilful might be complacent in the sense that a less naive, but still114

simple, benchmark forecast method building on the concept of damped anomaly persistence115

may exhibit similar skill or even outperform existing dynamical forecast systems.116

In this context, we have developed a method for predicting the location of the sea-117

ice edge that combines the climatologically derived probability of ice presence with initial118

(present) anomalies of the ice edge. Here we describe the method and an assessment of the119

forecasts produced. This paper is structured as follows: Data used for creating the forecasts120

are presented in section 2, followed by a description of the applied verification metrics121

in section 3. The Spatial Damped Anomaly Persistence (SDAP) method is described in122

detail in section 4. In section 5, we go through the results from verifying the forecasts123

produced with our method compared against other traditional references as well as against124

the performance of model-based S2S forecast systems. The paper concludes with a short125

discussion in section 6.126

2 Data127

2.1 Sea-ice concentration observations128

We have used the Global Sea Ice Concentration Climate Data Record from OSI SAF129

to determine the climatological and initial sea-ice edge. The data is labelled as OSI-450 for130

years 1979 to 2015 and is based on satellite microwave measurements. From 2016 onwards,131

OSI-450 was extended as OSI-430b and is available with a 16 days latency. Alongside the132

microwave measurements, these products also use operational analyses and forecasts from133

ECMWF for atmospheric corrections. A near real time version of this record without the134

additional corrections is also available, as OSI-430. All of the data is freely available on the135

OSI SAF website and further details regarding the processing are described by Lavergne et136

al. (2019). OSI-450 (and OSI-430b) records are given on a Lambert Azimuthal Equal Area137

polar projection, also known as the EASE2 grid. The two hemispheres are separated and138

the horizontal grid spacing is 25km. Following this setup, our forecasts are also produced139

on the EASE2 grid at 25km resolution for each hemisphere.140

2.2 Subseasonal-to-seasonal (S2S) forecast data141

We compare the performance of our forecasts against the performance of the models142

from the Subseasonal to Seasonal (S2S) Prediction Project. The S2S database contains143

forecasts and reforecasts from several major operational centers. We have measured the144

concentration forecast of 5 dynamical sea ice forecasting system - the European Centre for145

Medium- Range Weather Forecasts (ECMWF), the Korea Meteorological Administration146

(KMA), Météo-France(MF), the National Centers for Environmental Prediction (NCEP),147

and the UK Met Office (UKMO). Alongside, we also used concentration forecasts from an148

older version of ECMWF (here named ‘ECMWFpres’) where the sea ice state is prescribed149

using initial persistence for the first 15 days and then relaxed toward climatology. Further150

description regarding the S2S project is given by Vitart et al. (2017). For a consistent151

comparison, all forecasts have been interpolated to a common grid with 1.5 degree horizontal152

resolution and only the period between 1999 and 2010 are considered in the analysis, in line153

with the analysis provided in Zampieri et al. (2018, 2019).154

3 Verification Metrics155

3.1 Spatial Probability Score156

We are primarily using the Spatial Probability Score (SPS; Goessling & Jung, 2018)157

for verification of the sea-ice forecasts, which is defined as the spatial integral of the squared158

probability difference (i.e., the half-Brier Score). Since the S2S models provide ensemble159

forecasts of sea-ice concentration, we can derive a continuous (non-binary) probability of160
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ice-presence. The resulting score, which is in area units, quantifies the area of mismatch161

between forecast and observation. Measuring SPS of a deterministic, or binary, forecast162

results in the Integrated Ice Edge Error (IIEE; Goessling et al., 2016). We also use the SPS163

in our method for empirically optimising the weights by which our initial binary (anomaly164

persistence) forecast of the ice-edge location is damped towards climatology, resulting in a165

probabilistic (damped anomaly persistence) forecast, as detailed in Sect. 3.166

3.2 Modified Hausdorff Distance167

Given that we have used the SPS not only for evaluation but also for the empirical168

estimation of optimal damping weights (detailed below), we have also used a second verifi-169

cation metric to validate the skill of our method. The Modified Hausdorff Distance (MHD;170

Dukhovskoy et al., 2015; Palerme et al., 2019) measures the distance between two contours171

and the resulting score is in distance units. MHD can not consider non-binary probabili-172

ties, and therefore the probabilistic forecasts have been converted to a binary equivalent for173

measurement of MHD using the 50% contour of sea-ice probability. Since SPS and MHD174

measure forecast skill quite differently, using both metrics can reveal whether or not the175

forecasts from our method are skillful independent of the verification metric used.176

4 Spatial Damped Anomaly Persistence (SDAP) Method177

The steps towards creating the SDAP forecast of the ice-edge location can be divided178

into two parts. In the initialisation phase, the initial anomaly in ice-edge location is first179

derived from the climatological Sea Ice Probability (SIP; the probability of sea-ice con-180

centration exceeding 15%) at points constituting the initially observed ice edge and then181

propagated (inherited) from the initial ice edge to each point of a (quasi-)global grid. In the182

forecasting phase, the inherited SIP and the climatology valid for the forecast target date183

are compared to determine first a deterministic ice-edge forecast by specifying “ice” versus184

“no ice” at each grid point, corresponding to an undamped anomaly persistence forecast,185

and second a probabilistic forecast by relaxing the deterministic forecast toward climatology,186

resulting in a damped anomaly persistence forecast.187

Our method, detailed in the following, propagates the initial anomalies in local sea-ice188

extent in space by spatial inheritance, and then uses the spatial information to propagate the189

information in time based on the seasonal evolution of the climatological sea-ice probability.190

The rationale of this approach is based on the assumption that anomalies especially in191

the ice and ocean state associated with an ice-edge anomaly have a certain spatial and192

temporal correlation length. For example, if the ice edge extends further than usual into193

the ocean, this might have been caused thermodynamically by colder-than-usual regional194

temperatures (e.g., due to anomalous atmospheric circulation) that would also have caused195

thicker-than-usual and/or denser floes in the adjacent pack ice and colder-than-usual sea-196

surface temperatures (SST) in the adjacent open ocean. If this situation occurred during the197

melt season, the thicker-than-average ice would hamper the ice-edge retreat; if it occurred198

during the freeze season, the colder-than-average SST would facilitate the ice-edge advance.199

4.1 Initialisation phase200

For a given initial time, the fraction of years in the preceding 10 years with ice present201

(sea-ice concentration ¿ 15%) at the same time of the year determines the raw climatological202

sea-ice probability (SIP) at each gridpoint. A larger number of years is not used in order203

to minimize the influence of long-term trends. The limited sample size however can result204

in spurious small-scale variations in the raw climatological SIP. Therefore a Gaussian filter205

with a radius of 220 km is applied to smooth the climatological probability field (exemplary206

result shown in figure 1). This results in smoother SIP contour lines which are advantageous207

for the subsequent steps of spatial inheritance.208

–5–



manuscript submitted to JGR: Oceans

Figure 1. Map of the Arctic domain showing the climatological probability field for 1st of

September 2020, and steps of the forecasting method (in insets) for the region selected. Insets ‘b’

and ‘c’ show the inherited and adjusted anomaly fields, ‘d’ shows the climatological probability field

for the target date (30th of September, 2020), ‘e’ shows the Spatial Anomaly Persistence forecast

and ‘f’ shows the Spatial Damped Anomaly Persistence forecast for the target date. In each panel,

the red line denotes the 15% contour of the observed ice concentration for the relevant date while

the dashed black lines show the 10%, 50% and 90% contour of the climatological probability field.

Maps ‘b’ and ‘c’ use the Anomaly colour scale while all other maps use the Sea Ice Probability

colour scale. Further details are in the text.

The initial ice edge, defined as the 15% contour of ice concentration on the initialisation209

date, is overlaid on the climatological probability. For every point along the contour, the210

climatological SIP at the nearest grid cell is used to compute the SIP anomaly in comparison211

to the median probability (SIP = 50%) along the initial ice edge. If the ice edge is in a region212

of high (or low) climatological probability, the anomaly is negative (or positive). In other213

words, if the ice extent is higher than the median, the anomaly is positive and the ice edge214

should be in a region of low climatological probability. Next, this anomaly is mapped from215

the initial edge to the climatological median contour (corresponding to 50% ice-presence216

probability). This intermediate step has been introduced to avoid biased patterns of spatial217

inheritance that otherwise occur due to geometrical effects (not shown). The anomaly is218

then passed (spatially “inherited”) to the full grid using a nearest-neighbour match of the219

median contour from each grid cell, resulting in a map as shown in figure 1b.220

In some cases, a grid cell with (without) ice in the initial observation might inherit221

a low (high) anomaly from the median, which causes the initial forecast at day 0 to not222

have (have) ice in the grid-cell. This initial mismatch generally occurs in cases where the223

observational gradient of ice presence is locally reversed compared to the climatological224
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gradient of ice presence probability. The problem is simply solved by checking the initial225

day forecast and replacing the anomaly inherited from the climatological median with the226

anomaly at the grid cell (i.e., the climatological probability of ice presence minus 50%) for227

grid cells with an initial mismatch. The result is a corrected probability anomaly map that228

can be persisted in time and used for forecasting.229

4.2 Forecasting phase230

Based on the corrected anomaly map from the initialisation phase (Fig. 1c), a forecast231

for any lead time can be created by simply adding the anomaly to the climatological SIP232

at each grid cell for the day in question. For example, if we initialise our forecast on233

September 1 and want to forecast the sea-ice edge 29 days later, then we add the anomaly234

from September 1 to the climatological SIP for September 30 (Fig. 1d). For every gridpoint,235

if the resulting probability is 50% or more, then we assign that point to be ice-present (as236

shown in inset ‘d’ of figure 1) . This gives a map of 1 (ice) and 0 (no-ice) which is our237

deterministic anomaly persistence forecast of ice-presence (Fig. 1e).238

The binary anomaly persistence forecast, corresponding to a single sharp ice edge,239

does not take into account that the spatial and temporal correlation scales of anomalies240

are limited. For example, an initial ice-edge anomaly in March obviously carries much less241

information about ice-edge anomalies in the following September, when (in most Arctic242

regions) the ice edge will be far away from the initial location, and sufficient time will243

have passed to turn initial anomalies into largely uncorrelated anomalies. Therefore, we244

create a probabilistic ice forecast by damping our deterministic forecast towards climatology.245

For each lead-time, a damped probabilistic forecast is obtained as the weighted average of246

the deterministic prediction and the climatological probability. The optimal weights are247

determined by using a training set of forecasts, where we compute the SPS for anomaly248

weights between 0 and 1 in steps of 0.05, for each combination of lead time and initial time of249

the year, and find the weights minimising the error. The optimised anomaly weights (shown250

in section 3.3) can then be used for other, independent, years to get the probabilistic Spatial251

Damped Anomaly Persistence (SDAP) forecast (Fig 1 inset ‘f’). A schematic overview on252

the whole forecasting procedure is provided in Fig. S1.253

In our study, we initialise the forecasts at the start of each month between 1989 and254

2020 and make predictions of the ice edge for the following year. The first 10 years of255

the period are used for empirical training to determine the anomaly weights and are thus256

excluded from the analysis. The remaining 22 years (1999 to 2020) have been used for257

the evaluation shown in the results below. For comparing to the forecasts from dynamical258

models in the S2S dataset (section 3.4), the forecasts from our method were interpolated259

to the coarse 1.5° S2S grid, and only years 1999 to 2010 were used, as in ZZampieri et al.260

(2018, 2019).261

5 Results262

Here, we present the evaluation of the forecasts from our method compared against263

other traditional benchmarks for ice-edge forecast, as well as against forecasts from dynam-264

ical models in the S2S dataset. Alongside climatological probability (hereafter referred to265

as CLIM) and initial-state persistence (PERS), the 50% contour of the climatological prob-266

ability has also been used to generate a binary forecast - the climatological median (CLIM-267

MED). Similarly, the 50% contour of the spatial damped anomaly persistence (SDAP) has268

been used to generate a median damped anomaly persistence forecast (SDAP-MED). Note269

that this is different from the binary Spatial Anomaly Persistence forecast (SAP) described270

above.271
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Figure 2. Spatial Probability Score (SPS) at increasing lead times (in days) for all forecasts

averaged across all forecasts initialised between 1999 and 2020. The two dotted lines (CLIM-MED

and SDAP-MED) are binary forecasts derived by assigning the ice edge at the 50% contour of the

probabilistic forecasts (CLIM and SDAP). Further details are in the text.

5.1 Comparison against traditional benchmarks272

The SPS result of all forecasts, averaged between 1999 and 2020 and across all seasons273

(Fig. 2), reveals that the performance of the SAP forecast is better than CLIM up to day 15274

and better than CLIM-MED up to day 39 in both hemispheres. The performance of SDAP275

is better than SAP, outperforming CLIM at 2 months of lead time by an average of 0.03276

million km2 in the Arctic (0.04 million km2 in the Antarctic). While SAP forecasts show an277

improvement over simple persistence from day 6, SDAP is better from day 3. The method278

design enables this forecast to perform at least as well as CLIM even at long lead times,279

leading it to be the most skillful forecast in this comparison set at all lead times except the280

first 2-3 days where PERS is marginally better.281

Since the SPS considers the probabilistic information in a forecast, both CLIM and282

SDAP have a clear advantage over their binary counterparts. CLIM-MED has a near con-283

stant skill loss of 0.3 million km2 in the Arctic (0.5 million km2 in the Antarctic) compared284

to CLIM. The error of SDAP-MED is low initially (similar to the other anomaly forecasts)285

and converges towards the error of CLIM-MED, similar to how the error of SDAP converges286

towards the error of CLIM.287

Given that our methodology uses the SPS to optimise damping weights, it is possible288

that using the SPS also as a verification metric leads to an overestimation of the skill. We289

thus also use the Modified Hausdorff Distance (MHD) as an independent verification metric,290

although the MDH can be applied only to the binary (median-based) forecast variants.291

While this verification method measures the forecast skill quite differently compared to SPS292

(Palerme et al., 2019), repeating the evaluation of the binary forecast variants with the293

MHD instead of the SPS provides overall a very similar picture: The SDAP-MED forecast294

outperforms the CLIM-MED forecast throughout the lead-time range, the undamped (SAP)295

forecast outperforms the CLIM-MED forecast up to 60 days lead time in the Arctic (43 days296

in the Antarctic), and simple persistence outperforms the other forecasts only slightly during297
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Figure 3. Same as figure 2, but for Modified Hausdorff Distance (MHD) of the binary forecasts

compared to the observed ice edge.

the first few days (Fig. 4). The confirmation of the overall results with an independent metric298

provides additional confidence in our reference forecast method.299

The previous analysis was based on outputs averaged over the entire time period. Given300

the strong seasonal cycle of Arctic sea ice and the processes that dominate the sea-ice budget,301

we now assess the performance of our method as a function of season. The forecast errors302

generally increase with lead time for all initialisation months, yet the actual score differs303

based on the month (Fig. 4). The errors are on average higher for the summer period in304

both hemispheres, and also during the late winter in the Arctic, when the sea ice is at its305

largest extent. These seasonal cycles can be linked to corresponding variations of the ice-306

edge length, although the December/January SPS maximum in the Antarctic is more likely307

related to enhanced interannual lateral ice-edge variability (Goessling et al., 2016).308

For each initialisation month, the SDAP scores approach and then follow the SPS of309

climatology. Forecasts initialised in some months perform worse than climatology at long310

lead times, such as the Arctic forecasts initialised in June, despite the method design to311

merge the SDAP forecasts at long lead times to the climatological forecast. This is likely312

a result of sampling uncertainty and using different years for training the anomaly weights313

and for evaluating the forecast results, as detailed in the following.314

5.2 Damping weights315

As mentioned above, the deterministic anomaly forecasts are damped by empirically316

determined weights and added to an inversely weighted climatology to derive the proba-317

bilistic anomaly forecast. Here, the empirical fitting was done only over the optimisation318

period of 1989 to 1998 and a constant set of weights was then used for all forecasts within319

the evaluation period of 1999 to 2020. The weights, derived from the optimization period320

for each hemisphere separately (Fig. 4), reveal the timescale at which information from the321

initial anomalies is lost and climatology becomes more informative. By day 30, the initial-322

anomaly weights decrease to 50% for most initialisations, but most forecasts have not been323

completely damped to climatology even at 3 months of lead time. In both hemispheres,324
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Figure 4. SPS for the first 120 days of SDAP forecasts initialised at the start of each month

(as represented by the coloured lines), alongside CLIM for each date (black continuous line), with

results averaged between 1999 and 2020.

the anomaly weight stays high for a longer period at the end of the summer melt season -325

August/September in the Arctic and February in the Antarctic.326

The weight of the anomaly is not always decreasing monotonically (see figure 5), al-327

though in general the influence of initial conditions should decrease with time. While some328

intermittent fluctuations can be caused by sampling uncertainty due to the limited optimi-329

sation period, we argue that some of this can be linked to what is known as reemergence330

of sea-ice anomalies (Blanchard-Wrigglesworth et al., 2011): When over the course of the331

seasonal cycle the (climatological) ice edge first migrates away from the initial location and332

then returns to a similar location later, the initial ice-edge anomalies may carry more in-333

formation for that later state than for the earlier - but more remote - intermediate state.334

This seems to be the case in particular for the Arctic forecasts initialised at the beginning335

of August, which exhibit a local minimum of the anomaly weight around day 35-40 (around336

the sea-ice minimum) and higher weights again thereafter until around day 70 (Fig. 5).337

The increased anomaly weight acts to keep the associated forecast error below the error of338

climatology for longer compared to other initialisation months (Fig. 4).339

5.3 September 2020 as an illustrative example340

To illustrate our forecast method, we now consider the example of the Arctic ice edge341

with the initial condition on the 1st of September, 2020, as shown in Fig. 1. Sea-ice extent in342

the Arctic during September 2020 was the second lowest in satellite records and during Oc-343

tober 2020 was the lowest October ice extent measured ((NSIDC, 2020). Persistent offshore344

winds from the Siberian coast, associated with a positive phase of the Arctic Oscillation345

(AO) during the preceding winter, meant that the Eurasian parts of the Arctic were mostly346

ice-free and had strong negative anomalies (as seen in Fig. 1b).347

SDAP forecasts in this particular case are better in the American part of the Arctic than348

in the Eurasian part. The forecasts correctly suggest that positive anomalies would persist in349
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Figure 5. Anomaly weights for the SDAP forecast as a function of initialisation month and

lead time (first 120 days). These weights determine the ratio of SAP forecast to climatology in the

SDAP forecast and are measured using optimization of SPS as described in the text.

the southeastern Beaufort Sea (on the left in each panel of Fig. 6) until the end of the month,350

and even the persistence of the ice-free patch within the ice cover of the Beaufort Sea is351

correctly forecast, although the position is shifted. In the Greenland Sea and Fram strait, the352

forecasts are fairly accurate at day 15 and 30, and still better than the climatological median353

at day 45. North of the Laptev Sea, the forecast retains the initial negative anomalies - as354

dictated by the concept of anomaly persistence - and thus shows a similarity in shape to the355

initial ice edge. While a small patch remains accurately ice-free at day 30, the overall forecast356

in this region shows an expansion of the high-probability areas toward the coast following357

the seasonal evolution of the climatological probabilities. By contrast, the actual ice edge358

does not follow the usual seasonality but remains largely unchanged, thereby developing359

even stronger negative anomalies. The SDAP forecast remains better than climatology, but360

the anomaly intensification is not captured. This highlights the limitation of the SDAP361

approach, given that it is based on the persistence of anomalies.362

North of Franz Joseph Land, the initial anomaly is strongly negative, yet there is ice363

present along the island coasts (in a positive anomaly region), allowing some parts of the364

median edge to inherit positive anomalies. Depending on the exact position of a grid cell365

in relation to the median and ice-edge contours, it might inherit slightly different anomalies366

and predict different ice conditions. This can be seen in the SDAP forecast for day 45, where367

some grid cells of the ocean in this region have a lower probability of ice-presence than the368

surrounding region. We discuss this issue further in section 6.369

5.4 Comparison against S2S dataset370

The main motivation for this study is to use the damped anomaly forecast as a reference371

benchmark for evaluating dynamical sea-ice models. Therefore, here we compare the per-372

formance of the forecasts from this method against those from the S2S Prediction database373
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Figure 6. Observed sea ice conditions in the Arctic for 1st of September, 2020 and the corre-

sponding SDAP forecasts at lead times of 15, 30 and 45 days. In each of the panels, the green

lines show the contours of climatological probability (10, 50 and 90%), while the red line shows the

actual ice edge on the respective date.
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Figure 7. SPS for forecasts from the S2S dataset, alongside climatology (CLIM), initial state

persistence (PERS), Spatial Anomaly Persistence (SAP) and Spatial Anomaly Damped Persistence

(SDAP) forecasts, averaged across all seasons and years between 1999 and 2010.

(Vitart et al., 2017), in line with the analyses presented in Zampieri et al. (2018, 2019). The374

results for the S2S models shown here are similar to those found by Zampieri et al. (2018,375

2019), although the scores have increased throughout due to the use of a larger sea-mask.376

The SDAP forecasts for years 1999 to 2010 were remapped to the common 1.5° S2S grid377

for this analysis and this has led to an increase in forecast error relative to climatology - in378

contrast to the evaluation on the OSI-SAF grid (Fig. 2), the SDAP error now reaches and379

slightly surpasses the clmatological error around 60 days lead time in the Arctic (Fig. 7 left;380

see also Fig. S3).381

The undamped (thus binary) SAP forecast has a similar forecast skill as UKMO and382

KMA in both hemispheres (Fig. 7), despite the fact that these forecast systems have the383

advantage of providing ensemble-based probabilities rather than a binary ice edge. The384

damped (thus probabilistic) SDAP forecast in the Arctic clearly outperforms UKMO and385

KMA and is about as skillful as ECMWF. The latter is the best-performing model in the386

S2S set (Zampieri et al., 2018, 2019) and (without calibration) the only one that is more387

skillful than climatology beyond day 15 in the annual average. In the Antarctic, our SDAP388

method even outperforms the ECMWF ensemble, in particular beyond 20 days lead time389

when the ECMWF system appears to develop biases so that climatology provides a better390

forecast beyond 32 days lead time.391

To assess the robustness of our results and to avoid a skill overestimation for our bench-392

mark method due to the use of the SPS for the weight optimisation, we now compare the393

performance of the SDAP forecasts against those from the S2S dataset using Modified Haus-394

dorff Distance (MHD; Fig. S2). Due to the differences in the method, including that MHD395

can be applied only to binary forecasts (based on the median ice edge where applicable),396

MHD measurements do not precisely mirror the results of the SPS measurements (for all397

models). Yet the ranking of the models is similar. The anomaly forecasts have a high skill398

compared to most other models or climatology. The average MHD of the ECMWF forecasts399

is again the lowest in the S2S set, except at short lead times below 12 days. The SDAP400

forecasts outperform the ECMWF forecasts in the short range and roughly match the skill401

of ECMWF at longer lead times, particularly in the Antarctic.402
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6 Summary and Conclusion403

This paper describes a novel method for forecasting the presence and extent of ice404

in the Arctic or Antarctic based on persistence and damped persistence of probabilistic405

anomalies. The method requires only historical and initial ice-presence information to make406

the predictions, yet remains more skillful than climatological forecasts at month-long lead407

times. This is in contrast to most of the models from the S2S database, of which (without408

calibration) only one model performs better than climatology beyond 12 days of lead time.409

The SDAP method uses the probabilistic anomaly from the initial date, which is spa-410

tially distributed (“inherited”) by a nearest-neighbour search, and adds it to the climatology411

of the target date to generate a deterministic anomaly persistence forecast. With increas-412

ing lead time the probabilistic anomaly is damped to generate a probabilistic forecast. At413

longer lead times, one can expect that dynamical and thermodynamical processes cause the414

initial anomalies to be less informative. Therefore, the method has been designed to in-415

crease the damping with time and converge to climatology at long lead times. The damping416

weights, determined empirically using the reforecasts between 1989 and 1998, show that417

initial anomalies remain highly informative (weight > 30%) for about 20-30 days in most418

months, and even longer in late summer. It is possible that in the Arctic, as the climatolog-419

ical ice-edge shifts with the continued decrease in ice extent, the optimal damping weights420

might also change.421

We note that there are instances of sharp spatial transitions in the anomalies inherited422

to the grid (as described in section 5.3) due to the spatial distribution of the initial ice423

edge. Spatially smoothing the anomaly before passing it to the grid could smoothen the424

transition. Explicitly adding a spatial component to the damping might also be better than425

using a pan-Arctic damping weight evolving only with lead time. This might also have the426

potential to implicitly capture the re-emergence of anomalies when the ice edge returns to427

a location over the course of the seasonal cycle after the extent has reached its maximum428

or minimum. Nevertheless, the empirical approach used here, while simplistic, gives a good429

estimation of the overall decrease in the information content of the anomalies.430

While our results show that the damped anomaly forecast outperforms most of the431

models in the S2S dataset, it must be noted that the skill of the dynamical sea-ice models432

could be higher than shown after bias correction or other forms of forecast calibration,433

which is standard for forecasts of other predictands at subseasonal-to-seasonal timescales.434

Forecast calibration remains challenging for sea ice, although promising approaches have435

recently been suggested (e.g., Dirkson et al., 2019; Director et al., 2017). Moreover, the436

resolution of the common S2S grid is low, and forecast skill was found to deteriorate after437

interpolation into this grid (Fig S3). It is possible that measuring the performance of the438

S2S models on their native grid would have resulted in a higher skill. The models output439

several variables, whereas our method is designed to only forecast ice-presence. Combining440

these outputs, or simply using a different concentration threshold, could also lead to more441

skill in the predictions, as shown by Zampieri et al. (2019).442

The SDAP method, applied here for predicting ice-presence equivalent to 15% or more443

sea-ice concentration, could also be used for predicting other binary fields. Considering sea-444

ice concentration, Mizuta et al. (2008) proposed a different probabilistic method to estimate445

ice concentration by combining individual predictions for different concentration thresholds;446

While the method is quite different, a similar framework for our method can be used for447

estimating ice concentration or thickness by using several binary levels. Furthermore, the448

damped anomaly prediction method might also have applications in other fields not related449

to sea ice.450

To conclude, the method proposed here is on average as skillful as the ECMWF fore-451

cast system, which is the most skillful one in the S2S database. Comparing only against452

persistence and climatology can give the impression that sea-ice forecasts from some of the453
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S2S forecast systems can already be regarded as “skillful” and thus of potential value for454

users. However, using a more challenging benchmark such as the spatial damped anomaly455

persistence (SDAP) method introduced here reveals that the forecast systems still have a456

way to go until they can generate substantial value beyond much simpler methods. We457

hope that, by including more challenging benchmark forecast methods such as ours in their458

evaluation workflow, other researchers and forecasting centers can build a better basis to459

improve their sea-ice forecast systems.460
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(MHD) for forecasts from the S2S database, as well as the traditional reference and anomaly 
forecasts. The third figure shows the change in mean SPS for CLIM and SDAP forecast after 
interpolation into the common S2S grid and after applying the common mask. Each figure has 
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Figure S1. Schematic of the Spatial Damped Anomaly Persistence method as described in the 
main publication. The only data used as input for the method is SIC at initial date and 
climatological SIC, found using the SIC for the same DOY for the past 10 years. Further 
information is in the main text.  
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Figure S2. Same as figure 7, but for Modified Hausdorff Distance (MHD), using the 50% 
probability threshold to create the binary forecasts. For the probabilistic forecasts, the median 
probability of ice presence is used to determine the predicted ice edge. Due to the resolution of 
the S2S grid and the disconnected segments of the ice-edge, the MHD measurements do not 
precisely mirror the results of the SPS measurements. Nevertheless, the ranking of the models is 
similar to that found using SPS and we can confirm that the SDAP forecasts perform better than 
all models in the S2S database except ECMWF. 
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Figure S3. A comparison between the SPS of climatological forecast (CLIM) and the Spatial 
Damped Anomaly Persistence forecast (SDAP) in the original grid, after interpolation to the 
common S2S grid and after applying a common mask. The mask is derived by finding all grid-
cells, where each of the forecast systems being compared has either ice or ocean. Results show 
the average of all forecasts for years 1999 to 2010, while the shaded areas show +/- 1 standard 
deviation.  
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