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Abstract

We present a fully Bayesian inverse scheme to determine second moments of the stress glut using teleseismic earthquake

seismograms. The second moments form a low-dimensional, physically-motivated representation of the rupture process that

captures its spatial extent, source duration, and directivity effects. We determine an ensemble of second moment solutions

by employing Hamiltonian Monte Carlo and automatic differentiation to efficiently approximate the posterior. Our method

explicitly constrains the parameter space to be symmetric positive definite, ensuring the derived source properties have physically

meaningful values. The framework accounts for the autocorrelation structure of the errors and incorporates hyperpriors on the

uncertainty. We validate the methodology using a synthetic test and subsequently apply it to the 2020 Mw 7.7 Caribbean

earthquake. The second moments determined for this event indicate the rupture was nearly unilateral and relatively compact

along-strike. The solutions from this inverse framework can resolve ambiguities between slip distributions with minimal a priori

assumptions on the rupture process.
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Supplementary Figures1

Figure S1. Kernel density estimate plots for multiple chains describing the distributions

of independent components of the second moments of the stress glut for the 2020 Caribbean

earthquake. Different colors (blue, red, and green) represent different chains of the inversion.

Figure S2. Distribution of hyperparameter σ determined in the inversion using real data and

included in the inversion using synthetic data.
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Bayesian framework for inversion of second-order stress1

glut moments: application to the 2020 Mw7.7 Caribbean2

Earthquake3

James Atterholt1and Zachary E. Ross14
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Key Points:6

• We develop a Bayesian inverse scheme to solve for stress glut second moments of7

earthquakes using teleseismic data.8

• We sample the positive-definite constrained posterior distribution using Hamiltonian9

Monte Carlo sampling and automatic differentiation.10

• Using the 2020 Mw7.7 Caribbean Earthquake as an example, we demonstrate the11

efficacy and utility of this inverse framework.12
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Abstract13

We present a fully Bayesian inverse scheme to determine second moments of the stress14

glut using teleseismic earthquake seismograms. The second moments form a low-dimensional,15

physically-motivated representation of the rupture process that captures its spatial extent,16

source duration, and directivity effects. We determine an ensemble of second moment so-17

lutions by employing Hamiltonian Monte Carlo and automatic differentiation to efficiently18

approximate the posterior. Our method explicitly constrains the parameter space to be19

symmetric positive definite, ensuring the derived source properties have physically mean-20

ingful values. The framework accounts for the autocorrelation structure of the errors and21

incorporates hyperpriors on the uncertainty. We validate the methodology using a synthetic22

test and subsequently apply it to the 2020 Mw7.7 Caribbean earthquake. The second mo-23

ments determined for this event indicate the rupture was nearly unilateral and relatively24

compact along-strike. The solutions from this inverse framework can resolve ambiguities25

between slip distributions with minimal a priori assumptions on the rupture process.26

Plain Language Summary27

Earthquake science is presented with the challenging problem of determining properties28

of earthquake sources that occur deep within the Earth using observations made at the sur-29

face of the Earth. Typically, the process for determining these important quantities involves30

finding solutions to complicated optimization problems that, given the necessarily poor data31

coverage, are poorly constrained. With this challenge in mind, we present a framework to32

solve for some fundamental properties of earthquake sources like spatial extent, rupture33

propagation direction, and duration. This approach requires few assumptions about the34

geometry of the fault that ruptured and the dynamics of the rupture process, in contrast to35

more traditional methods. This procedure also provides a probabilistic description of these36

earthquake source properties, which is essential, because the uncertainty inherent to this37

problem dictates that we cannot confidently choose any one particular solution. We demon-38

strate this method’s utility by applying it to the 2020 Magnitude 7.7 Caribbean Earthquake.39

Through this application, we show that this framework can both determine properties of40

earthquake sources that have historically been difficult to constrain and successfully resolve41

ambiguities between solutions of more traditional techniques.42
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Introduction43

Earthquakes are complicated physical processes that dynamically vary in space and44

time. Better understanding the factors that control earthquake behavior consequently re-45

quires constraining the finite source properties of earthquakes. In pursuit of this under-46

standing, high dimensional estimates of finite source properties are routinely computed for47

significant earthquakes (e.g. Wald & Heaton, 1992; Ammon, 2005; M. Moreno et al., 2010;48

Ide et al., 2011; Ross et al., 2019). These estimates usually involve the inversion for slip49

on a predefined fault plane using some combination of seismic, geodetic, and tsunami data50

with kinematic constraints placed on the rupture propagation (Hartzell & Heaton, 1983; Du51

et al., 1992; Saito et al., 2011). These solutions, termed fault slip distributions, are valuable52

in that they provide a detailed image of time-dependent slip behavior. But, the necessary53

user-defined parameterization, general lack of sensitivity to rupture velocity, and necessary54

regularization makes these estimates of finite source properties strongly nonunique (e.g.55

Lay, 2018). This nonuniqueness presents challenges to objectively comparing finite source56

properties between events, and thus limits our ability to discern patterns in earthquake57

behavior that could inform a deeper understanding of earthquake phenomenology.58

The limitations of routinely computed estimates of finite source properties motivates59

the development of alternative estimates that overcome these limitations. One potential al-60

ternative is the second moment formulation (G. Backus & Mulcahy, 1976a, 1976b), in which61

higher-order mathematical moments of the stress glut, a source representational quantity,62

are used to describe basic properties of the rupture process in space and time. Higher-order63

stress glut moments have been successfully computed in the past (Bukchin, 1995; McGuire et64

al., 2000, 2001, 2002; McGuire, 2004; Chen, 2005; Meng et al., 2020), but this methodology65

has received little attention compared to slip inversions. The second-moment formulation66

yields low-dimensional, physically-motivated estimates of the spatial extent, directivity, and67

duration of earthquake ruptures. It requires no prior knowledge of the rupture velocity,68

and makes only mild assumptions about the source geometry. Being free of gridding and69

associated discretization issues that complicate slip inversions, the second moment formu-70

lation can more objectively facilitate comparisons between events, helping to find common71

patterns. Illuminating these patterns may help address outstanding questions in earthquake72

science relating to how fault zones may facilitate or impede earthquake ruptures.73

Our contributions in this paper are as follows. We develop a Bayesian inverse scheme for74

second moments using teleseismic data. We employ Hamiltonian Monte Carlo sampling and75

automatic differentiation to efficiently sample from the posterior distribution. In doing so, we76

apply a set of transformations that ensure positive definiteness of the second moments. We77

demonstrate the efficacy of our methodology by applying the inversion scheme to the 202078

Mw7.7 Caribbean Earthquake. We show that our methodology is useful for both inferring79

source parameters that are poorly constrained by other source estimation procedures and80

resolving ambiguities between finite slip distributions.81

–3–
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Case study: the 2020 Mw7.7 Caribbean earthquake82

Event background and tectonic summary83

On January 28, 2020, a large earthquake occurred in the Caribbean Sea near the Cay-84

man Islands. The global Centroid Moment Tensor (gCMT) (Dziewonski et al., 1981; Ek-85

ström et al., 2012) solution of this earthquake suggests that the event was a largely double-86

couple, nearly vertically dipping, strike-slip earthquake with a moment magnitude of Mw7.787

(GCMT, 2020). The geographic setting of this event is shown in Figure 1. This event took88

place near the northern margin of the Gonâve Microplate, an elongated plate that charac-89

terizes a portion of the boundary between the North American and Caribbean plates. The90

dominant local structural feature in this region is the Mid-Cayman Rise, which produces91

seafloor spreading that is partially accommodated by the transform faults that bound the92

Gonâve Microplate (Mann et al., 1995; DeMets & Wiggins-Grandison, 2007). The centroid93

location and focal mechanism of the Caribbean Earthquake suggest that this event likely94

ruptured the Oriente Fault, a left-lateral transform fault that constitutes the boundary be-95

tween the North American Plate and the Gonâve Microplate. Though the spreading rate96

of the Mid-Cayman Rise is slow (DeMets & Wiggins-Grandison, 2007), the segments of97

the Oriente Fault neighboring the Caribbean Earthquake have produced numerous M6+98

earthquakes in recent history (Van Dusen & Doser, 2000; B. Moreno et al., 2002).99

Despite its large magnitude, there are few finite rupture solutions for the Caribbean100

Earthquake to date (USGS, 2020; Tadapansawut et al., 2021). Though these solutions agree101

that the Caribbean earthquake likely ruptured unilaterally to the SW along the Oriente102

Fault, there is no consensus on some fundamental source parameters, such as the rupture’s103

lateral extent. In particular, the USGS solution for this event suggests that most of the104

slip was confined within an 80 km length along the fault, while the Tadapansawut et al.105

solution suggests a much larger slip region that extends well over 300 km. Thus, in addition106

to producing statistically robust estimates of rupture characteristics, this second moment107

formulation may prove useful in resolving first-order differences between slip distributions.108

Data109

In this study we use vertical component seismic data from 52 Global Seismographic110

Network (GSN) stations (Figure 1). We selected these stations by evaluating how well the111

waveforms were approximated by point source synthetics computed using the gCMT so-112

lution. The seismograms used in the inversion are 700 second windows about the surface113

wave packet that we manually selected from 7200 second windows that start at the gCMT114

centroid time for the Caribbean Earthquake. We down-sample the waveform data to 0.1 Hz115

sampling rate to somewhat reduce the correlation between samples, while keeping computa-116

tional demands minimal. As part of the construction of the forward propagation matrix, we117

computed the Green’s tensor using the gCMT moment tensor and centroid location, which118

we perturbed to compute the requisite spatial derivatives numerically.119
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Methodology120

Stress Glut Moments121

Because an earthquake is constituted by a localized zone of inelastic deformation, we122

can represent the source region as a localized departure from elasticity. These departures123

can be quantified using the so-called stress glut, Γ, the tensor field computed by applying124

an idealized Hooke’s law to the inelastic component of strain in a system (G. Backus &125

Mulcahy, 1976a, 1976b). The stress glut is nonzero only within the source region. The126

stress glut is a complete representation of a seismic source in space and time that can be127

used to reproduce displacements everywhere on Earth for an arbitrary source (Dahlen &128

Tromp, 1998). Given the typically sparse distribution of seismic observations, solving for129

the full stress glut is an ill-posed problem. We can simplify the stress glut by assuming the130

source geometry is constant in space and time:131

Γij(ξ, τ) = M̂ijf(ξ, τ) (1)

Where is M̂ is the normalized mean seismic moment tensor and f is the scalar function.132

This approximation reduces the solution from a tensor field to a scalar field and is most133

valid for seismic sources with stable source mechanisms.134

We can further reduce the dimensionality of the stress glut by first recognizing that135

any scalar function in a bounded interval may be uniquely determined by its collection of136

polynomial moments. Because f captures a static displacement, f is nonzero for infinite137

time and thus occupies an unbounded interval, but ḟ vanishes to zero at the cessation of138

rupture and is thus captured within a bounded interval. Hence, considering that the stress139

glut prescribes displacements due to an arbitrary seismic source, we can represent seismic140

displacements as the superposition of the spatio-temporal moments of the rate function ḟ .141

At low frequencies, we can truncate this infinite series such that we only include terms with142

moments of order m+ n ≤ 2. We can then explicitly define the measured displacements for143

a station i at low frequencies as:144

ui(r, t) = ḟ (0,0)(ξc, τc)Mjl
d

dξl

∫ +∞

−∞
Gij(ξc, τc, r, t)dt

−ḟ (1,1)m (ξc, τc)Mjl
d

dξm

d

dξl
Gij(ξc, τc, r, t)

+
1

2
ḟ (2,0)mn (ξc, τc)Mjl

d

dξm

d

dξn

d

dξl

∫ +∞

−∞
Gij(ξc, τc, r, t)dt

+
1

2
ḟ (0,2)(ξc, τc)Mjl

d

dξl

d

dt
Gij(ξc, τc, r, t) (2)

Where G is a Green’s tensor prescribing the path effects from a source with the centroid145

location ξc and centroid time τc to an arbitrary station with the location r at time t,146

and ḟ (m,n)(ξc, τc) is the moment of the scalar rate function ḟ(ξ, τ) of spatial order m and147

temporal order n taken about the source centroid in space and time (Bukchin, 1995).148

Several of the moments are of routine use in seismology, while the rest are worked with149

sparingly. The moment of order m+n = 0 is the scalar moment of the source. The moments150

of order m+n = 1 correspond to the spatial (m = 1) and temporal (n = 1) centroids of the151

source. Perhaps unfamiliar are the moments of order m + n = 2; these moments describe152

low-dimensional finite properties of earthquake sources. In particular, ḟ (2,0)(ξc, τc) is the153

spatial covariance of the stress glut, ḟ (1,1)(ξc, τc) is the spatio-temporal covariance of the154

stress glut, and ḟ (0,2)(ξc, τc) is the temporal variance of the stress glut. These so-called155

second moments yield low-dimensional, physically-motivated approximations of the source156

volume, source directivity, and source duration respectively (G. E. Backus, 1977).157
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Figure 1. Left: Geographic setting of the 2020 Caribbean earthquake. Focal mechanism is

the gCMT solution for the 2020 Caribbean earthquake. Gray dots indicate the locations of USGS

cataloged aftershocks for the event. Red line indicates the boundary between the North American

and Caribbean plates (Bird, 2003). Map coloring is reflective of seafloor depth. Right: Global

distribution of stations from which waveforms were used in this study.

Waveform preprocessing158

To compute the Green’s tensor, we use the Preliminary Reference Earth Model (PREM)159

(Dziewonski & Anderson, 1981) and the normal mode summation package Mineos (Masters160

et al., 2011). To improve stability when approximating integrals and derivatives, we compute161

this Green’s tensor at a high sampling rate (20 Hz). We take the necessary temporal and162

spatial derivatives and integrals of this Green’s tensor numerically using a centered finite163

difference approximation. For the spatial derivatives, the finite difference offsets from the164

spatial centroid are 250 m. The construction of the forward propagation matrix described165

in this study require both the gCMT moment tensor and the Green’s tensor derivatives and166

integrals.167

We bandpass the observed waveforms and green tensor between 100 and 200 seconds168

and perform a visual quality control by comparing the displacements of the synthetic point169

source representation of our source with the observed waveforms. Because the contribution170

of moments of order m+ n ≥ 2 should be small, the synthetic waveforms produced using a171

point source approximation should be similar to the observed waveforms. We thus remove172

stations that did not show a good match between the synthetic point source displacements173

and the observed waveforms. We then align the Green’s tensor and observed displacements174

of the remaining stations via cross correlation, and we manually pick the arrivals of and175

determine the window lengths for the surface wave packets at each station. These windows176

constitute the time-segments of the Green’s tensor and observed waveforms included in the177

forward propagation matrix and data vector used in this study respectively.178

The Inverse Problem179

Though equation 2 appears unruly, many of the terms that constitute it are easily180

accessible. For a given source, we can observe ui(r, t) using seismic instrumentation; we can181

solve for G, M, and (ξc, τc) using routine techniques; and we can compute the necessary182

derivatives and integrals using numerical methods. Thus, in equation 2, only the moments183

–6–
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of the scalar function ḟ are unknown. We can then pose equation 2 as a linear inverse184

problem:185

d = Fp (3)

where d is a vector of measured displacements, F is a forward propagation matrix of spatial186

and temporal integrals and derivatives of G, the columns of which are weighted by the187

components of M, and p is a vector of parameters which constitute the lower-order moments188

of the stress glut.189

Numerous Bayesian methods for source parameter inversion have been proposed for190

problems such as focal mechanism estimation (Wéber, 2006; Walsh et al., 2009; Lee et al.,191

2011; Duputel et al., 2014) and slip distribution estimation (Monelli et al., 2009; Minson et192

al., 2013). Bayesian approaches for source estimation are growing in popularity because the193

probabilistic nature of these inversions is such that they do not require the user to choose a194

single solution for problems that, due to uncertainty, have many potential solutions. Instead,195

Bayesian approaches provide ensembles of solutions that are informed by prior distributions196

determined by physical constraints or ground truth. The Bayesian formulation described197

here allows for the computation of an ensemble of solutions for second moments that rep-198

resent distributions of potential low-dimensional finite source properties for an earthquake199

source.200

The posterior distribution for this problem can be written as follows (e.g. Tarantola,201

2005),202

p(p, σ|d) ∝ p(d|σ,p) p(σ) p(p), (4)

where σ is a hyperparameter. For the likelihood term, p(d|σ,p), we use a multivariate203

normal distribution,204

p(d|σ,p) ∝ 1√
|Σ|

exp(−1

2
(d− Fp)T Σ−1 (d− Fp)) (5)

Since the observations are time-series data, errors in the forward model will result in tempo-205

ral autocorrelation. We can account for this correlation structure through the data covari-206

ance matrix, Σ, as outlined in (Duputel et al., 2014). If both points di and dj are recorded207

by the same station:208

Σij = σ · exp(−|i− j|δt/∆t) (6)

Where δt is the sampling rate, and ∆t is the shortest period information included in the209

time-series. This correlation structure accounts for temporal correlation in the errors, but210

not any spatial correlation. In this paper we assume that the observations are spatially211

distributed sparsely enough that spatially-correlated errors are negligible.212

We use uninformed priors in this case study. But, this framework is flexible such that213

informed priors can easily be incorporated (Gelman et al., 2010). That is, with the physical214

interpretation of the second moment properties that we will describe shortly, priors on the215

spatial extent, directivity, and duration may be imposed given observational ground truth.216

For example, if the true nodal plane of an earthquake is known, Gaussian priors may be217

placed on the spatial second moment parameters to restrict the principal eigenvector of the218

spatial covariance matrix to abut the true nodal plane.219

The total number of parameters in this inverse problem is 11, and we approximate220

p(p, σ|d) using Markov Chain Monte Carlo (MCMC) sampling to obtain an ensemble of221

solutions. We do not solve for the zeroth or first order moments, and instead use the222

gCMT solution as our moment tensor and centroid location. Because the parameter space223

is quite large, we sample the posterior distribution using Hamiltonian Monte Carlo (HMC)224

sampling (Neal, 2010), which is an instance of the Metropolis-Hastings algorithm that can225

efficiently sample large parameter spaces using principles from Hamiltonian dynamics. This226

–7–
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is accomplished in part by incorporating gradient information into the sampling process;227

however, it requires a means to also compute gradients efficiently. Here, we accomplish this228

through the use of reverse-mode automatic differentiation (Innes, 2019).229

For each chain in this inversion, we draw 5000 samples from the posterior distributions230

after drawing 5000 burn-in samples. In this inversion, the momentum distribution has a231

diagonal mass matrix and the samples are updated using an ordinary leapfrog integrator232

(Neal, 2010). The only hyperparameter in this inversion is σ, which we use to construct233

the covariance matrix according to equation 6. To evaluate convergence, we run at least234

3 chains of the inversion and compute the Gelman-Rubin diagnostic using the computed235

set of chains (Gelman & Rubin, 1992). That is, we compare the variability within chains236

to the variability between chains to determine if the chains all converge to the same target237

distributions.238

Additionally, because the second moments of the stress glut are covariances, only a239

subset of the parameter space produces valid solutions. Specifically, the second moments240

are symmetric positive definite,241

X =

[
ḟ (2,0)(ξc, τc) ḟ (1,1)(ξc, τc)

ḟ (1,1)(ξc, τc)
T ḟ (0,2)(ξc, τc)

]
� 0. (7)

Physically, this is equivalent to saying that the spatial extent and duration of the source are242

both non-negative. Typically, when performing a constrained Bayesian inversion, the easiest243

course of action is to sample under an unconstrained parameter space and subsequently244

transform those parameters into the necessarily constrained parameter space (Gelman et al.,245

2010). To this end, we note that, by the Cholesky Factorization Theorem, every symmetric246

positive-definite matrix can be decomposed into the product of some lower triangular matrix247

with a positive diagonal and the transpose of that same lower triangular matrix. This means248

that given X, there exists a lower triangular matrix L with positive diagonal components249

such that:250

X = LLT (8)

Thus, we can sample freely from the unconstrained off-diagonal components of L and from251

the natural logarithm of the diagonal components of L. Then, to evaluate our sample252

against our data, we can simply build L using our sample components and then construct253

X using equation 5. From X we can extract a valid p with which we evaluate the likelihood254

of our sample. A keen observer may notice that while X need only be symmetric posi-255

tive semi-definite, the Cholesky factorization forces X to be positive definite. In practice,256

this distinction is inconsequential, as a positive semi-definite X suggests that at least one257

dimension of the source is identically zero, which will never be true in reality.258
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Results259

Before showing the application of this methodology to real data, we will show a test260

of the outlined inversion procedure using a synthetic source. We can also use this test261

to determine the resolvability of the parameters of the Caribbean earthquake. To these262

ends, we prescribe a 60x20 km rectangular fault with a strike and dip corresponding to the263

nodal plane of the gCMT solution that is aligned with the Oriente Fault. We then define264

a grid of point sources, each with the gCMT source mechanism and equal fraction of the265

gCMT moment, along this prescribed fault such that the spatial release of moment can266

be approximated as uniform distributions of moment release along the strike and dip of267

the fault. We delay the activation of these point sources according to a prescribed rupture268

velocity of 1.2 km/s along strike, resulting in an event duration of 50 s, such that the moment269

release with time can also be approximated as a uniform distribution. Using the fact that270

the width of a uniform distribution is equal to 2
√

3σ, where σ is the standard deviation of271

the Gaussian approximation of that uniform distribution, we can determine the true second272

moment solution for this synthetic source. In the interest of evaluating the resolvability of273

parameters for the Caribbean earthquake, we invert for these second moments using the274

same distribution of stations and the same windowing procedure that we use for the real275

event. For this test, we also use the mean σ from the inversion of real data so we could276

assess how visible known features are in the presence of realistic error. The joint probability277

distributions for each pair of inverted parameters are shown in Figure 7. These plots show278

that most of the parameters are either uncorrelated or weakly correlated with each other,279

with the exception of some of the spatio-temporal terms with their spatial counterparts and280

some closely related spatial terms.281

We can further test the fidelity of our inversion results by computing synthetic wave-282

forms using equation 2 and evaluating the fit to the observed waveforms generated for this283

synthetic example. The waveforms for an ensemble of second moment solutions from a sin-284

gle chain for the synthetic test are shown for a subset of stations with a large diversity of285

azimuths and distances in Figure 3. The waveform fits match the synthetic observations286

very well, particularly when the full ensemble of solutions is considered.287

In order to represent the second moment solutions for the synthetic test in a more288

physically interpretable way, we convert the second moments into measures of volume, di-289

rectivity, and duration. To estimate the volume of moment release from this source, we290

define an ellipsoid using the eigenvalues and eigenvectors of the spatial second moment of291

the event, ḟ (2,0)(ξc, τc). Assuming the spatial moment distribution follows a 3-dimensional292

Gaussian function, this ellipsoid represents the volume encompassing 95% of the moment293

released during the earthquake. The projections of the ellipsoids for the ensemble of solu-294

tions from a single chain from the synthetic test are shown in Figure 4. We can also infer295

the instantaneous velocity of the moment centroid, an estimate of directivity, by dividing296

the spatiotemporal second moment of the source, ḟ (1,1)(ξc, τc), by the temporal second mo-297

ment of the source, ḟ (0,2)(ξc, τc). The map-view projections and Z-components of these298

velocity vectors for the synthetic test are given in Figure 4. Finally, we can estimate the299

source duration if we assume the moment rate function of the earthquake is a Gaussian300

distribution about the temporal centroid. Then, the second temporal moment of the source,301

ḟ (0,2)(ξc, τc), defines the variance of that moment-rate function. These Gaussian approxi-302

mations to the moment-rate function for the synthetic test are plotted in Figure 4. Figure303

4 also allows us to evaluate how well the ensemble of solutions captures the true solution304

for this test. Indeed, the true along-strike length, vertical extent, directivity, and duration305

all fall within the ensemble of solutions which suggests these are well constrained features306

in this inversion.307

Now, we invert for the second moments of the 2020 Caribbean event using the real data.308

The distributions of the 10 independent parameters of the second moments for a single chain309

of the inversion using the real data are shown in Figure 5. We run the inversion for a set of310

chains, shown in Figure S1, and compute the Gelman-Rubin diagnostic (Gelman & Rubin,311

–9–
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Figure 2. Marginal and joint probability density plots for the 10 independent parameters in-

verted for the synthetic test in this study. Off-diagonal plots are 2-dimensional histogram plots

representing the joint probability distribution for each pair of independent parameters. On-diagonal

plots are kernel density estimate plots for the marginal distributions of the adjacent joint probability

distributions.
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Figure 3. Waveform fits for a subset of the windowed waveforms for the synthetic test conducted

in this study. Waveforms are labeled according to the GSN station at which they were generated.

Black waveforms are synthetic observations. Gray waveforms are generated using a single solution

from the ensemble of solutions from our inversion. Waveforms from each solution in the ensemble

are plotted. Red waveforms are generated using the mean solution of the ensemble of solutions

from our inversion.
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Figure 4. Physically motivated representation of the ensemble of second moment solutions for

the synthetic test. Top row: Projections of the spatial ellipsoid generated using the eigenvalues

and eigenvectors of the spatial covariance matrix of the stress glut distribution. This ellipsoid is

projected into map-view (left), into the NZ-plane (middle), and into the EZ-plane (right). Bottom

row: Instances of the directivity vector representing the instantaneous velocity of the centroid of

the source and instances of the Gaussian approximation of the source-time function of the source.

Directivity vectors are projected into map-view (left) and the distribution of Z-components of the

directivity vectors is plotted as a histogram (middle). Gaussian approximations of the source-

time function are plotted relative to the centroid time (right). Gray-scale represents the ensemble

of solutions for which, with the exception of the histogram of directivity vector Z-components,

darkness represents the density of the plotted solutions. Red represents the mean solution. Blue

represents the true solution.
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Figure 5. Marginal and joint probability density plots for the 10 independent parameters in-

verted for in this study. Off-diagonal plots are 2-dimensional histogram plots representing the

joint probability distribution for each pair of independent parameters. On-diagonal plots are kernel

density estimate plots for the marginal distributions of the adjacent joint probability distributions.

1992) using these chains. The Gelman-Rubin values are far less than 1.1, suggesting that312

the chains have converged to the target posterior distributions for the second moments.313

The joint probability distributions for each pair of parameters are shown in Figure 5. The314

distribution for the hyperparameter σ is shown in Figure S2. As with the synthetic test,315

these joint distributions show that the inverted parameters are mostly uncorrelated with316

each other. We can also evaluate the waveform fits for the inversion using real data. These317

waveform fits are shown in Figure 6. The computed waveforms for the ensemble of solutions318

inverted for under this framework fit the observed waveforms reasonably well.319

Given that some of the features are well resolved, under the assumtion that the stress320

glut rate is distributed as a 4-dimensional Gaussian function, we can use these ensembles321

of second moments to constrain features of the fault rupture. In particular, the map-view322

projection of the volume ellipsoid shown in Figure 7 closely follows the strike of the Oriente323

Fault, and suggests that 95% of the moment of this event was released in an along-strike324

length of approximately 90.31 ± 4.59 km. Additionally, the vertical extent of the volume325
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Figure 6. Waveform fits for a subset of the windowed waveforms used in this study. Waveforms

are labeled according to the GSN station at which they were recorded. Black waveforms are

observations. Gray waveforms are generated using a single solution from the ensemble of solutions

from our inversion. Waveforms from each solution in the ensemble are plotted. Red waveforms are

generated using the mean solution of the ensemble of solutions from our inversion.
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Figure 7. Physically motivated representation of the ensemble of second moment solutions

for the 2020 Caribbean event. Top row: Projections of the spatial ellipsoid generated using the

eigenvalues and eigenvectors of the spatial covariance matrix of the stress glut distribution. This

ellipsoid is projected into map-view (left), into the NZ-plane (middle), and into the EZ-plane (right).

Bottom row: Instances of the vector representing the instantaneous velocity of the centroid of the

source and instances of the Gaussian approximation of the source-time function of the source.

The directivity vectors are projected into map-view (left) and the distribution of Z-components of

the directivity vector is plotted as a histogram (middle). Gaussian approximations of the source-

time function are plotted relative to the centroid time (right). Gray-scale represents the ensemble

of solutions for which, with the exception of the histogram of directivity vector Z-components,

darkness represents the density of the plotted solutions. Red represents the mean solution.

ellipsoid suggests that 95% of the moment of this event was released in a depth range of326

approximately 30.01± 3.96 km. The directivity vectors inform both the preferred direction327

of rupture and the magnitude of the directivity. As illustrated by Figure 7, this event328

is unilateral to the SW and aligned with the Oriente Fault. Also, there is a smaller Z-329

directional component in all of the directivity vectors in our ensemble. The magnitude330

of the directivity measured in this study is approximately 2.128 ± 0.148 km/s to the SW.331

Finally, under the assumption that the moment of this event was released as a Gaussian332

distribution in time, the moment-rate functions derived from the temporal second moments333

from this solution suggest that 95% of the moment for our earthquake was released in a334

span of 41.92± 1.28 seconds.335
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Figure 8. Summary figure of the spatial and directivity features of the 2020 Caribbean Earth-

quake as derived from the second moment inversion. Left: Map view projection of the second

moment ellipsoid and the second moment directivity vector. Gray-scale lines represent the ensem-

ble of solutions and their density. Red line represents the mean solution. Blue vector represents

the directivity vector according to the same values shown on the axes but in units of km/s and

exaggerated by a factor of 10. Green line represents the true nodal plane from the gCMT solution

for the event, which is approximately aligned with the strike of the Oriente Fault. Yellow star

represents the centroid position. Right: On-fault projection of the second moment ellipsoid and

second moment directivity vector. Line colors match the line colors of the plot to the left. Purple

line represents the elevation of the seafloor at the centroid position.

Discussion336

In general, the ensemble of solutions for the Caribbean earthquake is well constrained337

and largely agrees with what is already known about the event. As is shown in Figure338

8, the largest principal axis of the ellipsoid representation is well-aligned with the Oriente339

Fault. Also shown in Figure 8, the directivity vector aligns with the Oriente Fault and340

suggests a rupture that propagates from the NE to the SW. This unilateral behavior is341

well-constrained in other estimates of directivity for this source. Additionally, the Gaussian342

source-time functions for this event suggest that the bulk of the moment release occurs343

within a span of 40 seconds, and nearly all of the moment release occurs within 80 seconds.344

This source duration agrees reasonably well with other duration estimates for this source345

(USGS, 2020; Tadapansawut et al., 2021).346

The joint probability distributions shown in Figure 5 suggest that most of the indepen-347

dent parameters of the second moments of the stress glut are uncorrelated. While there are348

exceptions, this suggests that the lengths of the principal axes of the ellipsoid describing the349

source volume vary independently. Likewise, changing the magnitude of the directivity along350

one axis does not necessitate a change of the magnitude of the directivity along another axis.351

Interestingly, the source duration, determined by the second temporal moment, is uncorre-352

lated with the spatial second moments of the stress glut. This suggests that changing the353

volume of the source does not imply a change in duration. This non-correlation implies that354

a change in volume may be correlated with changes in rupture propagation speed and/or355

directivity. This relationship is partially evidenced by the high correlation between some of356

the spatial moments with some of the spatiotemporal moments.357

The low dimensional second moment estimate of the 2020 Caribbean Earthquake il-358

lustrates the unique potential of this methodology for producing probabilistic estimates of359

finite source properties with few a priori assumptions on the fault geometry and rupture360

dynamics. The only requirement is a centroid moment tensor solution, which fits nicely into361

this framework, as the zeroth and first moments represent the scalar moment and centroid362

position of the earthquake respectively. In fact, the centroid moment tensor solution may be363
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solved concurrently with the second moment solution, but this introduces nonlinearity and364

significant additional computational/numerical complexity. The only constraint required365

in the inversion is that the source be non-negative in extent, which does not exclude any366

possible source scenarios. However, it is indeed easy to impose additional constraints on the367

second moments through the use of informed priors on the inversion parameters. Such in-368

formed priors should be imposed with the understanding that the second moments describe369

a covariance matrix of a 4-dimensional Gaussian function. That is, informed priors are not370

necessarily being placed on the possible source dimensions, but instead are being placed on371

the possible Gaussian approximations of the source dimensions.372

Indeed, the physical representations of these second moment solutions, such as the rep-373

resentation of the Caribbean Earthquake shown in Figure 7, should be interpreted with the374

understanding that these solutions are probabilistic estimates of Gaussian approximations375

of the source characteristics. For example, if a spatial extent ellipsoid solution has a vertical376

extent that exceeds the surface of the Earth, this solution is not necessarily unphysical, but377

instead may suggest a rupture distribution with a moment release that is biased towards378

shallower depths. In fact, Gaussian functions only vanish at infinity. The ellipsoid represen-379

tation extends out to 2σ of the spatial distribution of the stress glut, but the choice of the380

factor of 2 is to some extent arbitrary. Indeed, for any solution for any earthquake source,381

there exists an n such that nσ exceeds the surface of the Earth with nonzero probability.382

The spatial and temporal components of the second moment solution should be interpreted383

from this perspective.384

With an understanding of the character of these solutions, we can draw probabilistically385

motivated conclusions regarding characteristics of the Caribbean Earthquake from these386

solutions. For example, there are large discrepancies in the along-strike spatial extent of387

this rupture between fault slip distribution studies. The estimate for the extent of the388

along-strike rupture most agrees with the USGS finite slip distribution results. That is, we389

estimate that most of the moment of the earthquake was released within an along-strike390

distance of approximately 90.31± 4.59 km.391

One remarkable insight into this earthquake comes from the estimate of the vertical392

spatial extent of the second moment solution. The solution suggests that the moment release393

of this earthquake was distributed over a large depth range that spanned approximately394

30.01± 3.96 km. The GCMT solution for this earthquake places the centroid depth at 23.9395

km, which is fairly deep for an oceanic strike-slip earthquake. The large vertical extent396

estimate suggests that this earthquake ruptured perhaps much deeper than the centroid397

depth, and thus implies that, as illustrated in Figure 8, the seismogenic zone is thick in this398

location. This observation may signify that the section of oceanic lithosphere that ruptured399

is cold (Abercrombie & Ekström, 2001) and may yield insights into the vertical structure400

and heat flow of ocean-continent transform margins.401

Additionally, the directivity metric, the instantaneous velocity of the centroid of the402

source, is quite large at 2.128 ± 0.148 km/s. The instantaneous velocity of the centroid is403

identically zero for purely bilateral ruptures and equal to the rupture speed for unilateral404

ruptures. We can estimate the maximum rupture speed for this event by dividing the square405

root of the largest eigenvalue of the stress glut spatial covariance with the square root of the406

stress glut temporal covariance, which yields an average maximum rupture speed of 2.155407

km/s. The agreement between the instantaneous velocity of the centroid of this source and408

the average maximum rupture speed suggests a near purely unilateral rupture for this event.409
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Conclusions410

In this study, we develop a Bayesian framework for computing second moments of the411

stress glut of earthquakes using teleseismic data. This framework incorporates a positive-412

definite constraint under Cholesky decomposition and employs Hamiltonian Monte Carlo413

sampling to efficiently probe the parameter space. This methodology provides robust esti-414

mates of uncertainty by sampling the posterior distribution of solutions with dynamic error415

computation and accounting for the temporal correlation structure in the waveform data.416

These second moments of the stress glut provide a low-dimensional, physically-motivated417

representation of source volume, directivity, and duration that requires no a priori assump-418

tions and is repeatable and comparable between events. We verify this methodology using419

a synthetic test and apply this framework to the 2020 Mw7.7 Caribbean earthquake. We420

show that our solutions for this event provide event parameters that largely agree with the421

available ground truth. We also show that our solutions can be used to resolve ambiguities422

between higher-order finite source solutions. Finally, we show that our solution may be used423

to infer source parameters that have historically been difficult to constrain, such as vertical424

rupture extent.425
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