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Abstract
Ionospheric Total Electron Content (TEC) prediction has important reference
significance for the accuracy of global navigation satellite systems (GNSS) based
global positioning system, satellite communications and other space commu-
nications applications. In the study, an available prediction model of global
IGS-TEC map is established based on testing several different LSTM-based al-
gorithms. We find that Multi-step auxiliary algorithm based prediction model
performs the best. It can precisely predict the global ionospheric IGS-TEC
in the next 6 days (the MAD and RMSE are 2.485 and 3.511 TECU, respec-
tively). Then, the autoencoder network algorithm is adopted to construct an
assimilation model that transforming IGS-TEC map to MIT-TEC map. In
order to judge the validity of the assimilation model, the outputs of the as-
similation model are evaluated and compared with the IRI2016 model in four
different geomagnetic storm events. It seems that the assimilation model can
accurately forecast MIT-TEC by inputting the predicted IGS-TEC value. The
performance of assimilation model for the predicting MIT-TEC is better than
that of IRI2016.

Introduction
As the total electron content (TEC) is an important ionospheric parameter used
for characterizing the dynamic process in ionosphere [Liu et al., 2020], the global
TEC map is a very effective tool to monitor the ionospheric behavior. It is very
helpful to study the global ionospheric response to extreme space weather (e.g.
geomagnetic storm [Taylor and Earnshaw, 1969; Essex et al., 1981]). Thus,
plenty of researchers try to construct effective methods to predict ionospheric
TEC map in previous studies. Basing on the least squares collocation method,
Schaer (1999) extrapolate the spherical harmonics coefficients to fit the TEC
map in the previous 30 days to predict the overall TEC parameters for the next
2 days. Liu and Gao (2004) explore a multiple-layer tomographic method for
ionospheric modeling over a local area GPS reference network to predict TEC.
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However, the variation of ionosphere is mainly contributed to the solar wind
intensity and geomagnetic activity, only using historical ionospheric TEC to
predict future TEC (as presented in above studies) may have great limitations.
By considering the values of Kp, Dst, and Ap indices, some research apply
several Autoregressive orders and the Discrete Cosinus Transform (DCT) to
obtain a better correlation between past and future TEC values [García‐Rigo et
al., 2009, 2011]. Wang et al. (2018) develop an adaptive autoregressive model
to predict the global TEC map, the result shows that the difference between
local TEC data obtained from IGS GIMs and JASON is approximately 3 TECU
in low solar activity, and it can be greater than 6 TECU in mid-to-high solar
activity.

Different from above traditional methods, the neural networks (NN) is one kind
of data-driven technology, it can effectively absorb the plenty of information
from big data, so many important features of data can be well reproduced using
NN. In previous studies, Tulunay et al. (2006) adopt the Middle East Techni-
cal University Neural Network (METU-NN) model to predict ionospheric TEC.
Habarulema et al. (2011) take advantage of the potential extrapolation capabil-
ities and limitations of Artificial Neural Networks (ANN) to construct a South
African regional TEC prediction model through determining the relationship be-
tween multiple inputs (sunspot number, averaged magnetic A index values and
so on) and TEC. The results show that ANN extrapolates relatively well during
quiet periods, but the accuracy of prediction is lower during geomagnetic distur-
bance period. Deep learning is a technology originated from NN, owning to the
big data era, it has the chance to show its powerful data-learning ability. It has
been widely used in the prediction of ionospheric TEC. Taking into account two
closely related parameters: F10.7 and AP, Sun et al. (2017) propose a model
based on long short-term memory (LSTM) to predict ionospheric vertical TEC
of Beijing. Boulch et al. (2018) propose a Deep Neural Networks (DNNS) based
method to forecast a sequence of global TEC maps through inputting consecu-
tive sequence of TEC maps without introducing any prior knowledge other than
rotation periodicity of Earth. Using six input parameters (including Kp index,
solar flux, longitude and latitude, day of year, and time of day), Pérez et al.
(2019) construct a global TEC prediction model on account of multi-layer per-
ceptron (MLP) to forecast the global TEC in the next one day or several days.
Chen et al. (2019) build a novel regularized DCGAN (R-DCGAN) algorithm
to fill the missing data in MIT-TEC maps.

Actually the researches concerning the ionospheric TEC map prediction are far
more than listed above, these studies prove that deep learning algorithms are a
promising way to achieve high-precise ionospheric prediction. As is well known
to all, data is the foundation of deep learning, its performance is highly depen-
dent on training data, thus global TEC map prediction need high-quality global
TEC data. However, it is a challenge to obtain global TEC map from entirely
real observation, as the distribution of GPS stations are not uniform on the
earth, and the observation of TEC is always missing on the ocean. As a result,
the MIT-TEC map, which is obtained from realistic observation, is missing in
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many places. In order to solve this problem, the IGS-TEC try to produces
whole global TEC map by applying many technologies [Hernández-Pajares et
al., 2008]. Although both of them are widely used for various ionospheric re-
search, comparing IGS-TEC map with MIT-TEC map in some special region,
a significantly bias can be found between them [Chen et al., 2019; Vierinen et
al., 2015; Liu, 2011; Rideout and Coster, 2006; Chen et al., 2015; Chen et al.,
2017]. On one hand, the IGS-TEC map supplies global coverage data, so it pro-
vides a good opportunity to predict the spatial and temporal feature of global
ionospheric TEC for utilizing the IGS-TEC maps as training data in some deep
learning algorithms. On the other hand, there are some missing observation
regions in MIT-TEC map, but its observation is closer to real TEC value than
that obtained from IGS-TEC map [Aa, et al., 2015; Chen et al., 2019]. There-
fore, the MIT-TEC value is generally considered as ground truth. The goal of
this paper is to build a conversion relationship from IGS-TEC to MIT-TEC
by deep learning algorithms, and construct a method (applying multiple deep
learning algorithms) to produce the predicted TEC map with global coverage.
The predicted value is as close as possible to MIT-TEC value.

The paper is structured as follows: The section 2 introduces the data set, its
processing and technology guideline. The study of global IGS-TEC map predic-
tions due to four different LSTM-based algorithms are presented in Section 3.
The assimilation model based on Autoencoder is proposed in section 4, and the
assimilation model will be further tested the validity during both geomagnetic
quiet and storm periods. The summary and discussion are given in section 5.
Finally, the detail of above algorithms can be referred in the Appendix A of
this paper.

Data and Methods
In this work, the TEC data is obtained from two institutions. One is TEC grid
data from International GNSS service (IGS) center with 1-hour time resolu-
tion. The other one is the vertical TEC data from the MIT Haystack Madrigal
dataset (http://madrigal.haystack.mit.edu/). The grid size of both TEC map is
processed to 64×64. The MIT-TEC cannot cover the global, the missing data in
these TEC images accounted for one third of the total. Furthermore, the miss-
ing observation locations aren’t exactly the same at different times. In order
to improve the accuracy of prediction, four parameters obtained from OMNI
dataset with 1 hour time resolution, including the sunspot number R, the solar
radio flux F10.7, the geomagnetic activity index Ap, and the geomagnetic storm
index Dst, are used as external geophysical driving source and are input into
the auxiliary algorithm to improve the predicting performance.

In the study, the TEC data and OMNI data covers from January 2011 to De-
cember 2019. During such a long period, ionospheric periodic variations are
very abundant. Figure 1 shows the daily and annual average variation of global
overall ionospheric TEC from 2011 to 2019, which is obtained from IGS-TEC.
Apparently, the TEC value obviously varied as a function of time. As a result,
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dividing the total data into the training set, validation set, and test set should
be different from traditional data processing method. Actually, in order to make
them with the same distribution as possible, a cycle of 90-day is employed in
the study, where the first 30 days are considered as the training set, the middle
30 days are considered as the validation set, and the last 30 days are considered
as the test set.

Figure 1. Daily and annual averages of all global IGS-TEC value in
the dataset during the period from January 2011 to December 2019.
In this way, over 73000 sequences of TEC map for training, validation and testing
are built. For TEC data, the time span of each sequence is 96 hours. The first
48 hours are used as the history data and input into the network. The future
1 hour or 48 hours TEC value will be predicted by multiple models. Each
sequence of corresponding parameters includes 3 consecutive days of history
OMNI data. Since the original time resolution (and range) of different OMNI
data are divergent, in order to make influence of the four OMNI parameters
consistent, the standardization processing to make different feature variables
have the same scale and eliminate the differences of dimension between features
which can speed up the convergence of weight parameters.

The goal of the constructed model is to predict the TEC for a period of time in
the future interval through the history global ionospheric TEC sequence. Since
ionosphere is an open system, its future behavior is not only inferred from its
previous state, but also decided by the other driving source (e.g. solar and ge-
omagnetic activities), in the study, the geophysical parameters obtained from
OMNI are further input into the model to correct the error stacking caused
by long-term prediction. In this paper, the final fusion model is established by
two steps as follow. As shown in Figure 2, the first step is to construct the
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prediction models of global ionospheric IGS-TEC map through four different
LSTM-based algorithms, which are single-step self-prediction model, single-step
auxiliary prediction model, multi-step self-prediction model and multi-step aux-
iliary prediction model (their detail algorithm can be referred to Appendix A).
The self-prediction model only take advantage of corresponding historical TEC
data to predict the future TEC map. And the auxiliary prediction model fur-
ther considers above mentioned geophysical parameters (solar and geomagnetic
activity index) as additional input data, including F10.7, R, Dst, and Ap indices
values. In the study, the impact of the prediction times size on performance is
also considered. The single-step prediction model only predicts the TEC data
for one hour in the future each time, while the multi-step prediction model can
predicts the TEC data for 48 hours in the future. Then each prediction model
will be evaluated based on on the test set. The mean absolute deviation (MAD),
root mean square error (RMSE) and coefficient of determination (R²) are used
as evaluation indicators. And the performance of those prediction models are
compared in different seasons and years. As there is a systematic bias between
the TEC provided by IGS and that provided by MIT, in order to render the
deep learning model have the ability to predict MIT-TEC (in Figure A6 of Ap-
pendix A), in the second step, the autoencoder network is applied to construct
an assimilation model that transform IGS-TEC to MIT-TEC, which finally re-
alize the prediction of MIT-TEC. The performance of the MIT-TEC prediction
model is evaluated in four geomagnetic storm events in 2020 by comparing with
the International Reference Ionosphere (IRI2016�model.

Figure
2. The technology guideline of this research.

Prediction for IGS map (Step 1)
3.1 Model Performance in Space

As the procedure of method presented in section 2, an example of global iono-
spheric TEC prediction models based on four different LSTM algorithms are
shown in Figure 3. The start time of predicted global TEC map is at 15:00
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UT on December 5, 2017. The length of predicted interval of TEC map is 144
hours. Comparing with two other models, the predicted TEC map obtained
from multi-step and auxiliary prediction models are much closer to original re-
alistic IGS-TEC map.

Figure 3. Row (a): the real obtained IGS-TEC map from 2017-12-14 15:00
UT on December 14, 2017 to next 144 hours. Row (b), (c), (d) and (e): the
corresponding prediction of IGS-TEC map during the time interval through
four different prediction models. (The details of the Single-step Self-prediction
Model can be referred to the Section 1.1 of the Appendix A; The details of the
Single-step Auxiliary Prediction Model can be referred to the Section 1.2 of the
Appendix A; The details of the Multi-step Self-prediction Model can be referred
to the Section 1.3 of the Appendix A; The details of the Multi-step Auxiliary
Prediction Model can be referred to the Section 1.4 of the Appendix A.).

Since validations of the prediction models need more scientific evaluation in-
dicators, in order to accurately evaluate the reliabilities and effectivenesses of
models, several important evaluation indicators, including MAD, RMSE, and
𝑅2 are used to evaluate the bias between the predicted value of four models and
the IGS-TEC. Their mathematical expressions can be referred as follows:

where 𝐹𝑖 represents the forecasted value, 𝑂𝑖 represents the observed value, 𝐹
and 𝑂 are the mean values of 𝐹𝑖 and 𝑂𝑖, respectively, 𝑛 is equal to the number
of grids in each TEC map.

The performance evaluation of four models on MAD, RMSE and R² are shown
in Figure 4. Obviously, for all models, MAD and RMSE increase with the

6



enhancement of the prediction time, on the other hand, R² decreases with the
enhancement of the prediction time. Most notably, the lower MAD and RMSE
(or higher R²) indicate that the model perform better. It suggests that the
longer interval after the start time of prediction, the accuracy is lower. This
is the limitation of LSTM-based prediction model, the errors in the rolling
prediction gradually stack. However, the performance of the four models are
different under the same testing condition. Apparently, the multi-step auxiliary
model show the best performance under the three evaluation indicators, and the
single-step self-prediction model is the worst.

Figure
4. Three evaluation indicators (MAD, RMSE and R²) are used to test the
performance of prediction models.

In order to quantitatively prove the performances of the models, as exhibited
in Table 1, the averaged estimation indicators of the global ionospheric TEC
are calculated due to different models for the next 24 hours, 48 hours, and 144
hours, respectively. In the predicted interval within 24 hours, the single-step
auxiliary (multi-step auxiliary) model performs the worst (best) among the four
models, but overall, the differences are subtle. However, with the prediction
interval increases, the differences among the models gradually gain. Comparing
with the interval within 24 hours, the averaged MAD (RMSE) values calculated
from the single-step self-prediction model within 48 hours increased from 2.721
(3.806) TECu to 3.259 (4.483) TECu. The averaged R² value dropped from 0.911
to 0.899. For the multi-step auxiliary prediction model, this change over interval
of prediction is much smaller. The averaged MAD (RMSE) values only increased
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by 0.109 (0.142) TECu, the averaged R² value only dropped by 0.008. After
increasing the prediction time to 144 hours, the performed difference of the four
models are further enlarged. Comparing with other models, the performance
degradation of the multi-step self-prediction model is much smaller than others.
On the whole, in terms of reducing the deviation caused by the error stacking
with predicted time increasing, the performance of multi-step prediction model
is better than that of single-step prediction model, and the auxiliary prediction
model is better than the self-prediction model.

Table 1. The performance of models on the test set

Models24h
(av-
er-
age)

48h
(av-
er-
age)

144h
(av-
er-
age)

MAD
(TECu)

RMSE
(TECu)

𝑅2 MAD
(TECu)

RMSE
(TECu)

𝑅2 MAD
(TECu)

RMSE
(TECu)

𝑅2

single-
step
self-
prediction
model
single-
step
aux-
il-
iary
pre-
dic-
tion
model
multi-
step
self-
prediction
model
multi-
step
aux-
il-
iary
pre-
dic-
tion
model
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Figure 5 shows the global distribution of MAD and RMSE when the four models
predict the global ionospheric TEC in the time interval of next 1 hour, 24 hours,
64 hours and 144 hours. It reflects that the abilities of above models to reduce
error stacking with prediction time increasing are significantly different. In the
predicted time interval from the 1th to 24th hour, the largest value of MAD
and RMSE can be clearly found in the geomagnetic latitude 15°N�25°N and
15°S�25°S, which is belong to the area of equatorial ionospheric anomaly. This
result may be caused by the complicated physical mechanism in ionospheric
equator anomaly region. However, the increase of predicted time enlarges the
region with high MAD and RMSE for most models.. It is most obvious for the
single-step self-prediction model while the predicted time is beyond 144th hour,
the geophysical structure is completely lost in the condition. Luckily, as shown
in the 4th and 8th rows of Figure 5, the Multi-step Auxiliary prediction model
can effectively hinder this error stacking problem while the predicted time is
less than 144 hours.
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Figure 5. The global distribution of the MAD [(a1) to (a4)] and RMSE [(b1)
to (b4)]

3.2 Model Performance in time

3.2.1 the performance in different Seasons

Many studies have shown that the performance of ionospheric TEC prediction
models varies with the seasons [Mukesh et al., 2020; Tebabal et al., 2019]. Next,
the performances of all proposed models above in different season and year are
evaluated. The test set is divided into four parts by month: March to May re-
garded as spring, June to August regarded as summer, September to November
regarded as autumn, and December to February regarded as winter. Figure 6
shows the performances of the four models in four seasons as a function of the
length of predicted time. There is no doubt that the accuracies of all models in
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any season decrease as the predicted time increases. However, it is worth to no-
tice that the performance of four model show hug difference in different seasons.
For the Single-step Self-predictive Model and Single-step Auxiliary Prediction
Model, the performance of MAD and RMSE is the best in summer, and perfor-
mance of R² is the best in winter. For the multi-step self-prediction model and
the multi-step auxiliary prediction model, the performance of the three indica-
tors is the best in spring. MAD and RMSE performed the worst in winter, and
R² performed the worst in autumn. However, even if the performance of multi-
step auxiliary prediction model is poorer in autumn and winter than other two
seasons, it still perform better than the other three models. This shows that
either adding OMNI data as the input predictive factors or increasing the single
prediction step size can improve the performance of the global ionospheric TEC
prediction model based on LSTM related algorithm.

Figure 6. Models performance in different seasons

3.2.2 The performance in different years

As shown in Figure 1, the variation of ionospheric TEC is the most dramatic
in 2014 and quietest in 2019, so in order to further study the prediction per-
formance of four models under different years, all the four models are tested in
2014 and 2019, respectively. As shown in Figure 7, it implies that all models
performed worse in 2014, this may be because that 2014 corresponds to high
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year of solar activity, as more intense geomagnetic activity makes the variations
of the ionosphere more complicated. But either in 2014 or 2019, Multi-step
Auxiliary Prediction Model is the best performing model. Comparing with the
result in 2019, the Multi-step Auxiliary Prediction Model in 2014 reduced about
2 TECUs in MAD, reduced less than 3 TECUs in RMSE, and almost keep stable
in R² value.

Figure 7. Models performance in different years

Assimilation model from IGS to MIT TEC (Step 2)
The results presented above can be concluded that the Multi-step Auxiliary Pre-
diction Model performs the best in predicting global ionospheric TEC. There-
fore, the Multi-step Auxiliary Prediction Model is chosen as the basic model
to further build the assimilation one. The training data set covers from 2011
to 2019, only the data obtained in 2020 are considered as validation dataset,
however, there is no strong geomagnetic storm occurred in this year, so four
relatively medium (-100 nT�Dst�-50 nT) geomagnetic storm events are selected
to evaluate the practicality of the models. Meanwhile, in order to make the
evaluation results of the model comparable, the result calculated from Interna-
tional Reference Ionospheric model (IRI2016) is considered as a reference, and
compare with the result from our model.
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4.1 The Performance of Testing Model in quiet period

Actually, the goal of Assimilation model is to establish the transform relationship
from IGS-TEC to MIT-TEC with global coverage by applying the Autoencoder
algorithm (the detail algorithm structure can be referred to the Figure A6 in
Appendix A), and the outputs of IGS-TEC prediction model are considered as
the inputs of Assimilation model. In order to validate the preciseness of the
assimilation model, another widely-used ionospheric prediction, IRI2016 model,
is chosen as referenced model. In Figure 8a, the realistic MIT-TEC maps from
00:00 UT on May 25, 2020 to the next 144th hour are exhibited. It is worth
noting that the missing observation regions are diverse in different time. Mean-
while, the predicted global TEC map with global coverage from 00:00 UT on
May 25, 2020 to the next 144th hour are calculated by Multi-step Auxiliary
Prediction Model (as exhibited in Section 3), assimilation model and IRI2016
model, respectively. In order to clearly compare the predicted maps calculated
from the three models with the realistic MIT-TEC observation, the TECs are
exhibited only in the region where there are realistic observations (as shown
in Figure 8b-d). It seems that the result obtained from assimilation model is
more closer to MIT-TEC map than that calculated from IRI2016 during this
geomagnetic quiet period (Dst�-30 nT).

Figure 8. (a) The realistic MIT-TEC maps from 00:00 UT on May
25, 2020 to the next 144th hour. (b-d) The corresponding pre-
dicted global TEC map calculated from Multi-step Auxiliary Pre-
diction Model, assimilation model and IRI2016 model, respectively.
The details of the Assimilation Model can be referred to the Section
1.5 of the Appendix A.)
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4.2 Performance of Testing Model in geomagnetic disturbance period

In order to reflect the generalization ability of the model, predicted TEC maps
during four medium geomagnetic storm events in the year of 2020 are selected
to evaluate the practicality of the models. While the MIT data are referred as
the ground truth, the estimation indicators of the three models as a function of
time during the four geomagnetic storms are calculated. As indicated in Figure
9, the black line denotes the variation of Dst value, the blue line represents the
evaluation result calculated from the IRI2016 model, the orange line represents
the evaluation result from the multi-step auxiliary prediction model, and the
red line represents the evaluation result of assimilation model. It suggests that
the performance of the forecast model is not as good as that of IRI2016 for most
of the time before assimilation. One of the main reasons is that our forecast
model is trained and tested with IGS-TEC. In other words, the forecast model
just fits the data of IGS-TEC other than that of MIT-TEC. Furthermore, there
is an obvious systematic error between IGS-TEC and MIT-TEC. So before the
assimilation, in the condition while using MIT-TEC as realistic vertical TEC to
measure the performance of the model, the performance of model is a bit worse
than IRI2016. But in the condition while assimilating the prediction results by
the Autoencoder algorithm, the performance can be significantly improved, and
it is even better than IRI2016 for most of the time.

Figure 9. The performance of models in four geomagnetic storm
events
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Discussion and Summary
In this paper, there are two steps to construct a relatively precise prediction
model of global TEC map that closes to MIT-TEC observation. Firstly, IGS-
TEC map prediction models are constructed by four LSTM-based algorithms.
Then the accuracies of the models are tested in different predicted time length.
It suggests that the accuracy of auxiliary prediction model is much higher than
the self-prediction model through importing extern geomagnetic and solar ac-
tivity indexes (including F10.7, R, Dst, and Ap indices values). Furthermore,
comparing with the single-step prediction model which only forecasts the global
ionospheric TEC for one hour at a time, the multi-step prediction model can fore-
cast the next 48 hours at a time. The multi-step prediction model significantly
improves the accuracy of the forecast by reducing the error of rolling forecasts.
It is obvious that the multi-step auxiliary prediction model can combine the
both advantages of auxiliary algorithm and multi-step prediction model, and
its accuracy of prediction has been further improved. As shown in Figure 4 and
Table 1, the constructed multi-step auxiliary prediction model can accurately
predict the global ionospheric TEC in the next 6 days, and the error rises very
little.

Secondly, another kind of deep learning model: autoencoder network algorithm,
is adopted to construct an assimilation model that transforms IGS-TEC map
to MIT-TEC map. The performance of the model is evaluated in four different
geomagnetic storm events in the year of 2020, and then the results is compared
with the IRI2016 model. It seems that the assimilation model can better forecast
MIT-TEC through importing the predicted IGS-TEC value from multi-step
auxiliary prediction model (obtained from step 1). According to evaluating the
performance of the model in four medium geomagnetic storm events, it suggests
that the performance of constructed assimilation model in the study for the
predicting MIT-TEC is better than that of IRI2016.

Based on above results, our conclusions are as follows:

1. The prediction error stacking with time increasing can be effectively
weaken by adding multi-step prediction model and auxiliary algorithm.
As is well known, ionosphere is an open system, its future behavior is
not only inferred from its previous state, but also determined by the
other extern driving sources (e.g. solar wind and geomagnetic activities).
Thus the LSTM-based algorithm can reproduce ionospheric background
variation, and auxiliary algorithm can effectively reflect ionospheric
response to the effect of external driving resource.

2. Multi-step auxiliary prediction model can better predict the global iono-
spheric TEC in the next 6 days, and the error rises is very small (the MAD
and RMSE are 2.485 and 3.511 TECU, respectively), when the training
data is IGS-TEC.

3. When the testing data is completely separated from the training set, the
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performance of assimilation model is proven to be better than IRI2016
under the condition that MIT-TEC is considered as ground truth. This
advantage can be confirmed in both the geomagnetic quiet and storm
period.

As a summary, either multi-step prediction model or auxiliary algorithm im-
prove the prediction accuracy in time domain. Meanwhile, autoencoder network
algorithm can enhance the prediction accuracy in space domain. Based on the
above two technologies, we can obtain a better model of predicting MIT-TEC,
which is obviously superior than that of IRI2016. However, our assimilation
model is very preliminary. In future study, the improvement with parameters
optimization or addition of other algorithms should be done. Furthermore, the
dependence of the robustness of our model on different geomagnetic and solar
conditions will be also studied.
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Appendix A: The Architectures of four LSTM and Autoencoder al-
gorithms

In the field of deep learning, Recurrent Neural Network (RNN) are widely used
to process the data of time series. Because RNNs contain the procedure of
loops, which can store information while processing new input. This kind of
memory makes them very suitable for tasks that must be considered in advance.
RNN can handle certain short-term dependencies, but cannot handle long-term
dependencies, which will cause gradient disappearance and gradient explosion
problems. LSTM is a variant of RNN network. Cell state is introduced on the
basis of RNN. According to the cell state, it can decide which states should be
kept and which states should be forgotten. It solves the long-term dependency
problem of the general RNN network. LSTM uses forget gates, input gates, and
output gates to maintain and control information from a microscopic point of
view. The error function of selective memory feedback is corrected with the
gradient drop to realize the memory function in time and prevent the gradient
from disappearing. The calculation formula for a single time step of LSTM is
as follows:
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𝑓𝑡 = 𝜎 (𝑊𝑓 • [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) #(𝐴1)

𝑖𝑡 = 𝜎 (𝑊𝑖 • [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) #(𝐴2)

𝐶𝑡 = 𝑡𝑎𝑛ℎ (𝑊𝐶 • [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) #(𝐴3)

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡#(𝐴4)

𝑜𝑡 = 𝜎 (𝑊𝑜 • [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) #(𝐴5)

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡) #(𝐴6)

Among them 𝑓𝑡 is forget gate, 𝑖𝑡 is the input gate, 𝑜𝑡 is the output gate, 𝐶𝑡 is
the cell state candidate value, 𝐶𝑡 is the cell state, ℎ𝑡−1 is the state value of the
previous hidden layer, and 𝑥𝑡 is the input at the current moment, 𝑊 and 𝑏 are
weights and biases, and 𝜎 is the activation function.

In this work, we build four global Ionospheric TEC prediction models based on
LSTM.

1.1 Single-step self-predictive model

The single-step self-prediction model only uses the TEC data of the past 48
hours, that is, the historical data does not contain other physical parameters
(applies to section 2.3). In this model, we use four LSTM layers. The TEC map
data is two-dimensional data. In order to match the input dimensions of the
LSTM network, we need to flatten the TEC map. This model uses TEC data
in the past 48 hours to predict the TEC in the next hour. The optimizer of
the model is Root Mean Square prop (RMSProp) and the loss function is Mean
Squared Error (MSE).
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Figure A1. Single-step self-predictive model structure

1.2 Single-step auxiliary prediction model

The single-step auxiliary prediction model not only uses the past TEC data,
but also uses three consecutive days of historical data of physical parameters
as predictors. The input of this model is divided into main input and auxiliary
input, namely continuous 48 hours of global ionospheric TEC historical obser-
vation data and three consecutive days of four physical parameters. The main
input passes through four LSTM layers to get an auxiliary output. The aux-
iliary output is combined with the auxiliary input, and then the main output
is obtained through two fully connected layers. Both outputs and observations
can get their respective losses. The auxiliary loss function evaluation is only
a prediction based on the ionospheric TEC data itself, and the main loss func-
tion evaluation is a prediction based on the TEC data and physical parameters.
Here we give the auxiliary loss a weight of 0.2 and the main loss a weight of
1.0. In this way, even if the gradient from the main loss function is diffused, the
information from the auxiliary loss function can train the LSTM layer. Here,
we use RMSProp as the optimizer and MSE as the loss function.
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Figure A2. Single-step auxiliary predictive model structure

1.3 Multi-step self-predictive model

The models described in the two sections above are all single-step prediction
models. The errors of long-term forecasts are mainly caused by the stacking of
errors in rolling forecasts. Fixed prediction length, the longer the single-step
prediction time, the fewer rolling predictions. For neural networks, adaptability
is one of its advantages. For this model, we also only use the globe ionospheric
TEC data in the previous 48 hours. The difference is that the output is no
longer the TEC data of the next hour, but the next 48 hours. Here, we use
RMSProp as the optimizer and MSE as the loss function.

19



Figure A3. Multi-step self-predictive model structure It is worth not-
ing that this model uses four Bidirectional LSTM (Bi-LSTM) layers. It can
be seen from the macro structure diagram of the model that the Output 𝑡48
prediction information is actually passed and updated from the back end to the
begin of the input sequence. If there is no reverse LSTM, the Output 𝑡48 will
not be able to learn any evolution law of the TEC map time series. Similarly,
Output 𝑡49 can only learn a very one-sided evolutionary law from the first two
time steps of the input sequence. After adding reverse LSTM, these problems
can be effectively solved.

Figure A4. The structure diagram of Bi-LSTM layer. xi represents
the input at each time, yi represents the output at each time and
“A” represents the LSTM network unit. The calculation process of the
Bi-LSTM network is as follows: (1) In the forward process, for the output at
time t, the forward LSTM layer has the information of the input data 𝑥𝑖 and
the previous moment of the cell state ⃗⃗⃗ ⃗⃗ ⃗𝐶𝑡−1 and the hidden layer output ⃗⃗⃗ℎ⃗𝑡−1.
(2) In the reverse process, for the output at time t, the reverse LSTM layer
has the information of the input data 𝑥𝑖 and the previous moment of the cell
state ⃖⃖⃖ ⃖⃖ ⃖𝐶𝑡+1 and the hidden layer output ⃖⃖⃖ℎ⃖𝑡+1. (3) At time t, the output of the
forward LSTM layer is denoted as ⃗⃗⃗ℎ⃗𝑡, and the output of the reverse LSTM layer
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is denoted as ⃖⃖⃖ℎ⃖𝑡. The vector addition of the output of the two LSTM layers
is the output of the hidden layer at time t, denoted as ⃗⃗⃗ℎ⃗𝑡 + ⃖⃖⃖ℎ⃖𝑡. It is used as
the input of the output layer, and the final output 𝑦𝑡 is obtained through the
softmax unit.

1.4 Multi-step auxiliary prediction model

The input of the multi-step auxiliary prediction model is the same as that of
the single-step auxiliary prediction model. The difference is that the model can
predict 48 hours of global TEC data at single time. This will help improve
the accuracy of long-term prediction. In this model, the main input passes
through four bidirectional LSTM layers then get the auxiliary output. The
auxiliary output is combined with the auxiliary input, and the main output is
obtained through a convolutional layer. Here, the reason why the fully connected
layer is not used is that the output is 48 TEC map data instead of one. If a
fully connected layer is used, the parameters of this layer will increase by 48
times, exceeding the maximum load of the hardware device. Like the single-
step auxiliary prediction model, this model also has two loss functions. Here we
give the auxiliary loss a weight of 0.2 and the main loss a weight of 1.0. And
the Observations are no longer the global ionospheric TEC data for the next 1
hour, but 48 hours. Here, we use RMSProp as the optimizer and MSE as the
loss function.

Figure A5. Multi-step auxiliary predictive model structure
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1.5 Assimilation model

The ionospheric TEC provided by MIT does not cover the world, and the missing
position is not constant. Therefore, the historical TEC cannot be used to predict
the future TEC like the IGS-TEC forecast model.

The global ionospheric TEC prediction model based on LSTM can effectively
predict the global ionospheric TEC, and the predicted TEC is close to the
IGS standard instead of MIT. There is a systematic deviation between the
ionospheric TEC data provided by IGS and MIT. In order to make the forecasted
TEC is close to the MIT standard, we used an Autoencoder network to assimilate
the TEC data provided by IGS and MIT. The structure of the Autoencoder
model is shown in Figure 7. The Encode part of the model is composed of
two Conv2D layers, and the Decode part is composed of two Conv2DTranspose
layers. In the training phase, the inputs of the Autoencoder model is the global
ionospheric TEC data provided by IGS, and the outputs is the global ionospheric
TEC data with missing provided by MIT. It is worth noting that IGS data needs
to be preprocessed before being input into the model: We assign ’0’ to partial
positions of the TEC map provided by IGS, and these positions are the same as
the missing positions of the MIT data at the same time. In the testing phase,
the inputs of the model is the outputs of the global ionospheric TEC prediction
model based on LSTM, and the outputs of the model is the assimilation result
of the TEC data of IGS and MIT. In this model, the optimizer we use is Adam,
and the loss function is MSE.

Figure A6. IGS-TEC and MIT-TEC assimilation model
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