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Abstract

The tsunami-generated magnetic field is a magnetic field that show up with the moving of tsunami. In the previous studies,

researchers claimed that the tsunami-generated magnetic field arrives earlier than the tsunami sea level change based on

analytical solutions and numerical simulations. In this paper, we used the world’s first simultaneous data of sea level change

and magnetic field in the 2009 Samoa and 2010 Chile tsunamis to study the relation between these two physical quantities. We

found that the vertical component of tsunami magnetic field arrives earlier than the sea level change. Moreover, the horizontal

component of tsunami magnetic field arrives even earlier than the vertical component. The tsunami magnetic field was also

revealed that it can be used to estimate the tsunami wave height very accurately. We investigated the observed tsunami magnetic

field by our 3-D time-domain simulation. However, the currently existing tsunami source models were unable to reproduce the

observation in our research area. We confirmed that a better source model can improve the simulation. It follows that our

high precision tsunami wave height data converted from the magnetic field should be used to construct a better tsunami source

model.
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Key Points: 

• Direct comparison of the observed tsunami magnetic field with tsunami sea level change 
for the 2009 Samoa and 2010 Chile tsunamis. 

• 3-D time domain simulation of both tsunami sea level change and magnetic field for the 
2009 Samoa and 2010 Chile earthquake tsunamis. 

• Estimation of the tsunami wave height by the tsunami-generated magnetic field. 

Plain Language Summary 
The tsunami-generated magnetic field is a magnetic field that show up with the moving 

of tsunami. In the previous studies, researchers claimed that the tsunami-generated magnetic 
field arrives earlier than the tsunami sea level change based on analytical solutions and numerical 
simulations. In this paper, we used the world’s first simultaneous data of sea level change and 
magnetic field in the 2009 Samoa and 2010 Chile tsunamis to study the relation between these 
two physical quantities. We found that the vertical component of tsunami magnetic field arrives 
earlier than the sea level change. Moreover, the horizontal component of tsunami magnetic field 
arrives even earlier than the vertical component. The tsunami magnetic field was also revealed 
that it can be used to estimate the tsunami wave height very accurately. We investigated the 
observed tsunami magnetic field by our 3-D time-domain simulation. However, the currently 
existing tsunami source models were unable to reproduce the observation in our research area. 
We confirmed that a better source model can improve the simulation. It follows that our high 
precision tsunami wave height data converted from the magnetic field should be used to 
construct a better tsunami source model. 
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Abstract 
The motion of tsunami wave can generate induced magnetic field with cutting the 

geomagnetic field. The tsunami-generated magnetic field on seafloor was found to be a powerful 
tool for the tsunami early warning. Using the magnetic field, it is possible to detect the 
propagation of tsunamis and to estimate their wave height prior to their actual arrivals because it 
arrives earlier than the tsunami sea level change and very sensitive to it. This study aims at the 
correlation between the tsunami magnetic field and sea level change using the observed data and 
the three-dimensional (3-D) simulation of the 2009 Samoa and 2010 Chile earthquake tsunamis. 
The comparison of the observed tsunami magnetic field and observed sea level change illustrated 
that the vertical component of tsunami magnetic field, Bz, has a phase lead to the sea level 
change. Combined with the 3-D simulation results, the initial rise in observed tsunami Bh which 
also arrives earlier than the tsunami sea level change was confirmed. We further examined the 
precision of conversion of the tsunami magnetic field to the sea level change. The results suggest 
that the converted tsunami sea levels have as high precision as the differential pressure gauge 
data. However, our simulation was unable to reproduce the observation well, because of the 
inaccurate tsunami source models. It, therefore, is necessary that the very precise sea level 
changes converted from the observed tsunami magnetic field should be used in constructing new 
tsunami source models. 
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1 Introduction 
Faraday's law of induction tells us that a conductor cutting a background magnetic field 

generates an electric field. The tsunami-generated magnetic field (we call it the ‘tsunami 
magnetic field’ hereafter) is a magnetic field generated by the tsunami’s electromotive force of 
the moving conductive seawater cutting the geomagnetic main field. The tsunami magnetic field 
was found to arrive earlier than the tsunami sea level change (e.g., Toh et al., 2011), which can 
be exploited to detect tsunami events (Minami and Toh, 2013; Zhang et al., 2014; Schnepf et al. 
2016; Minami et al., 2017) and estimate their wave height (Tyler, 2005; Sugioka et al., 2014; 
Minami et al., 2015; 2021) for the global tsunami early warning system such as DART (Deep-
ocean Assessment and Reporting of Tsunamis; Bernard et al., 2011). Furthermore, it can be used 
to estimate the source mechanism of the tsunamigenic earthquake in concern (Kawashima and 
Toh, 2016). To those ends, the early arrival and sensitivity of tsunami magnetic fields w.r.t. the 
sea level change need further study. 

The signal of tsunami in the vertical component of the magnetic field, Bz, may arrive 
earlier than the sea level change, which has been predicted by analytical solutions (Tyler, 2005; 
Minami et al., 2015; 2021) and numerical simulation (Minami et al., 2015). This feature means 
that using tsunami Bz, we can detect tsunamis before their actual arrival. The leading phase of 
tsunami Bz is between the 0º to 90º, which mainly depends on the ocean depth (Minami et al., 
2015). In their study, the tsunami-generated magnetic field was classified into three categories 
according to the phase lead angle of tsunami Bz: The self-induction dominant case appears in 
deep waters with phase leads of 0º~20º. Also, 20º~70º for the intermediate case and 70º~90º for 
the diffusion dominant case that appears in shallow waters. However, in studies of the 2011 
Tohoku event (Zhang et al., 2014, Minami et al., 2017), the phase lead of tsunami Bz was not 
identified clearly by comparison of the simulated sea level change with the observed magnetic 
field. Hence, there remains a need to confirm the phase lead of tsunami Bz by simultaneous 
observation of both tsunami sea level change and tsunami Bz. 

There also exists a tsunami magnetic signal in the horizontal component, Bh, which 
arrives even earlier than tsunami Bz (Minami and Toh, 2013; Minami et al., 2015). The signal 
was coined an “initial rise” by them and is the very first tsunami signal. The initial rise in 
tsunami Bh was first recognized by the 2-D tsunami magnetic simulation of the 2011 Tohoku 
tsunami by Minami and Toh (2013) and confirmed by the observation and 3-D simulation of the 
2011 Tohoku tsunami (Zhang et al., 2014; Minami et al., 2017). However, the initial rise was not 
recognized in other tsunami events such as the 2006 and 2007 Kuril earthquake tsunamis (Toh et 
al., 2011). Because the initial rise is promising for tsunami early warning, it is necessary to 
examine its presence in more tsunami events. 

The tsunami magnetic components Bz and Bh can be converted into the tsunami sea level 
change (and vice versa) using the frequency-domain 2-D analytical solution of tsunami magnetic 
fields for linear dispersive tsunamis (Minami et al., 2021). The conversion allows us to estimate 
the tsunami wave height before its arrival using the tsunami magnetic field. A simpler 
conversion equation between the tsunami Bz and sea level change based on the long wave 
approximation was reported by Tyler (2005). Minami et al. (2021) indicated that there is nearly a 
linear relation between the amplitude of tsunami Bz and sea level change in the tsunami 
frequency band. Moreover, the 2-D analytical solution for linear dispersive tsunamis provides a 
better conversion method to calculate the tsunami sea level change from both tsunami Bz and Bh 
(and vice versa). Unfortunately, the conversion has not yet been examined by direct observation 
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so far due to the lack of the simultaneous observation of both tsunami magnetic field and sea 
level change at the same site. 

Numerical simulations of tsunami magnetic fields play an important role in search for the 
phase lead of Bz and the initial rise in Bh. However, most of the actual tsunami simulations were 
focused only on the 2011 Tohoku earthquake event (Minami and Toh, 2013; Zhang et al., 2014; 
Minami et al., 2017). Even though the simulated tsunami magnetic fields in those previous 
studies still have discrepancy from the observed magnetic field, no assessment on the validity of 
the used tsunami velocity field has been given due to the lack of the simultaneous observation of 
both tsunami magnetic field and sea level change again. 

In this paper, we deal with the tsunami magnetic field of the 2009 Samoa and 2010 Chile 
tsunamis observed on the French Polynesian seafloor in the south Pacific Ocean (TIARES 
Project: Suetsugu et al., 2012). What is most unique to this dataset is that it contains a 
simultaneous observation of both tsunami magnetic field and sea level change at Site SOC8. We 
will address the following questions in this paper: 

1. Are the phase lead of the tsunami Bz and the initial rise in tsunami Bh really present in the 
observation? 

2. Does the conversion between the tsunami sea level change and magnetic field have enough 
precision? 

3. What is the main error source in the simulation of tsunami magnetic fields?  
For those purposes, we first introduce the observation of the 2009 Samoa and 2010 Chile 

tsunamis in Section 2. In Section 3, we will make a direct comparison of the observed tsunami 
sea level with the observed tsunami magnetic field to study the phase lead of tsunami Bz and the 
initial rise in Bh appeared in the observation. We will also compare the tsunami sea level change 
converted from the observed magnetic field with the observation to examine precision of the 
tsunami wave height estimated by the tsunami magnetic field. In Section 4, we will show the 
result of the 3-D time domain simulation of the tsunami magnetic field for both events. 
Combining the observation and the simulation results, the phase lead of Bz and the initial rise 
will be further examined. Finally, all the results will be discussed and concluded in terms of the 
three questions given above in the last section. 
 

2 Observed data 
The observed tsunami magnetic and pressure data of the 2009 Samoa and 2010 Chile 

earthquakes were used in this study. Those data were acquired in a geophysical observation 
campaign, named TIARES (Tomographic Investigation by seafloor Array Experiment; Suetsugu 
et al., 2012), on the French Polynesian seafloor in the South Pacific Ocean from February 2009 
through November 2010 as shown in Fig. 1. As listed in Table 1, this experiment deployed an 
observation array consisting of 9 Ocean Bottom ElectroMagnetometers (OBEMs) and a 
Differential Pressure Gauge (DPG) on the 4000~5000m deep seafloor for investigating the 
electrical conductivity structures of the mantle beneath the Society hotspot in addition to ocean 
bottom seismometers for tomographic purposes. Three-component magnetic field data were 
recorded by the OBEMs: Bx in the geographical north direction, By in the geographical east 
direction and Bz in the downward direction with a 1-minute sampling rate. The pressure data was 
observed by the DPG at Site SOC8 with a 1-second sampling rate. 
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 The observation array in the TIARES area captured the signals of the tsunami-generated 
magnetic field as well as the ocean bottom pressure change when the earthquake tsunamis passed 
over the TIARES area, on the 29th of September in 2009 and the 27th of February in 2010 at the 
times of the Samoa earthquake of Mw 8.1 and the Chile earthquake of Mw 8.8 as listed in Table 2. 
The geomagnetic activities were small on those dates, whose Kp-indices were 0 and 1- on the 
days of the Samoa and Chile tsunami events, respectively (Matzka et al., 2021). As a result, the 
tsunami-generated magnetic fields were detected clearly in the observed time-series, although the 
observation area was very far from both epicenters (~3000 km for the 2009 Samoa earthquake 
and ~7000 km for the 2010 Chile earthquake).  

 

 

Figure 1. (a) A map showing the topography/bathymetry around the TIARES area and the 
location of SOC1-9 (triangles) and Pamatai (PPT) geomagnetic observatory (yellow circle) on 
Tahiti Island. (b) A map showing the location of the epicenters of the 2009 Samoa and 2010 
Chile earthquakes (red stars), the DART stations (yellow circles) and the TIARES area (the 
yellow rectangle). These maps were drawn by Generic Mapping Tools (GMT) v.6.1.1 (Wessel et 
al., 2019; https://www.generic-mapping-tools.org) based on the 30 arc second global relief 
(SRTM15+V2.1, Tozer et al., 2019). 
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Table 1. Locations, observed physical quantities and observation periods at SOC1 through 9 
Station Name Latitude(º) Longitude(º) Depth (m) Observed Signals Observed Period 

SOC1 19.4682S 148.0498W 4427 EM 2 March 2009 to  
23 November 2010 

SOC2 20.9561S 146.4423W 4772 EM 2 March 2009 to  
15 October 2010 

SOC3 19.9286S 146.026W 4656 EM 2 March 2009 to  
18 March 2010 

SOC4 18.4281S 144.9878W 4478 EM 2 March 2009 to  
25 July 2010 

SOC5 17.5012S 144.5069W 4049 EM 2 March 2009 to  
3 June 2010 

SOC6 18.8055S 142.2961W 4508 EM 2 March 2009 to  
19 July 2010 

SOC7 19.9405S 142.6682W 4490 EM 2 March 2009 to 27 
July 2010 

SOC8 20.9548S 143.757W 4806 EM and Pressure 2 March 2009 to 10 
October 2010 

SOC9 22.1675S 144.6965W 4540 EM 2 March 2009 to 29 
June 2010 

 

Table 2. Locations and distances from the epicenters of the 2009 Samoa and 2010 Chile 
earthquakes to the TIARES area, the estimated times of tsunami arrival at the TIARES area and 
the Kp-indices at the time of each tsunami event. 

Event UTC Time Latitude 
(º) 

Longitude  
(º) 

Depth  
(km) 

Magnitude  
(Mw) 

Distance to 
TIARES 
area (km) 

ETAs to 
TIARES area 

Kp-
index 

Samoa 2009-09-29  
17:48:10 15.6163 S 172.3019 W 16.86 8.10 ~3000 2009-09-29  

21:10 ~ 22:10 0 

Chile 2010-02-27  
06:34:23 36.2080 S 72.963 W 31.64 8.80 ~7000 2010-02-27  

16:40 ~ 17:15 1- 

 

In this study, we extracted the tsunami signals from the observed magnetic and pressure 
data and collated the two different physical quantities, details of which can be seen in the 
Supporting Information. The observed pressure data were processed by the following three steps: 
First, the raw DPG data were deconvoluted to transform them into the real pressure variations 
[Pa] on the seafloor in which the deconvolution equation of Araki and Sugioka (2009) was used. 
Second, the pressure data thus restored were converted into the sea level change [m] with a 
constant of 100 Pa/cm. Finally, a band-pass filter was applied to the sea level changes to recover 
the wave height at the time of the tsunami events. The pass bands were 3~30-minute and 3~45-
minute for the Samoa and Chile tsunamis, respectively, which were estimated by the prior 
wavelet analyses of the sea level changes at the time of the tsunamis passage. On the other hand, 
processing of the magnetic data was conducted in two steps: First, the same band-pass filter as 
the sea level changes was applied to the observed time series to extract the signals in the tsunami 
frequency band. Second, the transfer function method (Minami et al., 2017) was further applied 
to eliminate the geomagnetic fluctuations of external origin in signals of the tsunami frequency 
band, although the geomagnetic activities on the days of the tsunami events were small enough. 
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3 Observed tsunami magnetic field and sea level change 
By the data processing described above, we succeeded in extracting the tsunami magnetic 

signal, (Bx, By, Bz), from the observed data. The horizontal magnetic components, Bx and By 
were further rotated to the direction of the tsunami propagation, N96.2ºE for the Samoa tsunami 
and N47.5ºW for the Chile tsunami in order to yield the horizontal tsunami magnetic signal, Bh. 
Here we compare the tsunami Bz and Bh time-series in Fig. 2. 

 

 

 
Figure 2. Comparison of the tsunami Bz and Bh for the 2009 Samoa event (upper penal) and 
2010 Chile event (lower penal). The magnetic field components have passed through a 3~30-
minute and 3~45-minute band-pass filter for the Samoa and Chile tsunamis respectively, and the 
external field (dashed lines) has been subtracted as well. It is evident that the tsunami Bz (red 
lines) always leads Bh (blue lines) as large as ~90º in phase at the SOC stations on the seafloor. 

 
The tsunami magnetic fields of the 2009 Samoa and 2010 Chile tsunamis are clearly seen 

in Fig. 2. One of the main features of the tsunami magnetic field on the seafloor is that the 
tsunami Bz phase leads Bh by ~90º, which has also been confirmed by the observation of the 
2006 and 2007 Kuril earthquake tsunamis (Toh et al., 2011) and the 2011 Tohoku tsunami 
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(Minami et al., 2017). The amplitudes are about 0.2 nT and 0.3 nT for the 2009 Samoa and 2010 
Chile tsunamis, respectively. On the other hand, when the tsunami passed by (black solid vertical 
lines in Fig. 2), the tsunami magnetic signals at Pamatai (PPT), the closest land observatory to 
the TIARES area, were not visible even after the same band-pass filtering as the SOCs data. It 
may be because the land station is exposed to large magnetic noises of external origin without a 
thick cover of conductive seawater compared with the seafloor stations. 

The data at the SOC8 station is very unique in the sense that it is the world’s first 
simultaneous data of both ocean bottom pressure and magnetic field (Suetsugu et al., 2012). This 
enabled us to study the following two topics: 
1. The phase lead of tsunami Bz and the initial rise in Bh w.r.t. the tsunami sea level change. 

2. The conversion of tsunami magnetic field to tsunami sea level change (and vice versa). 
The former can help us to investigate the tsunami early warning ability of the tsunami magnetic 
field. Moreover, the conversion of the tsunami magnetic field to the tsunami sea level allows us 
to examine the validity of our procedure to extract the tsunami magnetic field. 

 

 

  
Figure 3. Comparison of the observed magnetic field with the sea level change at SOC8. The 
upper penal is for the 2009 Samoa tsunami, and the lower is for the 2010 Chile tsunami. The sea 
level changes were deconvoluted from the observed pressure data using the response equation of 
Araki and Sugioka (2009). The external field has been subtracted from the observed magnetic 
field components as before. The observed sea level changes and magnetic signals of the 2009 
Samoa and 2010 Chile tsunamis have passed through the 3~30-minute and 3~45-minute band-
pass filters, respectively. This comparison clearly shows the phase lead of tsunami Bz w.r.t. the 
observed sea level changes. 
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The phase lead of tsunami Bz and the initial rise in Bh have been simulated by several 
previous studies (Minami and Toh, 2013; Minami et al., 2015; 2017). However, they have never 
been verified by comparison of observed tsunami sea level changes with observed tsunami 
magnetic fields, which has been done for the first time by this study as shown in Fig. 3.  

As can be seen from the direct comparison of the observed sea level change and magnetic 
field, the observed tsunami Bz (red lines) arrived earlier than the sea level change (black lines), 
while Bh (blue lines) were delayed compared with tsunami Bz. We calculated the phase 
differences between the magnetic components and the sea level change for the main periods of 
both events and illustrated them in Fig. 4. As shown in that figure, the longer the periods of 
magnetic variations are, the larger the time difference between the sea level change becomes 
linearly, which implies we will have flat curves when convert the time differences into phases. 
The phase differences become flat as expected as shown in the right panel of Fig. 4. Bz 
components arrived earlier than the sea level change with phase leads of about 10º ~ 40º, while 
Bh components arrived later that the sea level change with phase lags of about 60º ~ 90º. These 
phase differences agree well with prediction of the 2-D analytical solution by Minami et al. 
(2021) and fall in the “Self-induction dominant case” and “Intermediate case” of Minami et al. 
(2015). It means that the tsunami magnetic field generated by self-induction is strong here. 
 

    
Figure 4. The time (left) and phase angle (right) differences of the tsunami Bz and Bh w.r.t. the 
sea level change within the main periods of the 2009 Samoa and 2010 Chile tsunamis at SOC8. 
The time and phase differences were calculated by measuring the difference between the wavelet 
form of the observed tsunami sea level change and magnetic components within the main period 
bands (5 and 16 minutes for Samoa, and 7, 15 and 33 minutes for Chile tsunamis; see Supporting 
Information). The black solid lines are the theoretical values with the 0.01 S/m seafloor 
conductivity using Minami et al. (2021). The observed time and phase differences are in line 
with the analytical solutions.  
 

The initial rise in tsunami Bh was first proposed by Minami and Toh (2013). However, it 
is hard to recognize in both of the observed horizontal magnetic fields shown in the Fig. 3. In the 
2009 Samoa tsunami, we are unable to recognize the initial rise in tsunami Bh. It seems that the 
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initial rise is the same level as the background noise. In the 2010 Chile tsunami, we cannot 
confirm whether the negative peak in Bh is the initial rise or not. One way to explain that is 
combining the observation with the simulation result which will be shown in next section. 

To evaluate the precision of converting the tsunami magnetic field to the tsunami sea 
level change, the converted sea level changes from the Bz and Bh of SOC8 were compared with 
the actual sea level changes in top left penal of Fig. 5 for the 2009 Samoa and 2010 Chile 
tsunamis. The converted sea level changes of other SOCs are also shown in the figure. The 
tsunami sea level change can be estimated using the magnetic components Bz and Bh (Tyler, 
2005; Sugioka et al., 2014; Minami et al., 2015; 2021). Here, we used the 2-D analytical solution 
by Minami et al. (2021) for linear dispersive waves with the 0.01 S/m seafloor conductivity to 
calculate the sea level changes from the observed Bz and Bh.  

 

 
Figure 5. Comparison of the converted sea level changes from Bz and Bh. The upper nine panels 
are for the 2009 Samoa tsunami, and the lower nine are for the 2010 Chile tsunami. The 
observed sea level changes at SOC8 are also shown in the top left panel for each tsunami. The 
converted sea level changes were calculated by the 2-D analytical solution of tsunami magnetic 
field (Minami et al., 2021) using the filtered magnetic fields. The comparison shows the 
excellent agreement between the converted and the observed tsunami sea level changes at SOC8 
and the consistency between these two converted sea level changes except for SOC6.  
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The comparison of the observed sea level change and the converted results of the Samoa 
tsunami at SOC8 shows the excellent agreement with each other. Also, the results at other SOCs 
show good agreement between these two converted sea level changes and their consistency. 
These results not only indicate that the tsunami magnetic signals were cleary extracted from the 
observed data by our data processing, but also mean that the tsunami Bz and Bh are very 
sensitive to the sea level change even for tsunamis smaller than 0.1m, in other words, we can 
estimate the sea level change by the tsunami magnetic field with high precision. Because the 
tsunami magnetic field arrives earlier then the tsunami itself, we can estimate the tsunami wave 
height before its arrival. However, in the results of the 2010 Chile tsunami at SOC8 still have 
discrepancy in amplitude between 16:40~17:30. It may be due to the higher 3-D effect of the 
2010 Chile tsunami than the 2009 Samoa tsunami. In order to investigate the discrepancy further, 
3-D tsunami kinetic/electromagnetic simulations will be introduced in the next section. 

 

4 Simulation of tsunami magnetic fields for the 2009 Samoa and 2010 Chile events 
The 3-D time domain tsunami magnetic simulation was conducted to explain the two 

issues in the observation: 1. The missing initial rise in the Samoa event. 2. The 3-D effect found 
by the conversion of the Chile tsunami magnetic field to the sea level changes. To those ends, the 
3-D simulation results will be compared with the observation. On the other hand, the observed 
sea level change along with the magnetic field at SOC8 allows us to estimate the error of tsunami 
velocity and magnetic field calculation separately. Namely, we will discuss the main error source 
in the simulation of tsunami magnetic field. 

The simulation of the tsunami magnetic field of the 2009 Samoa and 2010 Chile events 
over the TIARES area consisted of the following two steps: First, the tsunami velocity field in 
the TIARES area were simulated kinetically using an open-source software, and then the tsunami 
magnetic field were calculated using the velocity field thus simulated. Finally, the simulated 
tsunami magnetic fields were compared with the observed magnetic fields at all SOC stations in 
the TIARES area. 

4.1 Simulation of the tsunami velocity field 
The TIARES area is considerably distant from the two epicenters as listed in Table 2 and 

the two tsunamis contained multiple frequencies (Schnepf et al. 2016), which means that the 
dispersion of the tsunamis should be considered. In this study, an open-source tsunami 
simulation code, JAGURS, by Baba et al. (2017) was used for calculation of particle motions of 
the tsunamis in concern because it can account for the effects of Boussinesq dispersion as well as 
elastic loading. 

JAGURS simulates the velocity field based on earthquake fault models that are normally 
inverted from the seismic and tsunami data. Proper fault models are indispensable for decent 
tsunami velocity simulations. Several source models reported by previous research have been 
considered in this study. Our guiding principle of the fault model selection was that it can fit the 
sea level changes around the TIARES area most. 

For the 2009 Samoa tsunami, we used the ‘Mega 1’ fault model of Fritz et al. (2011), 
which is a single normal fault model and can explain the observed sea level of the DART 
stations near the TIARES area (see Fig. 11 of Fritz et al., 2011). As for the 2010 Chile tsunami, 
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we used the ‘all DART only’ fault model of Yoshimoto et al. (2016), because it is a multiple-
fault model obtained by the inversion of the tsunami data at 26 DART stations over the Pacific. 
These fault models show the best fit to the tsunami sea level around the TIARES area among the 
existing source models, although they did not include the sea level change data at SOC8. 

 

 
Figure 6. The upper 4 panels are the area of the 2009 Samoa tsunami velocity field simulation 
(upper right) and the comparison of the simulated and observed sea levels for DART51425, 
51426 and SOC8. The lower 4 panels are the area of the 2010 Chile tsunami velocity field 
simulation (lower right) and the comparison of the simulated and the observed sea levels for 
DART32412, 51406 and SOC8. The sea levels were calculated by JAGURS, while the DART 
data were downloaded from the NOAA website (https://www.ngdc.noaa.gov/hazard/dart/2009 
samoa_dart.html; https://www.ngdc.noaa.gov/hazard/dart/2010chile_dart.html). Observed sea 
levels were from the DPG at SOC8 (Suetsugu et al., 2012). In the upper penal of Samoa tsunami, 
the simulation explains the observed sea level well at the DART51426 and agree fairly well at 
SOC8 if the original observation is divided by 2.65 and delayed by 99s (the red dashed line in 
the lower right). While the Chile tsunami in lower penal, the simulation results explain well the 
observed sea level at both DART stations, while the data at SOC8 still needs further modification 
that is divided by 1.04 and delayed by 171s (the red dashed line in the lower left). 
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Properties of the velocity field simulation by JAGURS for the 2009 Samoa and 2010 
Chile tsunamis are shown in Table S1 in Supporting Information. The velocity fields of the 
tsunamis were simulated from the epicenters through the TIARES area for time spans of 7 hours 
for the Samoa event and 14 hours for the Chile event. In order to examine our simulation results, 
the DART stations of 51425 and 51426 were included in the simulation in the case of the 2009 
Samoa tsunami, while the DART stations of 32412 and 51406 were incorporated in the 2010 
Chile tsunami simulation. Comparison of the simulated and observed sea levels at the DART 
stations and Site SOC8 in the TIARES area for both events is shown in Fig. 6. 

Figure 6 shows that our simulation at the DART stations is in line with the result of the 
previous works. For the Samoa tsunami, the simulated sea level at DART 51425 and 51426 were 
successfully reproduced as those in Fritz et al. (2011). However, this fault model can explain the 
observation at DART 51426 but not at 51425. As for the Chile tsunami, the simulated sea levels 
at DART 32412 and 51406 show good reproduction of the results by Yoshimoto et al. (2016) 
and fit the observation well except for somewhat attenuated amplitudes. 

Although we successfully reproduced the simulation results of the previous works using 
the respective fault models at the DART stations, the simulated sea levels at SOC8 in the 
TIARES area still show obvious discrepancies both in amplitude and phase from the observation 
as indicated in Fig. 6. To explain the first peak of the observation, combinations of amplitude 
gain and time shift were calculated: In the Samoa tsunami event, the simulated sea level was 
divided by 2.65 and delayed by 99s. As for the Chile tsunami, the simulated result was divided 
by 1.04 and delayed by 171s. After that modification, the discrepancies of the simulation results 
were significantly reduced as illustrated in Fig. 6. It is noteworthy that the same modification can 
be applied to the simulated magnetic field, because the examination of the 2-D analytical 
solution by Minami et al. (2021) reveals that there is nearly a linear relationship in the amplitude 
of tsunami sea level change and magnetic field. 
 

4.2 Simulation of the tsunami magnetic field 
The tsunami magnetic field at SOC8 was simulated by the 3-D time-domain simulation 

code by Minami et al. (2017). It can calculate the tsunami magnetic field from the given velocity 
field using the finite element method based on the Maxwell equations. The code can support 
various sea water conductivities and bathymetries as well. 

In the simulation of the tsunami magnetic field, the horizontal tsunami velocity by 
JAGURS was used, while the vertical velocity component was calculated from the simulated Vx, 
Vy and sea level change using the mass conservation law (Minami et al., 2017). The 3-
component tsunami magnetic field with a 10s time step in the TIARES area (152ºW - 140ºW, 
15ºS - 25ºS) was calculated as summarized in Table S2 in Supporting Information.  

For the convenience of the initial rise examination, the horizontal components, Bx and 
By, of the simulated magnetic field were rotated to the direction of the tsunami propagation in 
order to compute Bh. For analyses of the phase lead of tsunami Bz and the initial rise in tsunami 
Bh, we compared the simulated magnetic field with that of the sea level change at SOC8 as 
shown in Fig. 7. 
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Figure 7. Comparison of the simulated sea level change with the simulated tsunami magnetic 
components at SOC8. The sea level change was calculated by JAGURS and tsunami magnetic 
components were calculated by the 3-D time-domain simulation code by Minami et al. (2017). 
The tsunami Bh is parallel to the direction of each tsunami propagation and was computed using 
the simulated Bx and By. A phase lead of tsunami Bz with respect to the sea level change and an 
initial rise (actually ‘retreat’ in this case) in tsunami Bh are clearly seen. 

 

As shown by the comparison of tsunami Bh with respect to the tsunami sea level  in Fig. 
7, the initial rise (actually ‘retreat’ in this case) apparently appeared in both simulations. In the 
simulation of the 2009 Samoa tsunami, a negative peak before any peaks of sea level change is 
the tsunami initial rise, which is in harmony with that reported by Minami et al. (2015). The 
initial rise in tsunami Bh is about -0.03 nT , which corresponds to the following 3.4cm-high 
tsunami. However, the observed tsunami wave height at the first arrival is 1.3cm as shown in 
Fig. 3 upper panel, so that this simulated amplitude of initial rise must be larger than the actual 
amplitude. 

The initial rise in Chile tsunami Bh was simulated as small as -0.04 nT. In contrast to the 
tsunami first arrival consisting of a single peak in the 2009 Samoa tsunami, the first arrival of 
2010 Chile tsunami is more complex to have a small dual peak before the larger peak (see the 
lower left panel of Fig. 6). That simulated value of -0.04 nT should be similar to the actual 
amplitude of the initial rise, because we succeeded in reproducing the observed tsunami wave 
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height by simulation (see Fig. 6). Although the amplitude in the Chile event was larger than that 
in the Samoa event, the initial rise is still hard to recognize, because the Chile event started with 
a small dual bump that makes it difficult to isolate the initial rise.  

The phase lead of tsunami Bz, however, is still clearly seen in the simulated Bz for both 
events. The tsunami Bz has a small but evident phase lead with respect to the tsunami sea level 
change. The identified phase leads of Bz corresponding to the first peak of the tsunami wave 
height are indicated by arrows in Fig. 7. 

In the simulation results, the initial rise may exist in both Bh of the 2009 Samoa and 2010 
Chile tsunamis, although that of the latter is less prominent due to the complexity of its first 
arrival. Our simulation results suggest that the initial rise is a little bit too small for the Samoa 
tsunami and too complicated for the Chile tsunami to recognize in the observation data. We will 
further argue this issue in the next section by direct comparison of the simulation with the 
observation. 

  

4.3 Comparison of the simulated tsunami magnetic field with the observation 
In Fig. 8, the simulated magnetic fields without and with modification at SOC8 are 

compared with the observation as well as the magnetic field converted from the observed sea 
level change using the 2-D analytical solution (Minami et al., 2021).  

 

 

Samoa Event

Observed Bz
Observed Bh
Converted Bz and Bh
Simulation original
Simulation ÷2.65 +99sec

Initial rise

Bh
 (n

T)

−0.3

0

0.3

Bz
 (n

T)

−0.3

0

0.3

Sep 29 - 2009 (UTC)
21:30 22:00 22:30 23:00



Journal of Geophysical Research: Solid Earth 

 

 

  
Figure 8. Comparison of the observed, simulated and converted tsunami magnetic fields for the 
2009 Samoa (upper) and 2010 Chile (lower) events at SOC8. As described in Section 3, the 
observed data have passed through band-pass filters and the external field has been subtracted 
out. The converted magnetic field was calculated from the observed sea level change. The 
dashed lines show modification of the original simulation results by the same combination of 
amplitude gain and time shift per event as the sea level change. The modified simulation results 
have better fits to the observation and the converted results for both amplitude and arrival time. 

 
Comparison of the simulated magnetic field (black solid lines) and observation (red and 

blue solid lines) shows poor agreement of the simulation with the observation. The phase and 
amplitude discrepancies between simulation and observation are notable, similar to that between 
the simulated and observed sea level change shown in Fig. 6. As mentioned before, the simulated 
tsunami sea level change can be modified by a combination of amplitude gain and time shift to 
match the observation better. These results suggest that the discrepancy between the simulated 
magnetic field with the observation is mainly due to the inaccuracy in the tsunami velocity field 
simulation because the accuracy of the tsunami magnetic calculation was examined intensively 
(see Fig. 3 and Table 1 of Minami et al., 2017). In other word, we need a better velocity field to 
improve the tsunami magnetic simulation significantly. 

 By inspection of the modified simulation, the initial rise in Bh for both events may be 
present. However, the actual initial rise in the Samoa event can be as small as -0.012 nT that is 
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smaller than the background noise. On the other hand, in the Chile tsunami we can confirm the 
initial rise in observed Bh (indicated by arrow in Fig. 8). However, the initial rise in the 
observation, in turn, is much larger than the simulation. Compared with the converted Bz, it may 
be because the simulation could not fit the amplitude of the small dual peak.  

From the comparison of modified simulation with the converted Bz and Bh, it can be 
seen that the simulation agrees with the converted magnetic field fairly well. The first arrival of 
simulation has moderate agreement with the converted results in the amplitude and phase in 
Samoa event. Also, the simulated Bz of the Chile tsunami fits the converted Bz well. It means 
that the simulation results were in line with the 2-D analytical solution at least for the Samoa 
tsunami.  

Finally, we compared the modified magnetic simulation with the observation at the 
remaining SOC sites (SOC1~6, 9) for both events in Fig. 9. It can be seen that the modified 
simulation seems to fit the observation well. Also, in 2009 Samoa tsunami, a small initial rise 
may present in the observation of SOC2 and 3, while other SOC sites do not show such 
signatures. As for the 2010 Chile tsunami, the initial rises are too complicated to identify. In 
general, it is difficult to separate the initial rise of a tsunami preceded by a complex peak. 
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Figure 9. Comparison of simulation and observation for the tsunami magnetic field at SOC1~6, 
9 at the time of the 2009 Samoa tsunami (upper) and the 2010 Chile tsunami (lower). The 
observed tsunami magnetic field have passed through the 3~30-minute and 3~45-minute band-
pass filter for the Samoa and Chile tsunamis respectively, and the external field has been 
subtracted. Also, the simulated tsunami magnetic field have divided by 2.65 and delayed by 99s 
for the Samoa tsunami, and divided by 2.65 and delayed by 99s for the Chile tsunami. 
 

5 Discussion and Conclusion 
Presence of the phase lead in tsunami Bz and the initial rise in Bh has been shown by the 

simulation in previous studies. However, few have been confirmed by the observation so far. In 
this study, we examined the phase lead of tsunami Bz as well as the initial rise in tsunami Bh 
using the combination of observation and simulation of both tsunami sea level change and 
magnetic field at the times of the 2009 Samoa and 2010 Chile earthquakes using the TIARES 
dataset. 

First, the tsunami signals were successfully extracted from the observed ocean bottom 
pressure changes and magnetic fields of both 2009 Samoa and 2010 Chile tsunamis in spite of 
the very large epicentral distances. The phase of tsunami Bz always has phase leads of 90º with 
respect to Bh, which is in line with the observation of other tsunami events (Toh et al., 2011, 
Minami et al., 2017). Also, the converted sea level changes using the observed tsunami magnetic 
field are agree with the observed sea level change very well. It is evident that the tsunami 
magnetic signals on the seafloor were identified clearly at each SOC station, even though the 
amplitudes of tsunami magnetic field were small, 0.2 nT and 0.3 nT for the 2009 Samoa and 
2010 Chile tsunamis, respectively. 

The phase lead of tsunami Bz and the initial rise of tsunami Bh were studied using the 
unique simultaneous observation of both ocean bottom pressure and magnetic field. Based on the 
comparison of the observed sea level change with the observed magnetic field, we confirmed 
that tsunami Bz has its phase lead with respect to the sea level change, which is in line with the 
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prediction by Minami et al. (2015). This means that we may be able to exploit the significant 
phase lead of tsunami Bz for the purpose of the tsunami early warning. We also showed that the 
phase lead of tsunami Bz w.r.t. the sea level change in each main frequency components are in 
harmony with the leading time of each component using the analytical solution described in 
Minami et al. (2021). Our results indicated that the value of the phase lead is almost identical 
over the tsunami period band, while the leading time gets larger linearly against the tsunami 
periods. It is noteworthy that this study investigated the tsunami magnetic field in the averaged 
4800m water depth, which is classified as “Self-induction dominant case” and “Intermediate 
case” according to Minami et al. (2015). On the other hand, the behavior of tsunami magnetic 
field in shallow water, named “diffusion dominant case” in Minami et al. (2015), is still not 
confirmed and needs more investigation. 

On the other hand, the initial rise in the tsunami Bh was not detected clearly in the 
observation of both tsunami events. In the 2009 Samoa tsunami, the very first wave of tsunami 
was too small to detect an observable initial rise in Bh, although our 3-D time domain magnetic 
simulation predicted its presence. As for the 2010 Chile tsunami, we probably captured the initial 
rise because a small ‘retreat’ in Bh is recognizable. However, the first wave of the 2010 Chile 
tsunami was rather complicated to identify the initial rise clearly using the first arrival. These 
results suggest that further study on the initial rise in tsunami Bh is necessary in order to apply it 
to tsunami early warning. 

Precision of the conversion equations of tsunami magnetic field to sea level change (and 
vice versa) by Minami et al. (2021) was also verified using the simultaneous data of different 
physical quantities. Comparison of the observed and converted sea level changes indicates that 
the equations can precisely predict the tsunami sea level change based on the known tsunami Bz 
or Bh (and vice versa), provided that the ocean depth as well as the sub-seafloor electrical 
structure is known. It also implies that the tsunami magnetic field is equivalent to the tsunami sea 
level change and useful in tsunami research such as the earthquake fault model inversion, since 
the tsunami Bz and Bh are proved to be very good proxies of the sea level change by this study. 
We created a dataset of sea level changes converted from the observed tsunami magnetic field in 
the TIARES area (see Data Availability Statement). However, there still exists discrepancy 
between the converted and observed magnetic field in the 2010 Chile tsunami due mainly to the 
3-D effect of the tsunami in concern. 

Using the 3-D tsunami magnetic field simulations in time domain including the tsunami 
velocity field simulation, the presence of initial rise and the 3-D effect were investigated in the 
magnetic field of both tsunami events. The tsunami velocity fields were calculated from the fault 
model of Firtz et al. (2011) and Yoshimoto et al. (2016) for Samoa and Chile, respectively. 
Comparison of the simulated and observed tsunami sea level change indicated that simulated 
velocities based on the given source models have too large amplitudes around the TIARES area 
to explain the observed tsunami magnetic fields. Very good fits of the observed magnetic signal 
to the converted magnetic signal described in Section 3 encouraged us to calculate the best-fit 
magnetic time-series to the observation from the simulated time-series by changing two 
parameters, i.e., the amplitude gain and the time shift. The results show that the major source of 
simulation error consists in the inaccurate velocity simulation, which may also explain the reason 
for the discrepancy between the simulated magnetic field and the observation in previous studies 
(Zhang et al., 2014; Minami et al., 2017). Better source fault models using the converted tsunami 
sea level change in the TIARES area are definitely in need here. Further studies in search for the 
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best tsunami simulation such as more precise dispersion calculation, better earthquake source 
models are essential to explain the TIARES observation, which is, unfortunately, beyond the 
scope of the present paper. 

The 3-D effects of both tsunamis were studied by our 3-D magnetic field simulation as 
well. The converted sea level change fit the observation well for the Samoa event, while the 
converted amplitude is significantly smaller than the observation for the Chile event. It means 
that the 3-D effect is not very large in the case of the 2009 Samoa tsunami but may be significant 
in the 2010 Chile tsunami. It should be noted that our velocity simulation is 2-D in the sense that 
JAGURS outputs horizontal velocity components alone. According to Minami et al. (2021), the 
vertical velocity component may be able to produce small Bz (and Bh) even in the equatorial 
region, which happens only when the tsunami propagates largely in a direction parallel to the 
horizontal component of the geomagnetic main field. However, both tsunami events treated here 
are mainly traveled in the east-west direction, which is perpendicular to the direction of the 
background geomagnetic main field around the TIARES area. It, therefore, is unlikely that 
contribution of the vertical velocity component amends results of this paper drastically. In 
anyways, better tsunami source models are still in need for achieving better fits to the observed 
tsunami magnetic fields. 

 

Data Availability Statement 
The observed data of magnetic field and pressure in the TIARES area used in this study 

was provided by the TIARES experiment (Suetsugu et al., 2012). The magnetic field data at PPT 
station on Tahiti Island can be download in the Word Data Center for Geomagnetism, Kyoto 
(http://wdc.kugi.kyoto-u.ac.jp/catmap/obs.html). The observed tsunami sea level change and 
magnetic field which extracted from the TIARES data can be accessed from 
(https://doi.org/10.5281/zenodo.5111644). In terms of the simulation of the 2009 Samoa and 
2010 Chile tsunamis, the source models of these earthquakes are the ‘Mega 1’ fault model of 
Fritz et al. (2011) and the ‘all DART only’ fault model of Yoshimoto et al. (2016), respectively. 
JAGURS, the tsunami velocity field simulation software used in this study are available from 
Baba et al., (2017). The time-domain tsunami magnetic field simulation code used in this study 
was provided by Minami et al., (2017). The simulated tsunami sea level change and magnetic 
field of these two events which shown in this paper can be accessed from 
(https://doi.org/10.5281/zenodo.5111644). In addition, we provide a dataset of sea level changes 
converted from the observed tsunami magnetic field in the TIARES area in the Zenodo 
repository (https://doi.org/10.5281/zenodo.5111644). 
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