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Abstract

Four-dimensional variational (4D-Var) data assimilation is an effective method for obtaining physically consistent time-varying

states. In this study, a method using a neural network surrogate model obtained by machine learning is proposed to solve one of

the most serious challenges in 4D-Var: to construct an adjoint model. The feasibility of the proposed method was demonstrated

by a 4D-Var experiment using a surrogate model for the Lorenz 96 model. In the method, several effective procedures have

been proposed to obtain an accurate surrogate model and the assimilated initial conditions, including two-stage learning (i.e.,

single- and multi-step learning) of neural networks, limiting the target states of the surrogate model to a small subspace of the

state phase space, and updating the surrogate model during 4D-Var iterations.
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Abstract6

Four-dimensional variational (4D-Var) data assimilation is an effective method7

for obtaining physically consistent time-varying states. In this study, a8

method using a neural network surrogate model obtained by machine learn-9

ing is proposed to solve one of the most serious challenges in 4D-Var: to10

construct an adjoint model. The feasibility of the proposed method was11

demonstrated by a 4D-Var experiment using a surrogate model for the12

Lorenz 96 model. In the method, several effective procedures have been13

proposed to obtain an accurate surrogate model and the assimilated initial14

conditions, including two-stage learning (i.e., single- and multi-step learn-15

ing) of neural networks, limiting the target states of the surrogate model16

to a small subspace of the state phase space, and updating the surrogate17

model during 4D-Var iterations.18
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1. Introduction20

Optimal initial conditions are crucial for accurate deterministic numeri-21

cal simulations. Data assimilation is widely used to obtain initial conditions,22

e.g., it is an essential component of numerical weather forecasting systems.23

Four-dimensional variational (4D-Var) data assimilation has the advantage24

of obtaining a time evolution consistent with model physics. This is im-25

portant, especially when obtaining four-dimensional analysis data of target26

phenomena to determine its mechanism. The 4D-Var method requires an27

adjoint model of the simulation model for the backward calculation of a28

cost function’s gradient with respect to the initial conditions. Building the29

adjoint model and updating it with the simulation model is costly, which is30

an important challenge of the 4D-Var method. Despite this disadvantage,31

the method has been employed in several operational numerical weather32

forecasting systems. Research-purpose simulation models tend to have a33

shorter lifetime than operational models, and usually have multiple simula-34

tion paths (several different schemes) for individual physical processes, from35

which users can choose according to their objectives. Therefore, developing36

and managing adjoint models of research models may require more effort37

than operational models.38
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Machine learning techniques have developed rapidly and are used in an39

increasing range of domains. Data assimilation and machine learning have40

some similarities (Geer 2021); both minimize error (the cost or loss function)41

by optimizing target quantities, such as the state vector (data assimilation)42

and network parameters (machine learning). In neural network training,43

network parameters are updated according to their loss function’s gradient.44

To obtain the gradient, a backward propagation algorithm is generally used.45

Recently, excellent machine learning frameworks, such as Pytorch (Paszke46

et al. 2019) and TensorFlow (Abadi et al. 2015), have been developed,47

which can easily compute gradients. Note that the procedure for learning48

network parameters is the same as that for updating the initial conditions49

with the adjoint model in 4D-Var. Therefore, once the forward simulation50

model is constructed, it is not necessary to manually build its adjoint model;51

the backward calculation of the gradient with respect to the initial condi-52

tions can be performed using the functionality of the framework. However,53

physics-based simulation models built using the framework generally require54

more computational resources, such as CPU time and memory usage, than55

conventional models written in C or Fortran, which may not be practical.56

Replicating physics-based simulations with a neural network surrogate57

model is a possible solution. Surrogate models are not based on physical58

laws (e.g., governing equations), but on statistical relationships between the59
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initial conditions and simulation results (Grzeszczuk et al. 1998; Dueben60

and Bauer 2018). Surrogate models are built by machine learning on inputs61

and outputs of physics-based simulations and can be designed to be compu-62

tationally less expensive. The functionality of machine learning framework63

can be used to calculate the cost function’s gradient of the neural network64

surrogate model with respect to the initial conditions. Even without the65

functionality, building a adjoint model of the neural network model man-66

ually is much easier than building a physics-based adjoint model because67

neural networks generally consist of a limited number of simple operations,68

such as weighted sums, and only a few nonlinear activation functions. Us-69

ing a surrogate model’s adjoint model may make 4D-Var data assimilation70

easier.71

There are two major concerns with using surrogate models in 4D-Var72

data assimilation. (1) Can a surrogate model be obtained that provides73

sufficiently accurate simulation results? For systems with many degrees of74

freedom (e.g., atmospheric system), surrogate models must also have suffi-75

cient degrees of freedom (Dueben and Bauer 2018). The greater the degrees76

of freedom, the more difficult it is to build a surrogate model. Limiting the77

target space of the surrogate model in the phase space to a small subspace78

around the target state, building a surrogate model is expected to be more79

easier than when targeting the entire space. (2) Can the gradients be ac-80
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curate enough to improve the initial conditions? Even if a surrogate model81

providing accurate forward computations can be obtained, its Jacobian may82

not be accurate (Chevallier and Mahfouf 2001; Aires et al. 2004). For exam-83

ple, if the resulting network overfits the training data, the gradients may be84

unrealistic, even if the results of the forward simulation appear reasonable.85

Several studies have proposed a similar concept using machine learning86

for data assimilation. Brajard et al. (2020) combined data assimilation and87

machine learning without a physics-based model; the amount of training88

data was capped because they were limited to the observation data. This89

limitation can make program overfitting more serious. Hatfield et al. (2021)90

used an adjoint model obtained by machine learning for 4D-Var data assimi-91

lation. Training data were generated using simulations with a physics-based92

model and there was no limit to the amount of training data in principle.93

They demonstrated 4D-Var by replacing a parameterization scheme in the94

general circulation model with a neural network. The scheme was only95

a part of the model, and most parts of the adjoint model were derived96

manually, as in the conventional method. Nonnenmacher and Greenberg97

(2021) replaced a whole physics-based model with a neural network model,98

which output tendencies of the prognostic variables and was trained with99

the output tendencies of the physics-based model. For time integration, a100

conventional method, such as the Runge-Kutta method, was used. This101
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scheme has advantages; tendencies, which can help understand the mecha-102

nisms of phenomena, and states after the arbitrary integration period can103

be obtained. However, even if the tendencies only have a tiny error, the104

error may accumulate (grow) during time integration, since the network is105

trained by instantaneous data. Alternatively, the neural network model can106

be designed to output a state after a certain time integration period. In this107

case, the model could be trained so that the error grown in a finite time108

integration period is reduced.109

This study investigates the feasibility of using a neural network surrogate110

model to improve the initial conditions in a 4D-Var data assimilation, where111

the surrogate model is trained by simulation results from a physics-based112

model and outputs a state after certain time period. A simple dynamical113

system was used to study the feasibility. Several physics-based simulations114

were performed, then a neural network surrogate model was built using115

the simulations’ output data. Efficient ways to train the network were also116

investigated. Using this surrogate model, a 4D-Var data assimilation exper-117

iment was conducted, and a promising method was proposed to efficiently118

improve the initial conditions during the assimilation iteration.119
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2. Model and Methodologies120

2.1 Lorenz 96 model121

The Lorenz 96 model is a dynamical system model (Lorenz 1996):

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + F, i = 1, 2, · · · I, (1)

where I is the number of grid points. The first, second, and last terms122

on the right-hand side correspond to the advection, diffusion, and forcing123

terms, respectively. The system exhibits chaotic behavior for a range of F124

values (Lorenz and Emanuel 1998).125

Physics-based simulations were performed using the fourth-order Runge-126

Kutta scheme with a time step of ∆t = 0.01. I and F were set to 40 and 8.0,127

respectively, at which the system was chaotic. Periodic boundary conditions128

were employed, and the initial conditions were xi = F+εi, where ε is a small129

random normally distributed perturbation with a standard deviation of 0.01.130

After a spin-up of 5,100 integration time steps, time integration of 100131

steps from t = 0 to 1 was performed (hereafter referred to as the reference).132

Then, the ensembles were generated by adding random normally distributed133

perturbations, with a standard deviation of 0.1, to the reference state after134

the first spin-up 5,000 steps. After 100 integration steps for the second135

spin-up, 100 time-integration steps were performed for each ensemble.136

The ensemble average of the mean squared error (MSE) from the refer-137
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ence grows exponentially, with a growth rate (Lyapunov exponent) of ap-138

proximately 2.14. The states were output every five steps (∆output = 0.05),139

and there were 21 outputs of 40-dimensional vectors x, including the ini-140

tial state, for each ensemble. These were used to train the neural network141

surrogate model.142

The states of these ensembles lie within a limited region (a subspace)143

around the reference in the state phase space (hereafter referred to as the144

localized ensemble set). To examine the effect of extent of the training145

data’s state in the phase space on the surrogate model trained from the146

data, another ensemble set was generated with a second spin-up of 1,000147

steps (hereafter referred to as the spread ensemble set); the second spin-up148

was 100 steps for the localized ensemble set. The longer spin-up resulted in149

a wider spread; the states of the spread ensemble set are widely spread in150

the phase space with a large variance that is comparable in magnitude to151

the variance of a very long time series. The MSE of the spread ensemble152

set is approximately 24–29 throughout the integration period, whereas the153

MSE of the localized ensemble set is approximately 0.27 and 2.30 at the154

beginning and end of the integration period, respectively.155
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2.2 Surrogate model156

Using the state vectors x of the physics-based simulation as both input157

and target data for training, a neural network surrogate model replicat-158

ing the physics-based simulation was built. The calculations in the neural159

network were conducted using Pytorch.160

a. Network architecture161

In the physics-based model, the state at the next time step depends162

only on that of the previous step. To emulate this behavior, the network163

was designed as a recurrent neural network; an identical network module164

is connected recurrently, and each module corresponds to a time interval165

of 0.05 (Figure 1a). Each module consists of a stacked hourglass network166

(Newell et al. 2016) of two stages: down-sampling and up-sampling (Fig-167

ure 1b). Through these stages, multiple horizontal scales are considered.168

In down-sampling, the grid size is halved at each step by the max-pooling169

layer; there are four steps and the grid size at each step is 40, 20, 10, or170

5. In up-sampling, the grid size is doubled at each step, from 5 to 40, by171

the max-unpooling layer. The output of each down-sampling step is added172

to the input of the corresponding up-sampling step via skip connections.173

Each step consists of convolution layers, batch normalization layers, and174

rectified linear unit activation layers. In the convolution layers, the values175
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of neighboring grid points interact, and the convolution and following ac-176

tivation layers are expected to replicate advection. The convolution kernel177

size for the hourglass network is three, and periodic boundary padding is178

applied before the convolution. Before the hourglass network, the number179

of channels is increased from one to four by convolution with a kernel size180

of one, and after the network, the number of channels is reduced from four181

to one.182 Fig. 1

b. Training and evaluation183

Training the neural network was divided into two stages: single-step and

multi-step learning. In single-step learning, a non-recurrent single network

module was trained. The training data input were x(t) and the target data

were x(t+ 0.05), where t = 0, 0.05, · · · , 0.95. The loss function l1 is defined

as

l1 =
1

I
|f(x(t))− x(t+ 0.05)|2 , (2)

where f is the operator corresponding to the single network module. With184

the 21-step output dataset obtained in each ensemble run, 20 training input-185

output pairs were available; from M ensemble runs, a training dataset of186

20M pairs could be used.187

In the multi-step learning process, the input data were x(t) and the tar-

get data were (x(t+0.05),x(t+0.1), · · · ,x(t+0.5)), where t = 0, 0.05, · · · , 0.5.
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Each ensemble run contained 11 training data pairs, and a total of 11M

training data pairs could be used from M ensemble runs. The loss function

l10 is defined as

l10 =
1

10I

10∑
n=1

|fn(x(t))− x(t+ 0.05n)|2 . (3)

The network parameters obtained by single-step learning were used as the188

initial parameters for multi-step learning. In the multi-step learning process,189

the dropout layers were disabled, and the mean and standard deviations in190

the batch normalization layers were fixed to the values obtained in single-191

step learning.192

For both the single- and multi-step learning processes, the error of the193

trained network was evaluated by the ensemble average of their loss func-194

tions, calculated using the evaluation data of another ensemble dataset of195

100 runs, which was generated in the same manner as the training datasets,196

with the same number of spin-up steps. The batch size was swept and de-197

termined such that the error of the network was minimized. The size of the198

training dataset, which is proportional to the ensemble size, was also var-199

ied for sensitivity testing. The Adam optimization algorithm (Kingma and200

Ba 2014) was used to update the network parameters. The initial learning201

rates were set to 10−5 and 10−6 times batch size for single- and multi-step202

learning, respectively, with a decay every 1,000 epochs by a factor of 0.99.203
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2.3 4D-Var data assimilation204

In the 4D-Var data assimilation experiment, the neural network surro-

gate model and its adjoint model were used for the forward and backward

computations, respectively. The time window for assimilation was 0.5, and

the observed data were assimilated at intervals of 0.05, for 10 time steps.

Since the non-dimensional time unit in this system is roughly equivalent to

5 days (Lorenz 1996), the time window corresponds to 2–3 days. The cost

function Js was defined as follows:

Js(x(0)) =
1

2
(x− xb)

T B−1 (x− xb)

+
1

2

10∑
n=1

[H(fn(x(0)))− y(0.05n)]T R−1 [H(fn(x(0)))− y(0.05n)] ,

(4)

where xb is the first guess for x(0), y(t) is the observed state at time t, B is205

the background covariance matrix, R is the observation covariance matrix,206

and H is the observation operator. The first guess was the initial state of207

one of the ensemble runs in Section 2.1. B was calculated from the 1,000208

ensembles, and the mean of the diagonal components was 0.27. Observa-209

tions were generated to have a normally distributed error with a standard210

deviation of 0.1; the matrix R is diagonal and its diagonal components were211

0.01. The observed data were located at 10 random grids, chosen from the212

40 grids: i = 3, 12, 17, 20, 25, 26, 27, 31, 32, and 33. The operator H reveals213
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the data at these locations.214

The gradient of Js for x(0) was obtained using the surrogate model’s215

adjoint model; the gradient was calculated automatically by Pytorch. The216

gradient was then used to update x(0). A one-dimensional golden-section217

search procedure (Kiefer 1953) was used for the update. x(0) was updated218

iteratively to reduce the cost function, and the maximum iteration count219

was 1,000. At each of the K iterations (hereafter referred to as the update220

interval), the physics-based simulation was performed using the latest x(0),221

and the network parameters of the surrogate model were updated using the222

simulation results in the same way as multi-step learning.223

To evaluate the assimilated initial state, an extended forecast simulation224

was conducted from the initial state using the physics-based model and the225

root mean squared error (RMSE) of the forecast state from the reference226

state at t = 1 was calculated. The learning rate in the surrogate model227

update swept between 10−5, 3 × 10−5, and 10−4, and was determined such228

that the RMSE improvement was maximized.229

The 4D-Var experiment was conducted with ten different first guesses230

for each parameter. In the analysis, the RMSE was averaged over the ten231

results.232
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3. Results233

3.1 Obtaining the surrogate model234

First, the neural network was trained using single-step learning. The235

error of the network depends on the size of the training data; the larger236

the size of the dataset, the smaller the error is (Figure 2a). The error is237

O(10−4)–O(10−2), which is much smaller than the O(10) background vari-238

ance of x. The batch sizes with the smallest errors were 125, 250, 2000,239

4000, and 4000 for ensemble sizes of 50, 100, 200, 400, and 800, respec-240

tively. Note that the ensemble size is proportional to the training dataset241

size. Then, using the surrogate model, a time integration experiment for242

t = 0–1 was conducted, i.e., the network obtained above was repeated 20243

times. This time integration was calculated from 1,000 different generated244

initial states, as in Section 2.1. The accuracy of the surrogate model was245

evaluated by MSE from the physics-based model solution from the same246

initial states. Note that the MSE is only due to model error, since the ini-247

tial conditions have no error. Figure 2c shows the temporal evolution of the248

ensemble average of the surrogate model’s MSEs obtained from an ensemble249

set of M = 800. The MSE grows over time, with the growth rate initially250

gradually decreasing and then remaining nearly constant. Even later, the251

growth rate is still larger than the growth rate of the physical growth mode252

14



in Section 2.1.253 Fig. 2

Next, multi-step learning was performed. Figure 2b shows the multi-254

step learning network error. Because the discrepancy between the surrogate255

model and the physics-based simulations tends to increase with time, the256

magnitude of the network error is larger than that in single-step learning.257

The error depends on the ensemble size, as in the case of single-step learning,258

but the dependency on batch size is smaller than in single-step learning. Us-259

ing the multi-step learning surrogate model, time integration was performed260

as for single-step learning. The early growth rate of the error was improved261

compared to that of the single-step learning model (Figure 2c). As a result,262

the error at the end of the timespan is approximately 60% of that obtained263

by the single-step learning model. Conversely, the error after the first step264

(t = 0.05) is larger than that of the single-step learning model. This can be265

explained as follows. In single-step learning, the network learns such that266

the error after single-step integration is small, whereas in the multi-step267

learning process, the network learns such that the average error of 10 steps268

is small. This means that unstable modes with large Jacobian eigenvalues269

become smaller in single-step learning, and unstable modes with large sin-270

gular values become smaller in the multi-step learning process. The fastest271

growing mode in terms of instantaneous temporal difference is represented272

by the eigenvector and the mode over a finite-time interval is represented273
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by the singular vector. This is consistent with the expectation of Brenowitz274

and Bretherton (2018), that a multiple-time-step loss function penalizes a275

growing unstable mode.276

To evaluate the efficacy of the two-stage learning process (single- and277

multi-step learning), one-stage learning (multi-step learning only) was also278

conducted. Randomly generated initial network parameters were used for279

multi-step learning. In this case, the network did not learn well; the loss280

function did not decrease significantly during the epoch iteration and sat-281

urated at the level of O(1). As a result, the error of the surrogate model282

obtained by one-stage learning was much larger than that obtained by two-283

stage learning. This is due to the total number of layers in the network284

being too deep. This may be solved by a more appropriate network design.285

Regardless of the case, the network was successfully trained by two-stage286

learning. This suggests that two-stage learning is an efficient way to build287

surrogate models.288

To investigate the effect on the accuracy of the surrogate model by lim-289

iting the training data’s state to a subspace of the phase space, the same290

training was performed using the spread ensemble set generated with the291

longer second spin-up of 1,000 steps, instead of the localized ensemble set292

of the 100-step spin-up. The errors of the networks obtained using the293

spread ensemble set were 0.40, 0.20, 0.088, 0.044, and 0.018 for ensemble294
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sizes of M = 50, 100, 200, 400, and 800, respectively. These errors were295

approximately 6.5 to 10 times larger than the corresponding errors with296

the localized ensemble set (0.045, 0.024, 0.010, 0.0041, and 0.0028, respec-297

tively). This shows that limiting the state of the target space is effective in298

increasing the model’s accuracy. A surrogate model targeting wider space299

may require larger training data size and/or more complex network archi-300

tecture. This suggests that the difficulty of building a surrogate model can301

be reduced by limiting the target states to a small phase subspace.302

3.2 4D-Var experiment303

A 4D-Var data assimilation experiment was conducted using the neu-304

ral network surrogate model. Figures 3a and 3b show the evolution of the305

cost function Js with the number of iterations. As the number of iterations306

increases, the cost generally decreases. The same cost function using the307

physics-based model was also calculated (Jp). Js and Jp were calculated308

from the time series integrated from the same initial conditions. Jp is due309

to the errors in the initial state and observation, while Js is due to not310

only these errors, but also the model error. Jp is generally larger than Js,311

since the initial conditions have been updated so that Js decreases. Nev-312

ertheless, we see that Jp decreases with an increasing number of iterations.313

This indicates that 4D-Var data assimilation using an adjoint model of a314
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neural network surrogate model is effective. The cost is smaller for a larger315

ensemble size, which corresponds to a smaller error of the surrogate model,316

suggesting that the accuracy of the surrogate model affects the accuracy of317

the assimilation. Additionally, updating the surrogate model during 4D-318

Var iterations improved the cost. We observed large improvements in the319

cost when the network was updated, e.g., at 100 iterations for the case of320

M = 200 and K = 100. We also observed that the smaller the update321

interval, the smaller the cost.322 Fig. 3

To evaluate the accuracy of the assimilated initial conditions, the ex-323

tended forecasts’ RMSE at t = 1 from the assimilated initial states after324

1,000 iterations was examined. Figure 4a shows the RMSE averaged over325

10 samples; it was approximately 0.42 for large ensemble-size cases, and326

1.59 for cases from the first guess. This indicates that assimilation using327

the surrogate model improved the accuracy of the initial state. The depen-328

dency of the RMSE on the ensemble size and update interval shows similar329

characteristics to those of the cost; the RMSE is likely to be small for large330

ensemble sizes and smaller update intervals. As a reference, a 4D-Var ex-331

periment with a manually constructed adjoint model of the physics-based332

model was also conducted. The forecast’s RMSE from the assimilated ini-333

tial state was 0.39. This shows that assimilation using the surrogate model334

can achieve similar accuracy to that using conventionally manually obtained335
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adjoint model of the physics-based model.336 Fig. 4

4. Conclusions337

A 4D-Var assimilation method was proposed using an adjoint model of338

a neural network surrogate model. Additionally, several procedures were339

proposed to efficiently obtain an accurate surrogate model and assimilated340

initial conditions. As a feasibility study, a surrogate model was constructed341

and a 4D-Var assimilation experiment was conducted using the Lorenz 96342

model.343

Two-stage learning was efficient for obtaining an accurate surrogate344

model. In the first stage, the network was trained from a training dataset,345

with target data one step forward from the input data, obtained using346

the physics-based model (single-step learning). In the next stage, the net-347

work was trained using time-series data of multiple steps as the target data348

(multi-step learning). In this stage, the network parameter obtained in the349

first stage was used as the initial value. It is found that the neural network350

model trained by time-sequence data with a longer time period has better351

accuracy than that with shorter period. The neural network model which352

output tendencies, as proposed by Nonnenmacher and Greenberg (2021), is353

thought to have the same problem with models trained by shorter period354

data. We found that limiting the target states of the surrogate model to355
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a state phase subspace around the target case was efficient for building an356

accurate surrogate model.357

The 4D-Var assimilation experiment showed that the initial conditions358

were improved by assimilation by using the adjoint model of the surrogate359

model. It was also found that updating the surrogate model during the360

4D-Var iterations was effective in improving the accuracy of the initial con-361

ditions. Even if the accuracy of the initial surrogate model is not very high362

(e.g., M = 50), accurate initial conditions could be obtained with frequent363

updates (small K) of the surrogate model during 4D-Var iterations. In gen-364

eral, more accurate data contribute to better training in machine learning.365

Therefore, learning during 4D-Var iterations is likely to be more efficient366

than the earlier two-stage learning because the training data used for up-367

dating the network are more accurate due to better initial conditions. On368

the other hand, frequent updates require large computational resources; up-369

dating the network requires physics-based simulation and training with the370

simulation data. The optimal values of the ensemble size and update in-371

terval must be determined by balancing the computational costs for each372

stage of training and assimilation.373

Assimilation has an affinity for limiting states in the phase space to build374

a surrogate model. The states in a finite assimilation window generally375

occupy only a small subspace and, therefore, a surrogate model that covers376
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all possible states is not needed; we can focus on the subspace around the377

target state to be assimilated. However, the surrogate model needs to be378

rebuilt for different cases. The learning speed of the network in other cases379

can be significantly improved by using the network obtained in one case as380

the initial parameters, i.e., transfer learning.381

As simulation models become more sophisticated, they become more382

complex, which requires more effort from researchers. The effective use383

of data science techniques will become increasingly important for various384

aspects of simulation research.385
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Fig. 1. Surrogate model network architecture: (a) recurrent network mod-
ules and (b) details of the hourglass network. “Conv,” “BN,” “ReLU,”
and “Dropout” indicate convolution, batch normalization, rectified lin-
ear unit, and dropout layers, respectively. The number following the
convolution indicates the kernel size. The number above each box in
(b) is the channel size times the grid (neuron) size.
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Fig. 2. The error of the network obtained by (a) the single- and (b) multi-
step learning, and (c) the temporal evolution of the error of the surro-
gate model obtained with 800 ensembles by (red) single-step and (blue)
multi-step learning. The symbols and colors in (a) and (b) represent
the batch size normalized by the ensemble size. The broken line in (c)
represents the error growth rate of the physical growth mode.
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Fig. 3. The temporal evolution of the cost as a function of the iteration count
in the 4D-Var assimilation with (a) the update interval K = 10 and
(b) the ensemble size M = 200. The solid and broken lines represent
Jp and Js, respectively.
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