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Abstract

Discontinuities in flood frequency curves, here referred to as flood divides, hinder the estimation of rare floods. In this paper

we develop an automated methodology for the detection of flood divides from observations and models, and apply it to a large

set of case studies in the USA and Germany. We then assess the reliability of the PHysically-based Extreme Value (PHEV)

distribution of river flows to identify catchments that might experience a flood divide, validating its results against observations.

This tool is suitable for the identification of flood divides, with a high correct detection rate especially in the autumn and summer

seasons. It instead tends to indicate the emergence of flood divides not visible in the observations in spring and winter. We

examine possible reasons of this behavior, finding them in the typical streamflow dynamics of the concerned case studies. By

means of a controlled experiment we also re-evaluate detection capabilities of observations and PHEV after discarding the

highest maxima for all cases where both empirical and theoretical estimates display flood divides. PHEV mostly confirms its

capability to detect a flood divide as observed in the original flood frequency curve, even if the shortened one does not show

it. These findings prove its reliability for the identification of flood divides and set the premises for a deeper investigation of

physiographic and hydroclimatic attributes controlling the emergence of discontinuities in flood frequency curves.
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Abstract14

Discontinuities in flood frequency curves, here referred to as flood divides, hinder the esti-15

mation of rare floods. In this paper we develop an automated methodology for the detection16

of flood divides from observations and models, and apply it to a large set of case studies17

in the USA and Germany. We then assess the reliability of the PHysically-based Extreme18

Value (PHEV) distribution of river flows to identify catchments that might experience a19

flood divide, validating its results against observations. This tool is suitable for the iden-20

tification of flood divides, with a high correct detection rate especially in the autumn and21

summer seasons. It instead tends to indicate the emergence of flood divides not visible22

in the observations in spring and winter. We examine possible reasons of this behavior,23

finding them in the typical streamflow dynamics of the concerned case studies. By means24

of a controlled experiment we also re-evaluate detection capabilities of observations and25

PHEV after discarding the highest maxima for all cases where both empirical and theoret-26

ical estimates display flood divides. PHEV mostly confirms its capability to detect a flood27

divide as observed in the original flood frequency curve, even if the shortened one does not28

show it. These findings prove its reliability for the identification of flood divides and set the29

premises for a deeper investigation of physiographic and hydroclimatic attributes controlling30

the emergence of discontinuities in flood frequency curves.31

1 Introduction32

Despite considerable efforts to achieve reliable estimation of rare floods, these events are33

still among the most common natural disasters (Wallemacq & House, 2018). The evaluation34

of their hazard is however crucial for several applications, including the design of hydraulic35

structures, risk planning and mitigation, and computation of premiums in the insurance36

industry. Appraisal of the flood hazard is especially difficult when the magnitude of the37

rarer floods can take values which are several times to orders of magnitude larger than38

commonly observed floods, resulting in a marked uprise of the flood frequency curve beyond39

certain return periods (Rogger et al., 2012; Smith et al., 2018).40

Cognitive biases often lead to downplay the occurrence of such extreme events (B. Merz41

et al., 2015, 2021), although the scientific literature repeatedly signalled the pervasiveness of42

these behaviors terming them in various ways. In fact, heavy-tailed distributions of floods43

(Farquharson et al., 1992; Bernardara et al., 2008; Villarini & Smith, 2010), inversions of44
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concavity and step changes in flood magnitude-frequency curves (Rogger et al., 2012; Guo45

et al., 2014; Basso et al., 2016) and large values of the ratios between the maximum flood of46

record and the sample flood with a specified recurrence time (Smith et al., 2018) and between47

empirical high flow percentiles (Mushtaq et al., 2022) are all manifestations of a marked48

increase of the magnitude of the rarer floods highlighted by means of different approaches.49

To further stress the common nature of all these phenomena, in this study we favor none50

of the previous locutions and instead label them as flood divides. The term was chosen to51

highlight the existence of a discharge threshold which marks the rise of progressively larger52

floods (red square in Figure 1d) and thus distinguishes between common and increasingly53

extreme floods that may occur in river basins.54

Rogger et al. (2012) investigated marked uprises (i.e., discontinuities in the slope) of55

flood frequency curves, which they called step changes, by leveraging information collected56

from field surveys in two small alpine catchments to calibrate a distributed deterministic57

rainfall-runoff model. They suggested that step changes occur when a threshold of the58

catchment storage capacity is exceeded, and performed a synthetic experiment (Rogger et al.,59

2013) to examine the effect of catchment storage thresholds and combined multiple controls60

(e.g., the temporal variability of antecedent soil storage and the size of the saturated regions)61

on the return period of the step change. They also highlighted important implications of the62

presence or absence of flood divides for estimation and design purposes, further stressing the63

need for a robust method to identify their possible occurrence. In fact, misidentifying the64

presence of flood divides may either lead to overestimation of rare floods (if large recorded65

outliers are considered in the analyses) or to their underestimation, in case events larger66

than the flood divide were not yet recorded or are regarded as outliers.67

Guo et al. (2014) and Basso et al. (2016) instead linked different shapes of flood fre-68

quency curves and a marked growth of the magnitude of the rarer floods to the catchment69

water balance. The former justified these features through the aridity index (i.e., the ra-70

tio between mean annual potential evaporation and precipitation, Budyko (1974)), showing71

that flood frequency curves characterized by increasing aridity index are steeper. The latter72

explained them by means of the persistency index (i.e., the ratio between mean catchment73

response time and runoff frequency, Botter et al. (2013)) and highlighted that the concavity74

of the flood frequency curve changes from downward to upward shifting from persistent to75

erratic regimes, thus causing the emergence of flood divides.76
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Smith et al. (2018) computed the ratio between the maximum flood of record and the77

sample 10-year flood for thousands of gauges across the USA, finding large values for a78

substantial amount of them. Different flood-generating processes (R. Merz & Blöschl, 2003;79

Berghuijs et al., 2014; Tarasova et al., 2020) or mixtures of flood event types (Hirschboeck,80

1987; Villarini & Smith, 2010; Smith et al., 2018) were indicated by other studies as possible81

causes of these marked increases of the magnitude of the rarer floods.82

Finally, a rather common approach to study this phenomenon consists in evaluating83

the shape parameter of Generalized Extreme Value distributions fitted to observed annual84

maximum series (Farquharson et al., 1992; Bernardara et al., 2008; Villarini & Smith,85

2010; Smith et al., 2018). Notwithstanding the drawbacks of such a parametric approach86

applied in association with limited records of annual maxima, these studies highlighted the87

ubiquitous occurrence of flood divides and flood distributions characterized by thick upper88

tails, as indicated by widespread positive values of the shape parameter. Moreover, Smith et89

al. (2018) showed that the values of the shape parameter significantly increase with longer90

data records. Their findings thus suggest that uprises of flood frequency curves may be the91

norm rather than rare conditions, pointing to the limited data record as the reason for the92

latter belief.93

Although former research hints at the ubiquitousness of flood divides in flood frequency94

curves and provide indications of their possible drivers, a quantitative methodology to iden-95

tify flood divides, which is robust to sampling uncertainty and tested in a large set of case96

studies, is still lacking. The relevance of our study is thus twofold: (i) we develop such a97

methodology for the detection of flood divides and evaluate their emergence across the US98

and Germany, in a large set of catchments with contrasting physio-climatic features; (ii) we99

examine the reliability of a process-based stochastic framework for the estimation of flood100

frequency curves to detect flood divides and infer their occurrence, benchmarking its results101

against observations.102
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2 Methodology and Data103

2.1 The Physically-based Extreme Value distribution of river flows104

2.1.1 Theoretical framework105

The PHysically-based Extreme Value (PHEV) distribution of river flows is a parsimo-106

nious mechanistic-stochastic formulation of flood frequency curves (Basso et al., 2016, 2021)107

that stems from a rigorous mathematical description of catchment-scale daily soil moisture108

and streamflow dynamics in river basins (Laio et al., 2001; Porporato et al., 2004; Botter et109

al., 2007). In this framework, daily precipitation is represented as a marked-Poisson process110

with frequency λP [T−1] and exponentially-distributed depths with average value α [L]. Soil111

moisture decreases due to evapotranspiration and is replenished by precipitation events that112

eventually trigger runoff pulses when an upper wetness threshold is crossed. These pulses,113

which feed water to a hydrologic storage, are also a Poisson process with frequency λ < λP114

[T−1] and an exponential distribution of magnitudes with mean α [L]. A non-linear (i.e.,115

power-law) storage-discharge relation with parameters a and K epitomizes the hydrological116

response of the catchment and encompasses the joint effect of different flow components117

(Brutsaert & Nieber, 1977; Basso, Schirmer, & Botter, 2015).118

The above-summarized mechanistic-stochastic description of runoff generation pro-119

cesses allows for expressing the probability distributions of daily flows (Botter et al., 2009)120

and peak flows (i.e., local flow peaks occurring as a result of streamflow-producing rainfall121

events) as a function of a few physically meaningful parameters (Basso et al., 2016). It also122

enables characterizing hydrologic regimes according to their typical streamflow dynamics,123

which are summarized by the persistency index (Botter et al., 2013). This is defined as124

the ratio between runoff frequency and the mean hydrograph recession rate, i.e., λ
K(αλ)a−1125

(Basso et al., 2016; Deal et al., 2018).126

An erratic regime (lower values of the persistency index), which is commonly found127

during dry seasons, very hot humid seasons with intense evapotranspiration or in fast re-128

sponding catchments, is characterized by periods between the arrival of runoff-producing129

rainfall events which are longer than the typical duration of flow pulses. Conversely, a per-130

sistent regime (higher values of the persistency index), typically occurring in cold-humid131

seasons and lowland catchments, is characterized by frequent rainfall events and a rather132

constant water supply to the catchment.133
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Considering that peak flows in a given reference period (e.g., a season) are Poisson134

distributed and postulating their independence yield the probability distribution of flow135

maxima (i.e., maximum values in a specified timespan). The return period is finally obtained136

as the inverse of the exceedance cumulative probability of flow maxima, thus providing an137

expression of the flood frequency curve which reads (Basso et al., 2016):138

Tr(q) =
1

1 − exp [−λτDj(q)]
(1)

where τ [T] is the duration in days of the reference period used in the analyses; Dj(q) =139 ∫∞
q
pj(q) dq is the exceedance cumulative probability of peak flows; pj is the probability140

density function of peak flows, pj(q) = Cq1−a exp( λq1−a

K(1−a) − q2−a

αK(2−a) ); α and λ are the141

aforementioned parameters describing Poisson-distributed runoff events, a and K are the142

parameters of the power-law storage-discharge relation, and C is a normalization constant.143

2.1.2 Parameter Estimation144

The four parameters of PHEV (α, λ, a, K) are rather straightforward to estimate145

at the catchment scale. They are indeed directly derived from the observed time series146

of precipitation and streamflow: α is computed as the mean daily rainfall depth in rainy147

days, while λ (frequency of streamflow-producing rainfall) as the ratio between the long148

term mean daily flow < q > and α (Botter et al., 2007). The parameters of the power-law149

storage-discharge relation (i.e., the recession exponent a and coefficient K) are estimated150

through hydrograph recession analysis (Brutsaert & Nieber, 1977) following the approach151

proposed by Biswal and Marani (2010). Finally, the recession coefficient is not directly used152

as input in Eq. (1), but it is replaced by its maximum likelihood estimation on the observed153

seasonal flood frequency curve (Basso et al., 2016).154

2.2 Identification of Flood Divides155

To identify flood divides, we start from the method proposed by Rogger et al. (2013): a156

flood divide is defined as the sharpest bend of the flood frequency curve, here considered in157

terms of rescaled streamflow maxima (i.e., seasonal maxima divided by the long term mean158

daily flow, < q >) as a function of the return period, the latter represented in logarithmic159

scale. We then develop a new methodology dedicated to its identification from both empirical160

estimates of the flood frequency curve obtained by means of Weibull plotting position and161
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models, such as PHEV. The resulting approach, which can be employed without depending162

on subjective evaluation, is detailed in the following.163

1. The curvature of the flood frequency curve, of which we show an example in Figure164

1, is computed as logTr′′/(1 + logTr′2)(3/2) (where the apex indicates the derivation165

operation with respect to the rescaled streamflow) for both the observations and166

PHEV. In the former case, we use the method developed by Jianchun et al. (1994)167

for computing derivatives in non-equally spaced points, while for PHEV we employ168

the Python routine from the Scipy library (misc.derivative), which uses a central169

difference formula with spacing dx to compute the nth derivative at a specified point.170

2. As the noise associated to computing the curvature on a discrete and rather sparse171

set of points (seasonal maxima) might lead to identification errors, a heuristic filter is172

applied on the curvature calculated from observations: only points on the right-hand173

side of the last value of the curvature exceeding the range ±σ (where σ indicates the174

standard deviation of the curvature itself) are considered (Figure 1c);175

3. The Mann-Whitney U-test (Mann & Whitney, 1947) is applied on the values of the176

first derivatives on the left and right-hand sides of each potential flood divide identified177

at point 2 to check if their distributions are statistically different at a significant level178

equals to 0.05 (in other words, if the slope of the curve significantly differs between179

the left and right-hand side of the flood divide); the effect size is then computed by180

means of the Cohen’s d (Cohen, 1974) to evaluate if the magnitude of the difference is181

relevant (Sullivan & Feinn, 2012). For PHEV, this step is performed on a dense set of182

values, equally spaced with an interval ∆q = 0.05 up to a value of rescaled streamflow183

equal to 200, i.e., 200 times the long-term average streamflow. The relative increment184

of the slope between the left and right-hand side of a potential PHEV flood divide is185

also evaluated within the observational range.186

4. We finally identify as flood divide the point for which the p-value of the Mann-187

Whitney test is the lowest, provided that the Cohen’s d is greater than 0.4 (moderate188

effect size; Gignac and Szodorai (2016); Lovakov and Agadullina (2021)) and the slope189

increment exceeds a value of 1%.190

Figure 1 visually exemplifies the application of the developed approach for flood divides191

detection to the flood frequency curve of the Rott river at Kinning, Bavaria (ID: 18801005),192

in the summer season. In Figure 1a the flood frequency curve is represented with switched193
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Figure 1: Exemplary application of the proposed methodology to detect flood divides to the Rott river at

Kinning, Bavaria (ID: 18801005), in the summer season. a) Visualization of how the approach is actually

applied, i.e., expressing the logarithm of the return period as a function of the rescaled seasonal maxima

(gray filled circles). Potential flood divides (i.e., all the points with a p-value of the Mann-Whitney U-

test lower than 0.05) are represented by orange squares, while the selected one (i.e., the one exhibiting the

minimum p-value of the Mann-Whitney U-test and Cohen’s d greater than 0.4) is depicted with a red square.

b) First derivative computed on observations. c) Curvature computed on observations, with the shaded area

representing twice its standard deviation. d) Standard representation of the flood frequency curve, namely

observed maxima as a function of the logarithmic value of the return period (gray filled circles). The red

square indicates the selected flood divide, while the orange shaded area represents the range of potential

flood divides.
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axes (i.e., the logarithm of the return period is represented on the y-axis whereas the rescaled194

seasonal maxima on the x-axis), as streamflow is the independent variable in Eq. (1). The195

red square in Figure 1a,d represents the selected flood divide, i.e., the one associated to196

the lowest p-value of the Mann-Whitney U-test applied to the distributions of the first197

derivatives (Figure 1b) and fulfilling the additional criterion on the Cohen’s d. We also198

show points that are initially analyzed as potential flood divides (i.e., all the points with a199

Mann-Whitney p-value lower than 0.05, orange squares in Figure 1a).200

2.3 Datasets201

We use daily rainfall and streamflow time series from the Model Parameter Estimation202

Experiment dataset (MOPEX, data from 1948 to 2003) (Duan et al., 2005; Schaake et203

al., 2006) and from Germany (1951-2013) (Tarasova et al., 2018). Streamflow is measured204

at the gauging stations whose geographical coordinates are listed in Table S1, whereas205

the corresponding rainfall records are spatially averaged values for the upstream drainage206

areas derived from gridded datasets. We perform all analyses in a seasonal time frame207

(spring: March to May; summer: June to August; autumn: September to November; winter:208

December to February) to account for the seasonality of rainfall and runoff (Allamano et209

al., 2011; Baratti et al., 2012). To assure that PHEV suitably represents the key processes210

of streamflow generation in the set of case studies, we only consider catchments with low211

human impact, weak or absent inter-seasonal snow dynamics (Botter et al., 2013; Wang212

& Hejazi, 2011) and hydrograph recession properties which are independent of the peak213

flow (Basso et al., 2021). Similarly to previous studies (R. Merz et al., 2020), we as well214

restrict our analysis to cases for which the root mean square error (RMSE) between the215

predicted and observed flood frequency curve is limited (i.e., lower than 0.3), as a fairly216

accurate estimation of the flood frequency curve is a precondition to investigate if PHEV is217

able to correctly identify flood divides and whether their occurrence is affected by physio-218

climatic catchment attributes. Figure S1 provides a summary of the performance of PHEV219

(quantified by means of varied error metrics, see Supplementary Material) in reproducing220

observed flood frequency curves in the considered set of case studies. This selection yields a221

set of 101 case studies (i.e., catchment-season combinations), divided into 23, 29, 23 and 26222

cases respectively in the spring, summer, autumn and winter seasons. The median length223

of the considered data series is 54 years (min: 34, max: 55) for the MOPEX and 58 years224
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Figure 2: Select river basins (white filled circles) from the (A) MOPEX and (B) German datasets. The

background of the maps represents 30-years annual precipitation normals (1981-2010 for the US and 1991-

2020 for Germany).

(min: 40, max: 63) for the German case studies. Their catchment areas vary between 43225

and 9052 km2 (median: 865 km2). The locations of their outlets are displayed in Figure 2.226

3 Results and Discussion227

We apply the methodology for the identification of flood divides introduced in the228

previous section to each observed and analytic seasonal flood frequency curve, thus allowing229

for evaluating the flood divide detection of PHEV against observations, which we consider230

as benchmark (Figure 3). The bar plots in Figure 3 show the percentages of case studies231

for which a flood divide is identified from both PHEV and the observational records (true232

positives, dark green color), those which display a flood divide neither in the empirical nor233

in the analytic flood frequency curves (true negatives, light green), the percentages of cases234

where a flood divide is detected from the observations but not from the analytical model235

(false negatives, red), and those where the analytical model has foreseen the occurrence of236

a flood divide which is not confirmed by the available observations (false positives, orange).237

The existence of both true positives and true negatives emphasizes the capability of PHEV238

to mimic varied observed shapes of flood frequency curves (Basso et al., 2016) and to identify239

both the presence and the absence of a flood divide.240

The bar plots in Figure 3a and 3b differ for the criteria applied in the flood divide iden-241

tification methodology. In Figure 3a only the controls on the p-value of the Mann-Whitney242

U-test mentioned in Section 2.2 are considered, whereas the additional requirements on the243

effect size and slope increment are as well used in Figure 3b. True positives (dark green)244

–10–



prevail in the summer (18 cases) and autumn (14 cases) seasons of Figure 3a, amounting245

to about 60% of the cases. False positives constitute instead a sizable share of the cases in246

spring (12 cases) and winter (21 cases). When more stringent requirements for the identi-247

fication of flood divides are used, by accounting for the mentioned additional criteria, the248

percentage of true positives decreases (Figure 3b, dark green; respectively 3, 11, 12 and 1249

cases in spring, summer, autumn and winter). A few cases of those shifting category be-250

come true negatives (for an overall number of 2, 3, 1 and 1 cases in spring, summer, autumn251

and winter), indicating that the slope of the flood frequency curve does not substantially252

increases on the right-hand side of the potential flood divide, thus not representing a note-253

worthy hazard. Most of them however become false positives (orange color in Figure 3b;254

respectively 18, 15, 9 and 24 cases in spring, summer, autumn and winter) as the identified255

changes of the slope of the observed flood frequency curve are not substantial according to256

the limited amount of available observations, whereas PHEV confirms the existence of a257

flood divide thanks to its evaluation in an unlimited number of points. Consistent results258

are also found when considering different significant levels for the Mann-Whitney test: the259

strictest the level the highest the share of cases shifting between true and false positives,260

which once again points to the unfeasibility of detecting flood divides with confidence from261

plain observations.262

The predominance of false positives in spring (18 cases) and winter (24 cases) (orange263

color in Figure 3b) calls for further investigation of their causes. We therefore hypothesize264

that PHEV, by leveraging the embedded mechanistic description of hydro-climatic dynamics265

taking place in watersheds and the information gained from analyzing daily rainfall and266

streamflow series, might indicate the possible emergence of flood divides that are not yet267

displayed by the observed flood frequency curves. In fact, these empirical estimates are268

likely affected by small sizes of the samples of large events (i.e., those on the right-hand side269

of each potential flood divide, see Figure 1a) and by the specific character of catchments,270

which may have a more or less enhanced propensity to exhibit extreme floods and thus271

display them in a limited data record. We then perform the following experiment to test272

this hypothesis. We consider the set of true positives (i.e., the 27 cases for which both273

PHEV as well as the observed flood frequency curve show a flood divide) and retain only274

maxima with return periods below 5 years (see an explanatory example in Figure 4a, where275

the maxima retained are represented by gray filled circles with blue contours). In so doing,276

we approximately discard in each case the largest ten points and their corresponding years277
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Figure 3: Performance of the PHysically-based Extreme Value (PHEV) distribution of river flows in the

detection of flood divides when only the controls on the Mann-Whitney U-test are considered (see Section

2.2, panel a) and when the whole methodology for detecting flood divides is applied (see Section 2.2, panel

b). Percentages are calculated on the overall number of case studies, which amount to 23, 29, 23 and 26 cases

respectively in the spring, summer, autumn and winter seasons. True positives (dark green color; 27 cases

in panel b) and true negatives (light green; 7 cases) indicate coherence between PHEV and observations,

i.e., flood divides are either detected or not from both PHEV and the observed records. These constitute a

large number of cases in summer (14 cases) and autumn (13 cases). False positives (orange; 66 cases) and

false negatives (red; 1 case) represent the cases in which either PHEV detects a flood divide that was not

identified by the observations or the observations display a flood divide which is not detected by PHEV.

The indicated absolute numbers of positive and negative cases refer to the complete application of the

methodology for detecting flood divides (i.e., panel b). The reasons for the presence of false positives are

further investigated in the study and clarified in the text and figures.
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of occurrence. Thereby, fictitious flood frequency curves only comprising maxima with278

smaller magnitudes (and return periods) are created, thus reproducing the conditions we279

hypothesized as possible reasons of the emergence of false positives. We then apply the280

usual methodology for identifying flood divides on these fictitious flood frequency curves281

and the corresponding shortened data records.282

PHEV detects a true flood divide (i.e., true positives) in 81% of the cases (22 case283

studies) even when the largest points are removed, whereas the observations only in 40%284

(11 cases). The maps in Figure 4b and 4c summarize this result: half circles are colored285

either in green, if a flood divide is successfully detected from the shortened flood frequency286

curve, or in red in the opposite case. The left half of the circle depicts the detection287

capability of PHEV, while the right side the results obtained from the observations. It can288

be easily seen that most left halves of the circles are colored in green and most of the right289

ones are instead red, thus indicating a high success rate of PHEV and a significantly lower290

one of observations in inferring the emergence of flood divides from shortened records. A291

similar result is obtained by discarding maxima with return period greater than 10 years292

(i.e., discarding about five-six points instead of the highest ten), when PHEV correctly293

detects 85% of true flood divides (23 cases) in comparison to a correct detection rate from294

observations of 60% (16 cases). The outcome of this experiment strongly suggests that the295

detected false positives (orange color in Figure 3) indeed arise because of the statistical296

uncertainty of limited data records and the capability of PHEV to infer the occurrence of297

flood divides from short series rather than by its inability to correctly identify inflection298

points which were detected (or not) in the observed flood frequency curves.299

A physical explanation of the reason why some observational series might not exhibit a300

flood divide which shall be expected is provided by considering typical streamflow dynamics301

occurring for distinct river flow regimes, here characterized by means of the persistency302

index (Botter et al., 2013). When streamflow values weakly oscillate around their mean303

(persistent regimes), the probability of occurrence of relatively large flows is very low, and304

extreme events are unlikely to be captured by short time series. On the contrary, erratic305

regimes are composed of a sequence of high flows interspersed in between prolonged periods306

of low flows. Events which are several times (i.e., order of magnitudes) higher than the307

average flow are thus more likely to occur in these regimes (Basso, Frascati, et al., 2015). In308

the context of this study, false positives shall therefore mostly occur for persistent regimes,309
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Figure 4: Visual explanation and results of an experiment aimed at testing hypotheses on the emergence

of false positives. a) Gray dots with black (blue) contour represent the complete (shortened, until a return

period of 5 years) observed seasonal maxima series of the Wörnitz river at Harburg, Bayern (ID:11809009),

in the summer season. The solid black (blue) line displays the analytic flood frequency curve (i.e., PHEV)

whose parameters are estimated from the complete (shortened) time series. The red (yellow) square indicates

the flood divide detected from the observations (by PHEV) using the complete series, while the corresponding

crosses (the red one is not visible in the plot as no flood divide was detected after shortening the observations)

represent the observed and analytic flood divides detected on the shortened flood frequency curve. b-c)

Locations of the true positives in the US (panel b) and Germany (panel c). The left (right) half of the

circles represent PHEV (observations) ability to detect a flood divide when the shortened flood frequency

curves (i.e., maxima characterized by return period below 5 years) are used. The green (red) colored halves

indicate successful (failing) detection. Remarkably, most of the left halves are green (PHEV detects true

flood divides even from the shortened series in the majority of the cases), whereas most of the right ones

are red (flood divides are not always identified from observations when the shortened records are used).
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Figure 5: a) Performance of the PHysically-based Extreme Value (PHEV) distribution of river flows in the

detection of flood divides as a function of the persistency index. Ranges (whose boundaries are reported

in the x-axis) were set so as to have an equal number of values (∼ 20) per bin. b) Empirical cumulative

distribution functions of the persistency index for true positive (dark green), true negative (light green)

and false positive (orange) cases. The distributions of true versus false cases are significantly different in a

statistical sense (the p-value of the 2-samples Kolmogorov-Smirnov test is lower than 0.01.)

as such large events enabling detection of flood divides from empirical flood frequency curves310

are less likely to have been observed during the available data record.311

Figure 5a displays the percentages of true positives (dark green color; from left to312

right: 9, 10, 6, 2 and 0 cases), true negatives (light green; respectively 5, 1, 0, 0, 1 cases),313

false negatives (red; 1, 0, 0, 0, 0 cases) and false positives (orange; from left to right: 6,314

9, 14, 18 and 19 cases) for five ranges of the persistency index set so as to have an equal315

number of values (∼20) per bin. The number of false positives consistently increases with316

the persistency index, thus corroborating the above reasoning. No clear patterns are instead317

observed with, e.g., the drainage area and the average rainfall magnitude in the catchment318

(Figure S3), which are sometimes regarded as possible drivers of a marked increase of the319

magnitude of the rarer floods (Gaume, 2006; Villarini & Smith, 2010).320

A recent review of the current scientific knowledge (B. Merz et al., 2022) suggests321

explanations for these results. It signals an unlikely direct role of catchment size in deter-322

–15–



mining tail behaviors of flood distributions, as increasing drainage areas entail both spatial323

aggregation (which may cause lighter tails), and shifts of dominant processes (e.g., different324

precipitation types and runoff generation mechanisms) which may lead in the opposite di-325

rection. It also reports robust evidences against a dominant role of rainfall characteristics326

for the emergence of heavy-tailed flood distributions, as runoff generation processes strongly327

modulate the hydrologic response. On the contrary, the available literature emphasizes the328

role of non-linear hydrological responses and the catchment water balance for the emergence329

of heavy tails. These are the two key processes described by PHEV and summarized by the330

persistency index, which thus arises as a pivotal indicator of the possibility to detect flood331

divides from data records.332

To further highlight the relation between typical river flow dynamics recapped in the333

persistency index and the occurrence of false positives we compare in Figure 5b the cumula-334

tive distributions of the persistency index for true cases (green) and false positives (orange).335

The distributions clearly differ. True cases feature more erratic regimes which facilitate their336

identification from data records, whereas false positives mostly occur for persistent regimes.337

This qualitative evaluation is validated by applying the 2-sample Kolmogorov-Smirnov test,338

which evaluates if two samples come from the same distribution (null-hypothesis), to the339

sets of true and false positives (the same is obtained by comparing true negatives and false340

positives). We can reject the null-hypothesis at the 0.01 significance level, meaning that341

the two samples are drawn from different distributions and false positives are significantly342

more likely to occur for persistent regimes. The same cannot be proved for the cumulative343

distributions of catchment area (p-value = 0.44) and average rainfall magnitude (p-value =344

0.34) for the sets of true and false positives. Remarkably, the seasons characterized by the345

larger portion of false positives are spring and winter, during which regimes tend to be more346

persistent.347

The physical explanation provided here of the different telling power of streamflow data348

for rivers characterized by distinctively different streamflow dynamics agrees with the results349

of previous research. For example, Botter et al. (2013) showed less variable streamflow350

distributions across years in erratic regimes compared to persistent ones, which determines351

higher representativeness of their estimates in the former case for a given length of the data352

record. Smith et al. (2018) also demonstrated that upper tail ratios grow with the length353

of data and, for a given data length, are larger (i.e., flood divides are more often identified)354

in arid and semiarid regions than in humid ones. Their results jointly suggest that, given355
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similarly long data records, the typical (erratic) flow dynamics of drier areas enable more356

reliable characterization of the whole range of values possibly spanned by streamflow and357

of the presence or absence of flood divides according to the physical explanation provided358

above.359

4 Concluding Remarks360

In this work we examine the occurrence of marked uprises of flood frequency curves361

(termed flood divides), which are pivotal for a correct estimation of river flood hazard. We362

develop a robust methodology to identify them from observational records and models, and363

evaluate the capability of the PHysically-based Extreme Value distribution of river flows364

(PHEV) to reliably detect flood divides.365

Results show that PHEV is consistently able to recognize the presence/absence of flood366

divides in a large set of case studies from the US and Germany. Possible reasons for the367

occurrence of a sizeable number of false positives are investigated by accounting for both368

the statistical uncertainty of relatively short observational records and the typical hydro-369

climatic variability of different river basins, which affects the information content of these370

limited data series. To this end, we perform a controlled experiment in which we remove371

the highest flow maxima in the flood frequency curves of the true positive cases and repeat372

the flood divide detection analysis on the shorter series, showing that PHEV can foresee373

the emergence of true flood divides in more than 80% of the cases even if the shortened374

observations do not display them. The result supports claims of the dependability of flood375

divides initially classified as false positives. An investigation of the intrinsic dynamics of376

streamflows in the set of true and false positives further elucidates the issue. False positives377

are indeed preferentially found for more persistent regimes (87% of the false positives have378

persistency index above two, as opposed to only 11% of true positives; the overall number379

of cases with persistency index above two is 55) which, by their nature, rarely exhibit large380

extreme flow values. The limited length of the available observed time series might be thus381

constraining the possibility to observe expected flood divides, analogously to what occurs382

when we artificially reduce the size of the observational sample.383

The present analysis, performed on a wide set of catchments characterized by different384

hydroclimatic features, reveals PHEV as a reliable tool to identify and foresee the occurrence385

of flood divides and consequently unveil the propensity of rivers to large floods. The method386
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is especially relevant in data scarce conditions, although limitations linked to the domain387

of applicability of this tools exist and have been recalled in this work. The study lays388

the foundations for a better comprehension of climate and landscape controls of observed389

marked rises of the magnitude of the rarer floods, which is the subject of ongoing research.390
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