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Abstract

India has witnessed a five-fold increase in dengue incidence in the past decade. However, the nation-wide distribution of

dengue vectors, and the impacts of climate change are not known. In this study, species distribution modelling was used to

predict the baseline and future distribution of Aedine vectors in India on the basis of biologically relevant climatic indicators.

Known occurrences of Aedes aegypti and Aedes albopictus were obtained from the Global Biodiversity Information Facility

database and previous literature. Bio-climatic variables were used as the potential predictors of vector distribution. After

eliminating collinear and low contributing predictors, the baseline and future prevalence of Aedes aegypti and Aedes albopictus

was determined, under three Representative Concentration Pathway scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), using the

MaxEnt species distribution model. Aedes aegypti was found prevalent in most parts of the southern peninsula, the eastern

coastline, north eastern states and the northern plains. In contrast, Aedes albopictus has localized distribution along the eastern

and western coastlines, north eastern states and in the lower Himalayas. Under future scenarios of climate change, Aedes aegypti

is projected to expand into unsuitable regions of the Thar desert, whereas Aedes albopictus is projected to expand to the upper

and trans Himalaya regions of the north. Overall, the results provide a reliable assessment of vectors prevalence in most parts

of the country that can be used to guide surveillance efforts, despite minor disagreements with dengue incidence in Rajasthan

and the north east, possibly due to behavioural practices and sampling efforts.
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Abstract 30 

India has witnessed a five-fold increase in dengue incidence in the past decade. However, the 31 

nation-wide distribution of dengue vectors, and the impacts of climate change are not known. In 32 

this study, species distribution modelling was used to predict the baseline and future distribution 33 

of Aedine vectors in India on the basis of biologically relevant climatic indicators. Known 34 

occurrences of Aedes aegypti and Aedes albopictus were obtained from the Global Biodiversity 35 

Information Facility database and previous literature. Bio-climatic variables were used as the 36 

potential predictors of vector distribution. After eliminating collinear and low contributing 37 

predictors, the baseline and future prevalence of Aedes aegypti and Aedes albopictus was 38 

determined, under three Representative Concentration Pathway scenarios (RCP 2.6, RCP 4.5 and 39 

RCP 8.5), using the MaxEnt species distribution model. Aedes aegypti was found prevalent in 40 

most parts of the southern peninsula, the eastern coastline, north eastern states and the northern 41 

plains. In contrast, Aedes albopictus has localized distribution along the eastern and western 42 

coastlines, north eastern states and in the lower Himalayas. Under future scenarios of climate 43 

change, Aedes aegypti is projected to expand into unsuitable regions of the Thar desert, whereas 44 

Aedes albopictus is projected to expand to the upper and trans Himalaya regions of the north. 45 

Overall, the results provide a reliable assessment of vectors prevalence in most parts of the 46 

country that can be used to guide surveillance efforts, despite minor disagreements with dengue 47 

incidence in Rajasthan and the north east, possibly due to behavioural practices and sampling 48 

efforts. 49 

Plain Language Summary 50 

Climatic parameters derived from temperature and humidity affect the development and survival 51 

of mosquitoes that spread diseases. In the past decade, India has witnessed an alarming rise in 52 

dengue, a viral disease that spreads through the bite of the mosquitoes Aedes aegypti and Aedes 53 

albopictus. We used machine learning based modelling algorithm to predict the present and 54 

future abundance of these mosquitoes in India, based on biologically relevant climatic factors. 55 

The results project expansion of Aedes aegypti in the hot arid regions of the Thar desert and 56 

Aedes albopictus in cold upper Himalayas as a result of future climatic changes. The results 57 

provide a useful guide for strengthening efforts for entomological and dengue surveillance. 58 

1 Introduction 59 

Dengue is the most widespread arthropod-borne disease, that has become endemic in 60 

more than 100 countries (World Health Organization, 2020). It is usually found in tropical and 61 

sub-tropical climates, with a vast majority of dengue cases occurring in the Americas and in 62 

South-East Asia (World Health Organization, 2020). In India, dengue has witnessed an alarming 63 

upsurge in the past decade, with more than fivefold increase from 28,066 cases in 2010 64 

(NVBDCP, 2010) to 1,57,315 cases in 2019 (NVBDCP, 2020).  65 

The two arthropod vectors of dengue are Aedes (Stegomyia) aegypti (L.) and Aedes 66 

(Stegomyia) albopictus (Skuse), which are also responsible for the transmission of several other 67 

arboviruses such as the chikungunya virus (CHIKV), yellow fever virus and Zika virus (ZIKV). 68 

Aedes aegypti exhibits an indoor resting behaviour and primarily feeds on humans during the 69 

day(Scott and Takken, 2012). It is mostly found in urban areas and usually breeds in man-made 70 

water receptacles such as plastic containers and rubber tyres (Vijayakumar et al., 2014). Aedes 71 

albopictus prefers to rest outdoors and is an opportunistic feeder (Paupy et al., 2009), though 72 
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strong anthropophagic behaviour has also been observed in some studies (Ponlawat and 73 

Harrington, 2005; Delatte et al., 2010). The presence and population size of these arthropod 74 

vectors is highly dependent on climatic factors such as temperature, rainfall and relative 75 

humidity. The poikilothermic physiology of mosquitoes renders them sensitive to temperature 76 

extremities, which affects larval development as well as vector mortality (Farjana et al., 2012). 77 

Rainfall also supports vector populations by providing suitable habitat for development of the 78 

aquatic larval stages (Farjana et al., 2012).  79 

The drastic rise in dengue cases in India warrants a more concerted effort for dengue 80 

management and generation of suitable knowledge to support vector control. At present, no 81 

known vaccine or specific treatment for dengue exists (Gupta and Reddy, 2013). Dengue control 82 

in India is based on vector control practices such as indoor space spraying, fogging, 83 

environmental management and promotion of personal protection (NVBDCP, 2014). However, 84 

the nation-wide distribution of dengue vectors in India is not known and the presence of aedine 85 

species has been established only in some parts of the country based on local vector surveillance 86 

such as in southern peninsular India (Selvan et al., 2016), North eastern states (Soni et al., 2018) 87 

as well as the western and eastern coastlines (Chatterjee et al., 2015; Shil et al., 2018). 88 

Moreover, climate change could significantly affect the known distribution of vectors. In recent 89 

years, Species distribution modelling (SDM) has emerged as an important tool for identifying the 90 

ecological niche and climate change induced range shifts in different species. This is particularly 91 

important for species that are vectors for pathogens and pose a human health risk. Maximum 92 

Entropy (MaxEnt v3.3.3) is a machine learning algorithm for modelling species distributions 93 

using presence-only records. Its predictive performance is highly competitive as compared to 94 

other SDMs and has been used extensively since becoming available in 2004 (Elith et al., 2011). 95 

Therefore, in this study we used the MaxEnt model for predicting the present and future 96 

distributions of Aedine vectors of dengue in India under different climate change scenarios. 97 

2 Data and Methods 98 

2.1 Species occurrence data 99 

Primary occurrence data for the two primary vectors of dengue in India – Aedes aegypti 100 

and Aedes albopictus were obtained from the Global Biodiversity Information Facility (GBIF - 101 

https://www.gbif.org/). The records contain 562 points of occurrence of Aedes aegypti 102 

(GBIF.org, 2021) and 207 points of occurrence of Aedes albopictus (GBIF.org, 2020) in India, 103 

most of which come from a recent large-scale study that compiled a global geographic database 104 

of Aedes aegypti and Aedes albopictus locations, derived from peer reviewed literature, national 105 

entomological surveys and expert networks (Kraemer et al., 2015). As the study included 106 

literature only up to 2014, there was a need to update the occurrence points based on new 107 

literature since 2015.  108 

An extensive survey of all dengue entomological studies conducted in India after 2014 109 

was carried out (Dhiman and Hussain, 2021). The search terms ‘India’, ‘aegypti’ and 110 

‘albopictus’ were used to find relevant peer reviewed literature in NCBI - PubMed 111 

(https://www.ncbi.nlm.nih.gov/pubmed), Science Direct (https://www.sciencedirect.com/) and 112 

grey literature in Google Scholar https://scholar.google.com/). Only those studies were included 113 

where the exact coordinates of the survey were clearly mentioned. After adding these to the 114 

initial database, in total 690 occurrence points of Aedes aegypti and 330 occurrence points of 115 
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Aedes albopictus were obtained. The species occurrence points were plotted in GIS environment 116 

using ArcGIS software.  117 

2.2 Climatic predictors 118 

Climatic parameters like temperature and precipitation, are important determinants for 119 

the life cycle and survival of arthropod vectors, as well as transmission of pathogens (Farjana et 120 

al., 2012). Therefore, nineteen bioclimatic variables (Table 1) that indicate the general trend, 121 

extremity and seasonality of temperature and precipitation were used as the potential predictors 122 

of vector abundance and distribution. These predictors capture information about annual and 123 

seasonal climatic conditions which are best related to species physiology, and have been used 124 

extensively for ecological niche modelling.  125 

Baseline (1970 – 2000) and future (2030s, 2050s and 2070s) climatic data for bioclimatic 126 

variables under three RCP scenarios (RCP2.6, RCP4.5 and RCP8.5), was obtained from 127 

WorldClim website (Fick and Hijmans, 2017) with a spatial resolution of 2.5 arc minutes (~5 128 

km). Future projections of climate change thus obtained, were based on the CNRM-CM6-1 129 

(Voldoire et al., 2019) general circulation model developed from the Coupled Model 130 

Intercomparison Project Phase 6 (CMIP-6) (Eyring et al., 2016). 131 

2.3 Data processing 132 

Data processing and modelling steps were conducted using a combination of R-statistics 133 

(R Core Team, 2013), within the RStudio interface (RStudio Team, 2020), and ArcGIS® 134 

software by Esri.  135 

Duplicate records in the species occurrence data were analyzed and removed accordingly. 136 

To account for spatial autocorrelation, spatial thinning was applied to the species occurrence 137 

records at 5 km intervals (equivalent to the resolution of environmental datasets) using the R-138 

package spThin (Aiello-Lammens et al., 2015). The final species occurrence data contained 383 139 

and 205 spatially explicit records of Aedes aegypti and Aedes albopictus respectively. The 140 

species occurrence records, were used to construct a sampling bias layer in order to account for 141 

differences in sampling efforts across different locations.  142 

In order to reduce model complexity, highly collinear variables that did not contribute 143 

significantly to the model output were eliminated. A cross-correlation table (Table S1) was used 144 

to identify variables that show strong collinearity (>0.8), and a cluster dendrogram of variables 145 

grouped based on collinearity was constructed (Figure S1). Initial models were run using all 146 

bioclimatic variables, and the contribution of each variable to model output was determined. 147 

Variables with low contribution to model outputs and strong collinearity (>0.8) with other 148 

variables were eliminated one by one in subsequent models to obtain the final list of non-149 

collinear bioclimatic variables. At each stage, the effect of eliminating a variable on model 150 

performance was assessed based on the AUC value - area under the ROC (Receiver operating 151 

characteristic) curve . The selected variables were finally reviewed and approved through expert 152 

opinion (Table 1).  153 

2.4 Predictive Modelling 154 

Present and future distribution of Aedes aegypti and Aedes albopictus was evaluated 155 

using Maxent (v 3.4.1) (Philips et al., 2004) with the help of the R package ENMTML (Andrade 156 



manuscript submitted to GeoHealth 

5 

 

et al., 2020). Maxent is a presence-only species distribution model that employs a machine 157 

learning algorithm to generate a probability distribution of the selected species, and has been 158 

shown to be effective even with low number of sampling points (Townsend Peterson et al., 159 

2007). The Maxent model relies on Baye’s rule (eq. 1) to estimate the probability density of the 160 

species distribution in covariate space, by maximizing the entropy/dispersion across the 161 

geographic space (Elith et al., 2011).  162 

 –(1) 163 

where, 164 

 y denotes the presence (y = 1) or absence of the species (y = 0) 165 

 P(x = 1|y) = π(x) is the probability density of covariates across the presence 166 

locations of species 167 

 P(y = 1|x) is the probability of presence of species, given the covariate density 168 

 P(y = 1) is the prevalence of the species 169 

 P(x) = 1/|x| is the probability density of the covariates  170 

As Maxent relies on presence records only, P(y = 1|x) cannot be determined directly, and 171 

hence an estimation of the distribution of π(x) is made (Philips et al., 2004). The Maxent 172 

distribution is a Gibbs distribution derived from a set of features fi, with feature weights λi, and is 173 

defined by the equation 174 

  –(2) 175 

where Zλ is the normalization constant. In order to estimate this distribution, Maxent 176 

employs the principle of maximum entropy to Shannon’s information theory based on the 177 

equation 178 

    –(3) 179 

where H is the maximum entropy of the system. 180 

Model parameters were determined by hit and try method, wherein initial models were 181 

run with five levels of complexity (linear, linear-quadratic, hinge, linear-quadratic-hinge and 182 

linear-quadratic-hinge-polynomial) and 20 regularization multipliers from 1-10 with a half step 183 

interval in between. The outputs were analyzed based on the omission rate with respect to the 184 

testing data, Akaike Information Criterion score (AIC) and AUC values. Based on these, the best 185 

set of parameters for the maxent model was selected. Pseudo absences were allocated randomly 186 

after applying appropriate environmental and geographical constraints (50 km buffer). For 187 

validation of model outputs, k-fold cross validation was used to partition the presence data into 188 

five subsets. The outputs were obtained in the form of GeoTiff rasters containing the logistic 189 

suitability score as the values of the pixels for the baseline and each of the future projections.  190 

The continuous logistic outputs were then converted to binary outputs using the 191 

‘maximum test for sensitivity and specificity (MAXTSS)’ in MaxEnt, which has been identified 192 
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as the best method for threshold selection in presence only models (Liu et al., 2005). The results 193 

were plotted in ArcGIS to assess the risk of range expansion in the vectors.   194 

2.5 Validation of Model Outputs 195 

A number of different evaluation metrics were used for assessing the model performance. 196 

The traditional accuracy measures (AUC and Kappa/True Skill Statistic - TSS) have often been 197 

criticized due to their over-dependence on species prevalence and can give misleadingly high 198 

values by not penalizing over prediction (Allouche et al., 2006). Therefore, similarity indices – 199 

namely Jaccard and Sorensen, which are not biased by true negatives were also evaluated. Most 200 

evaluation metrics are constructed for presence-absence models and modified accordingly for 201 

presence-only models. Therefore, to ensure model reliability, the Boyce index which is 202 

specifically a presence-only metric, was also computed. The significance of selected bioclimatic 203 

variables in model outputs was assessed by permutation importance contribution. 204 

3 Results 205 

3.1 Variables’ Contribution and Selection 206 

The cross-correlation table and cluster dendrogram revealed groups of variables which 207 

showed very high collinearity. Low contributing and collinear variables were eliminated one by 208 

one, after running multiple preliminary models. The final list of variables with low collinearity 209 

and significant contribution to outputs is presented in Table 1. 210 

Table 1 211 

Selected bioclimatic variables 212 

Variable ID Variable name Selected in Final Model 

bio 1 Annual mean temperature No 

bio 2 Mean diurnal range Yes 

bio 3 Isothermality Yes 

bio 4 Temperature seasonality Yes 

bio 5 Max. temperature of warmest month No 

bio 6 Min. temperature of coldest month Yes 

bio 7 Temperature annual range No 

bio 8 Mean temperature of wettest quarter No 

bio 9 Mean temperature of drienst quarter No 

bio 10 Mean temperature of warmest quarter No 

bio 11 Mean temperature of coldest quarter No 

bio 12 Annual precipitation No 

bio 13 Precipitation of wettest month No 

bio 14 Precipitation of driest month No 

bio 15 Precipitation seasonality Yes 

bio 16 Precipitation of wettest quarter Yes 

bio 17 Precipitation of driest quarter Yes 

bio 18 Precipitation of warmest quarter Yes 

bio 19 Precipitation of coldest quarter Yes 
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3.2 Evaluation of Model Performance 213 

Three types of evaluation metrics were computed for Aedes aegypti and Aedes albopictus 214 

model outputs (Table 2) – accuracy metrics (AUC and TSS), similarity indices (Jaccard and 215 

Sorensen) and reliability metrics (Continuous Boyce Index). 216 

Table 2 217 

Accuracy and reliability metrics for the validation of model outputs 218 

Variable Aedes aegypti Aedes albopictus 

Coefficient sd Coefficient sd 

AUC 0.94 0.01 0.95 0.04 

TSS 0.77 0.04 0.84 0.11 

Jaccard 0.80 0.03 0.85 0.09 

Sorensen 0.89 0.02 0.92 0.05 

OR 0.06 0.03 0.07 0.06 

Boyce 0.86 0.03 0.84 0.08 

The AUC values for both Aedes aegypti and Aedes albopictus were significantly high 219 

(0.94 and 0.95 respectively) indicating strong agreement between the training and testing 220 

datasets. The threshold dependent TSS values were also significantly high for the two species 221 

(0.77 and 0.84) indicating that model performance was very good. Similarity indices such as 222 

Jaccard and Sorensen were identified as an alternative to the traditional accuracy metrics that 223 

measure the similarity between the model outputs and validation datasets. Significantly high 224 

values of the Jaccard (0.80 and 0.85) and Sorensen indices (0.89 and 0.92) for both the vectors 225 

also indicate that the model was able to accurately predict vector prevalence. Similarly, high 226 

values of Boyce index (0.86 and 0.84) for the model outputs indicates that model performance 227 

was excellent. 228 

 229 

Figure 1 230 

Variable Contributions to model outputs for (a) Aedes aegypti and (b) Aedes albopictus 231 

 232 
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The variables which contributed most to model outputs (Figure 1) for Aedes aegypti were 233 

found to be the isothermality (bio3), temperature seasonality (bio4) and the minimum 234 

temperature of the coldest month (bio6). On the other hand, for the prevalence of Aedes 235 

albopictus mean diurnal range (bio2), precipitation of the driest quarter (bio17) and precipitation 236 

of the warmest quarter (bio18) were found as important variables. This indicates that temperature 237 

may be an important limiting factor for Aedes aegypti, whereas precipitation is the limiting factor 238 

for Aedes albopictus.  239 

3.3 Baseline and projected future distribution of Aedes aegypti and Aedes albopictus 240 

 241 

Figure 2 242 

Baseline and projected future suitability of (a) Aedes aegypti and (b) Aedes albopictus under 243 

different climate change scenarios, based on the nine selected bio-climatic variables, using 244 
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MaxEnt species distribution modelling. Local changes in the distribution of Aedes aegypti are 245 

visible in Gujarat, Haryana, Punjab, north east and the southern peninsular plateau. In contrast, 246 

Aedes albopictus witnesses local variations in distribution in north east and the Himalayan 247 

regions. 248 

Based on the probability distribution maps generated from maxent logistic output (Figure 249 

2), the baseline distribution of Aedes aegypti was found very high in the Kashmir valley (0.63 - 250 

0.91), Malwa plains of Punjab (0.59 - 0.76) and Haryana (0.65 - 0.88), Saurashtra region of 251 

Gujarat (0.4 - 0.79), upper Brahmaputra and Barak valley in Assam (0.69-0.88), the Konkan 252 

coastline (0.75-0.95) and the southern peninsular plains (0.61-0.96). The vector had high focal 253 

prevalence in the urbanized western regions of Uttar Pradesh (UP) (0.51 - 0.65), Delhi (0.76 - 254 

0.88), some northern districts of Bihar (0.48 - 0.67) and the northern Jalpaiguri division of West 255 

Bengal (0.56 - 0.93).  256 

A few regions of the Deccan plateau and northern Indo-Gangetic plains also had 257 

moderate to high (0.25 – 0.75) distribution of Aedes aegypti. Most of the central highlands, the 258 

Thar desert region and the greater Himalayan regions of Jammu & Kashmir have very low 259 

prevalence (> 0.25) of Aedes aegypti. The vector is found absent in the trans-Himalayan regions 260 

of Jammu & Kashmir and Ladakh (Figure 2a).  261 

The prevalence of Aedes albopictus was found very high along the Coromandel (0.63 - 262 

0.98), Malabar (0.88 - 0.97), and Konkan coastline (0.62 - 0.81), southern western ghats (0.79 – 263 

0.99), Kashmir valley (0.68-0.85), lower Brahmaputra valley, Kamrup and Goalpara hills in 264 

Assam (0.71-0.8) as well as the Himalayan and terai regions of West Bengal (0.74 - 0.89). In the 265 

north eastern region, both vectors are prevalent but, Aedes albopictus appears to be the dominant 266 

vector with more widespread distribution (Figure 2b). For example, in Arunachal Pradesh, Aedes 267 

albopictus was significantly more abundant than Aedes aegypti, which is restricted only to the 268 

lesser Himalayas. In the Indo-Gangetic plains and eastern ghats (0.28 - 0.54), Aedes albopictus 269 

had mostly moderate (0.29 - 0.49) prevalence in the baseline years, whereas a large part of India, 270 

i.e. arid/semi-arid regions of Rajasthan, Gujarat, most parts of Deccan plateau and the central 271 

highlands show low prevalence (0.04 - 0.18) of Aedes albopictus. Future projections of climate 272 

change were based on three scenarios – the low emissions scenario (RCP 2.6), moderate 273 

emissions scenario (RCP 4.6) and high emissions scenario (RCP 8.5). The RCP 2.6 scenario of 274 

climate change projects a twofold increase in geographic area with very high prevalence of 275 

Aedes aegypti in Punjab and Haryana, and a further 18.3% increase in area by 2070s. However, 276 

an initial reduction in suitability of Aedes aegypti is projected in the Saurashtra and Kachchh 277 

regions of Gujarat (12-32%), Jalpaiguri division of West Bengal (5-9%) and north eastern states 278 

(10-16%) by 2030s. This is followed by a substantial increase in suitability by 2050s and 2070s 279 

in Gujarat (9-34% and 10-40%) and in the Barak valley region of the north east (10-21% and 10-280 

24%). Some reduction in suitability is also observed in the Rohilkhand and Awadh plains of 281 

Uttar Pradesh (10-28% in 2030s, 10-19% in 2050s and 11-24% in 2070s). The RCP 4.5 scenario 282 

projects a significant reduction in suitability for Aedes aegypti by 2030s in Haryana (10-15%), 283 

Punjab (3-13%), Delhi (9-15%), Rohilkhand and Awadh plains of Uttar Pradesh (10-26%), 284 

Saurashtra regions of Gujarat (11-21%), Tripura (14-16%), Meghalaya (11-16%) and the upper 285 

Brahmaputra valley of Assam (7-13%). The suitability for Aedes aegypti reduces further in 286 

western UP (11-26% in 2050s, 11-28% in 2070s), but increases considerably in Gujarat by 2050s 287 

(15-34%) as well as in Punjab (13-31%) and Haryana (10-31%) by 2070s. Similarly, under RCP 288 

8.5, a significant reduction in suitability for Aedes aegypti is projected in Punjab, Haryana, the 289 
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Indo-Gangetic plains, most of Gujarat, north east and eastern regions as well as in the southern 290 

peninsular plateau by 2030s. The reduction in suitability continues in 2050s and 2070s in the 291 

southern peninsular plateau, with a 13.4% contraction in very high suitability areas by 2070s. 292 

However, the suitability for Aedes aegypti increases considerably in 2050s and 2070s in Punjab 293 

(12-60%), Haryana (22-65%), Gujarat (10-40%), Meghalaya (10-24%) and Mizoram (17-36%). 294 

In Nagaland and the Konkan coast of Maharashtra, suitability for Aedes aegypti increases under 295 

all future years, with most significant rise in 2070s (13-31% and 15-32% respectively). 296 

Furthermore, Aedes aegypti is projected to invade several regions of Leh (Ladakh) and northern 297 

Himachal Pradesh which are unsuitable for Aedes aegypti in baseline years. Increase in the 298 

suitability for Aedes aegypti in Punjab, Haryana, Gujarat and the North East under most future 299 

scenarios may be attributable to the decline in DTR - Diurnal Temperature Range (bio 2), based 300 

on the results from the model. Earlier research has also highlighted the detrimental role of high 301 

daily temperature fluctuations on vector survival, which is the most likely cause for increased 302 

suitability (Lambrechts et al., 2011). Reduced suitability in the Central Highlands and the 303 

southern peninsular plateau under future years may be linked with decrease in the minimum 304 

temperature of the coldest month (bio 6), which coupled with notable increase in temperature 305 

seasonality (bio 4) is likely to promote seasonal prevalence of Aedes aegypti in this region.    306 

 307 

Figure 3 308 

Change in suitability for (a) Aedes aegypti and (b) Aedes albopictus in future scenarios of 309 

climate change as compared to the baseline suitability. While Aedes aegypti is projected to 310 

witness significant changes in many parts of the country, substantial changes in distribution of 311 

Aedes albopictus are mostly limited to a few regions in the north east and Jammu & Kashmir 312 

regions.  313 

The suitability for Aedes albopictus is not expected to change substantially in the country, 314 

though some local changes in suitability are visible from the logistic distribution and change 315 
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maps. Under RCP 2.6, the suitability for Aedes albopictus increases gradually in the upper 316 

Brahmaputra valley of Assam, with as much as 40% and 122% increase in geographic area of 317 

very high suitability in the 2050s and 2070s respectively. Minor reduction in suitability is also 318 

observed in the terai regions of Uttarakhand (5-12%). Similar changes are projected in RCP 4.5. 319 

However, under RCP 8.5 significant increase in suitability is projected in Meghalaya and lower 320 

Brahmaputra valley (11-19%), in addition to the upper Brahmaputra valley. Suitability for Aedes 321 

albopictus does not change significantly in future years in the semi-arid and arid regions and the 322 

central highlands under all three scenarios of climate change. Reduced suitability in terai region 323 

of Uttarakhand under future years is likely due to a decline in rainfall in the region under most 324 

climate change scenarios, projected in the precipitation of wettest quarter (bio 16), precipitation 325 

of driest quarter (bio 17) and the precipitation of the warmest quarter (bio 18) variables. On the 326 

other hand, increasing precipitation of the warmest quarter (bio 18) in the north east under all 327 

future scenarios is associated with an increase in suitability for Aedes albopictus. Unlike Aedes 328 

aegypti, which have adapted to urban environments and can grow in household containers, Aedes 329 

albopictus is more dependent on water availability, and is therefore sensitive to changes in 330 

precipitation under future scenarios  (Mogi et al., 2015).  331 

3.4 Projected Range Expansion of Vectors 332 

The binary outputs generated by using the maximum test for sensitivity and specificity 333 

(MaxTSS) as the presence threshold (Figure 4), project an expansion in the distribution of Aedes 334 

aegypti at the edges of the Thar desert in Rajasthan, by 2030s, 2050s and 2070s. This expansion 335 

is most prominent in the RCP 8.5 scenario, and by 2070s, almost all of Rajasthan is projected to 336 

be suitable for Aedes aegypti. Earlier studies have also observed the persistence of Aedes aegypti 337 

in arid urban environments (Kaul and Rastogi, 1997; Marinho et al., 2016). Their close 338 

association with human habitats, tendency to breed in small containers and ability of eggs to 339 

withstand dessication have been theorized as the possible causes for this (Reinhold et al., 2018; 340 

Coalson et al., 2018). Minor increase in range of Aedes aegypti is also projected in the upper 341 

Himalayas of Arunachal Pradesh. 342 

On the other hand, the results project a substantial expansion of Aedes albopictus in the 343 

Leh (Ladakh) regions comprising of the upper and trans-Himalayas (Figure 4). Aedes albopictus 344 

has been established as a cold adapted species (Reinhold et al., 2018). Under present conditions 345 

it is already predicted to have a sizeable population in the lesser Himalayan region of Jammu and 346 

Kashmir. Climate change is projected to increase temperatures by approximately 1.5 – 2 ⁰C by 347 

2030s, 2.75 – 3.2 ⁰C in 2050s and 2.15 – 5 ⁰C in 2070s in the Himalayan region under different 348 

climate cange scenarios (based on data used for the study), which is likely to accelerate the 349 

developmental cycle of Aedes mosquitoes. Significant increase in range of Aedes albopictus is 350 

also projected in the Jaisalmer district of Rajasthan. 351 
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 352 

Figure 4 353 

Projected range expansion of (a) Aedes aegypti and (b) Aedes albopictus in future years under 354 

different climate change scenarios using the maximum of sensitivity and specificity as the 355 

threshold values for vector range.  356 

4 Discussion and Conclusions 357 

In India, several studies have been undertaken on the projected scenario of malaria and 358 

dengue with respect to climate change (Dhiman et al., 2011; Sarkar et al., 2019), while there are 359 

negligible studies on the altered distribution of vectors (Ogden et al., 2014; Kraemer et al., 360 

2019). Furthermore, the alarming rise in dengue in the last decade has received relatively less 361 

attention (Gupta and Reddy, 2013). The present study has found widespread distribution of 362 

dengue vectors in India, with a significant risk of expansion in some parts of Thar desert and 363 

upper Himalayas, due to climate change. In north east India as well as the western coastline, both 364 

Aedes aegypti and Aedes albopictus have high prevalence, which implies that the risk of dengue 365 

is high, though the reported cases of dengue do not reflect this (NVBDCP, 2020). Such areas 366 

warrant constant monitoring and increased surveillance for dengue incidence. Aedes aegypti was 367 

found more prevalent in the Deccan plateau and the semi-arid regions of Gujarat and Rajasthan, 368 

while Aedes albopictus in the eastern coastline. 369 

Aedes aegypti is projected to witness more widespread increase in distribution under RCP 370 

2.6 in 2030s and 2050s, whereas marginal reduction is observed in most parts of the country 371 
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under RCP 4.5 and 8.5. By 2070s, RCP 8.5 demonstrates a significant increase in suitability for 372 

Aedes aegypti in the eastern parts of the country. In contrast, the suitability for Aedes albopictus 373 

remains largely similar in most parts of the country by 2030s. Increase in the abundance of Aedes 374 

albopictus is projected in southern India, upper Himalayan regions of Leh (Ladakh) and 375 

Arunachal Pradesh by 2050s under RCP 8.5, and by 2070s. Aedes albopictus has been identified 376 

as a cold-adapted species in earlier studies (Tippelt et al., 2020). 377 

The states which regularly report high incidence of dengue, namely Gujarat, Maharashtra, 378 

Punjab and Karnataka (NVBDCP, 2020) are also predicted to have very high distribution of 379 

Aedes aegypti and/or Aedes albopictus. On the other hand, the model outputs are in disagreement 380 

with dengue incidence in the states of Rajasthan and north-eastern parts (NVBDCP, 2020). In 381 

Rajasthan, the distribution of both the vectors is low but the incidence of dengue is high i.e. 382 

Rajasthan ranked four in dengue incidence in the country in 2019 (NVBDCP, 2020). A study 383 

undertaken in 1997 (Kaul and Rastogi, 1997) found perennial prevalence of Aedes aegypti in 384 

Rajasthan (Kaul and Rastogi, 1997) which could not be captured by our models. The water 385 

storage practices in dry parts of Rajasthan were perhaps not captured by the climatic variables 386 

suitable for Aedes. In North eastern states, it is just the opposite, which can be explained by 387 

oversampling efforts in the north eastern states (NVBDCP, 2020). Further studies are warranted 388 

to ascertain the reasons for low incidence in north eastern states as well as the future risk of 389 

dengue in view of climate change. 390 

A striking observation in our study was that temperature related factors (bio3, bio4, bio6) 391 

contributed more significantly to the suitability of Aedes aegypti, whereas precipitation related 392 

factors (bio16, bio17, bio18) contributed more significantly to the suitability of Aedes albopictus. 393 

This difference is most likely a result of the differences in habitat preference of the two species. 394 

As discussed previously, breeding of Aedes aegypti in household containers enables it to breed in 395 

low precipitation conditions due to water storage practices of the community. At the same time, 396 

Aedes albopictus has a larger temperature tolerance (Tippelt et al., 2020), due to which 397 

precipitation is a more significant limiting factor for Aedes albopictus.    398 

Our study provides insights on baseline as well as projected distribution of Aedes aegypti 399 

and Aedes albopictus in India. The models are based on the assumption that there are no other 400 

dispersal limitations for the two vectors, therefore, may not represent the real scenario as the 401 

actual realized niche of the species may differ based on local factors (such as the water storage 402 

practices) which cannot be captured by country-wide models. Moreover, variability in resolution 403 

of sampling can introduce bias to model results, as observed in the north east. 404 

The areas with projected expansion in range warrant strengthened efforts for 405 

entomological as well as dengue surveillance. The projected maps thus generated may be useful 406 

in guiding the ground surveillance efforts in projected areas of distribution of both the vectors.  407 
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Open Research 414 

Primary occurrence locations of Aedine vectors in India was obtained from the GBIF database 415 

(https://www.gbif.org/). The GBIF occurrences dataset used for Aedes aegypti is available at 416 

(https://doi.org/10.15468/dl.b63mgt) and that for Aedes albopictus is available at 417 

(https://doi.org/10.15468/dl.jub5cx). The occurrence datasets include data from a large scale 418 

study that compiled occurrence coordinates from literature upto 2014 (Kraemer et al., 2015).  419 

An extensive literature survey was conducted to find Aedes occurrences in literature published 420 

after 2014. The data of these occurrences has been published in the dryad data repository 421 

(Dhiman and Hussain, 2021) and is available from the doi: 422 

https://doi.org/10.5061/dryad.6wwpzgmzq  423 

Data for baseline and projected (RCP2.6, RCP4.5 and RCP 8.5) bioclimatic variables was 424 

obtained from WorldClim (Fick and Hijmans, 2017) at 2.5 arc minutes resolution. Future 425 

projections of climate change thus obtained, were based on the CNRM-CM6-1 (Voldoire et al., 426 

2019) general circulation model developed from the Coupled Model Intercomparison Project 427 

Phase 6 (CMIP-6) (Eyring et al., 2016). 428 
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