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Abstract

Due to spatial scaling effects, there is a discrepancy in mineral dissolution rates in porous media measured at different spatial

scales. Many reasons for this spatial scaling effect can be given. We investigate one such reason, i.e. how pore-scale spatial

heterogeneity in porous media affects overall mineral dissolution rates. Using the bundle-of-tubes model as an analogy for

porous media, we show that the Darcy-scale reaction order increases as the statistical similarity between the pore sizes and

the effective-surface-area ratio of the porous sample decreases. The analytical results quantify mineral spatial heterogeneity

using the Darcy-scale reaction order and give a mechanistic explanation to the usage of reaction order in Darcy-scale modeling.

The relation is used as a constitutive relation of reactive transport at the Darcy scale. We test the constitutive relation by

simulating flow-through experiments. The proposed constitutive relation is able to model the solute breakthrough curve of the

simulations. In addition, our results imply that we can infer mineral spatial heterogeneity of a porous medium using measured

solute concentration over time in a flow-through dissolution experiment.
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Abstract20

Due to spatial scaling effects, there is a discrepancy in mineral dissolution rates in21

porous media measured at different spatial scales. Many reasons for this spatial scal-22

ing effect can be given. We investigate one such reason, i.e. how pore-scale spa-23

tial heterogeneity in porous media affects overall mineral dissolution rates. Using24

the bundle-of-tubes model as an analogy for porous media, we show that the Darcy-25

scale reaction order increases as the statistical similarity between the pore sizes and26

the effective-surface-area ratio of the porous sample decreases. The analytical results27

quantify mineral spatial heterogeneity using the Darcy-scale reaction order and give a28

mechanistic explanation to the usage of reaction order in Darcy-scale modeling. The29

relation is used as a constitutive relation of reactive transport at the Darcy scale. We30

test the constitutive relation by simulating flow-through experiments. The proposed31

constitutive relation is able to model the solute breakthrough curve of the simula-32

tions. In addition, our results imply that we can infer mineral spatial heterogeneity33

of a porous medium using measured solute concentration over time in a flow-through34

dissolution experiment.35

1 Introduction36

Geochemical reactions such as mineral dissolution play an essential role in de-37

termining water chemistry, soil formation, biogeochemical cycling, and global climate38

(Wen & Li, 2017). Mineral reactions can also occur during injection of CO2 in ground-39

water reservoirs (Ebigbo et al., 2012; Buscheck et al., 2014; Pogge von Strandmann40

et al., 2019). One of the most significant obstacles to understanding the geochemi-41

cal reactivity of natural subsurface environments stems from the multitude of spatial42

scales that have to be considered (Noiriel et al., 2012). Due to spatial scaling effects,43

mineral dissolution rates are known to be 3–6 orders of magnitude lower in the field44

than when measured in the laboratory (White & Brantley, 2003; Navarre-Sitchler &45

Brantley, 2007; Maher, 2010; Moore et al., 2012). The deviation in mineral dissolution46

rates strongly limits the extrapolation of kinetic dissolution models and parameters47

characterized in the laboratory to natural systems (R. Li et al., 2020).48

Many factors are responsible for the spatial scaling effects of mineral dissolution49

rates. This work focuses on how pore-size distribution—which contributes to hydraulic50

heterogeneity—and spatial mineral distribution cause such spatial scaling effects. L. Li51

et al. (2007) performed simulations with various settings of spatial mineral distribution52

and concluded that spatial mineral distribution has a significant scaling effect when the53

reactive minerals are of small but typical proportions. Experimental studies using a54

column packed with quartz and magnesite have confirmed the significant role of spatial55

heterogeneities in subsurface reactive transport and can be used to quantify the effect56

of spatial mineral distribution on dissolution rates (L. Li et al., 2013, 2014; L. Li &57

Salehikhoo, 2015). X-ray micro-tomography provides observations of the impact of58

physical and chemical heterogeneity on reaction rates in multimineral porous media59

(Al-Khulaifi et al., 2017, 2018, 2019; Menke et al., 2016, 2018). Fischer et al. (2014)60

and Fischer and Luttge (2017) studied how mineral surface roughness at the nanometer61

scale affects surface reaction rates and proposed to upscale the mineral reaction rate62

using Monte-Carlo simulations. Ma et al. (2021) quantified the accessible surface area63

of minerals in a sandstone using scanning electron microscopy (SEM) images and64

Brunauer-Emmett-Teller (BET) surface area measurements.65

Regarding the influence of hydraulic heterogeneity, Wen and Li (2017) and Jung66

and Navarre-Sitchler (2018a) performed reactive transport simulations on stochasti-67

cally generated permeability fields and studied how hydrologic heterogeneity affects68

mineral dissolution rates. Using Monte-Carlo simulations, Jung and Navarre-Sitchler69

(2018b) further studied the time dependency of mineral dissolution rates, and Wen70
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and Li (2018) developed an upscaled rate law for mineral dissolution in heterogeneous71

media under variable residence-time and length-scale conditions. R. Li et al. (2020)72

upscaled mineral dissolution rates in a porous medium with a random permeability73

field using the fluid travel-time distribution function. The works mentioned above used74

the transition state theory (Lasaga, 1998) to model mineral dissolution rates, with a75

macro-scale reaction order of unity (n = 1). This is reasonable since there are no phys-76

ical explanations why this macro-scale reaction order should not be one (Lasaga, 1998;77

Brantley & Conrad, 2008).78

However, there are rate models with a macro-scale reaction order of 2 in kinetics79

of crystal growth (Nancollas, 1968; Reddy, 1975, 1977). Such second-order kinetics80

are used for modeling surface spiral growth (A. E. Nielsen, 1984; Teng et al., 2000).81

Considering calcite as our mineral of particular interest, fitting experimental data using82

a reaction order larger than 1 is common, especially when the saturation is close to83

equilibrium (Plummer & Wigley, 1976; Plummer et al., 1978; Palmer, 1991; Svensson84

& Dreybrodt, 1992). A higher reaction order is also observed in modeling calcite85

dissolution in seawater (e.g., Subhas et al., 2015; Naviaux et al., 2019).86

In this work, we use analytical techniques to develop a constitutive relation of87

mineral dissolution kinetics in porous media based on models with a reaction order88

n > 1. We characterize hydraulic heterogeneity and mineral spatial heterogeneity by89

the longitudinal dispersivity and the reaction order. We use the bundle-of-tubes anal-90

ogy to show how the reaction order relates to both hydraulic and spatial mineral91

heterogeneity in porous media. Furthermore, we simulate experimental scenarios in-92

volving advective and dispersive transport using such a constitutive relation. Our93

results show how concentration breakthrough curves of the reactive species reveal in-94

formation of both the hydraulic and chemical heterogeneity of porous media.95

2 Materials and methods96

This section first introduces reactive transport models at the pore scale and the97

Darcy scale. Then we lay out statistical distributions of pore sizes and effective-surface-98

area ratios. Such distributions can thus define the volume-averaged concentration.99

Constitutive relations based on the Darcy-scale reaction order is established using100

Taylor series expansions. We check the applicability of the constitutive relations by101

comparing the modeled concentration and the volume-averaged concentration using a102

goodness of fit measure, the Jensen Shannon divergence. Finally, we explain how one103

can apply the proposed constitutive relation using a flow-through experiment.104

2.1 Reactive transport at the pore scale105

We use the advection-diffusion-reaction equation to model reactive transport at106

the pore scale. Consider an elongated pore such that the concentration of the mineral-107

forming solute can be approximated by a one-dimensional (1D) expression:108

∂C∗

∂t∗
+ u

∂C∗

∂z∗
−D∂

2C∗

∂z∗2
= q, (1)

where C∗ is the solute concentration in the fluid, u is the fluid velocity, D is the109

molecular diffusivity of the solute, and q is the source term defined by a mineral110

dissolution model. A common mineral dissolution model is of second order:111

q =
A

Vf
(kd − kpC

∗2), (2)

where A is the mineral surface area, Vf is the fluid volume, kd is the dissolution rate112

constant, and kp is the precipitation rate constant. We relate the dissolution model113

with a more prevalent formulation involving the solubility product, Ksp, and the ion114
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activity product, IAP:115

Rdis = q
Vf

A
= kd

(
1− IAP

Ksp

)
, (3)

where Rdis is the mineral dissolution rate. One can switch between the two forms116

by stating IAP = C2 and Ksp = kd/kp. The statement, IAP = C2 means the two117

mineral-forming ions have equal concentration, which arises from the assumption of118

electroneutrality of ions close to the mineral surface (Levenson & Emmanuel, 2013).119

We relate the dimensional and nondimensional quantities by120

t∗ = [t] t, z∗ = Lz, C∗ = [C]C, (4)

and we nondimensionalize equations (1) and (2) by the following scaling of time and121

concentration122

[t] =
L2

D
, [C] =

√
kd

kp
, (5)

where L is a characteristic length. The variables in square brackets refer to character-123

istic quantities. Thus we have a nondimensional equation of reactive transport124

∂C

∂t
+ Pe

∂C

∂z
− ∂2C

∂z2
= Da(1− C2), (6)

Pe =
uL

D
, Da =

A

Vf

L2
√
kdkp

D
. (7)

where Pe is the Péclet number and Da is the Damköhler number.125

First-order-kinetics models are uncommon, since chemical reactions often involve126

two reagents (Cussler, 2009). If one wanted to make use of first-order kinetics, one127

would have to assume the concentration of a mineral-forming ion is in excess or con-128

stant (Meile & Tuncay, 2006) or limit the usage of first-order kinetics to low solute129

concentrations (Kaufmann & Dreybrodt, 2007). Nonetheless, we introduce the model130

of first-order mineral dissolution kinetics,131

q =
A

Vf
(kd − kpC

∗). (8)

Combining equations (1) and (8), we scale time and concentration by132

[t] =
L2

D
, [C] =

kd

kp
, (9)

such that the Péclet and the Damköhler numbers are133

Pe =
uL

D
, Da =

A

Vf

L2kp

D
. (10)

The nondimensional model of first-order reactive transport is therefore134

∂C

∂t
+ Pe

∂C

∂z
− ∂2C

∂z2
= Da(1− C). (11)

We define the velocity in a pore using the Hagen-Poiseuille equation,135

u =
r2

8

∆P

ηLz
, (12)

where r is the pore radius, η is the dynamic viscosity of the fluid, ∆P is the pressure136

difference between the inlet and the outlet, and Lz is the pore length.137
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2.2 Reactive transport at the Darcy scale138

We use the bundle-of-tubes analogy to model reactive transport at the Darcy139

scale (Kozeny, 1927). We define the specific mineral surface area of the porous medium140

as141

S =
A

V
=

2Lzπ
∑N
i=1 ωiri
V

, (13)

where V is the bulk volume of the porous medium, ω is the ratio between mineral142

surface area and the total surface area of a pore, and N is the total number of pores.143

We assume that the pores have the same length, Lz, as the porous medium, such that144

the tortuosity is 1. The porosity of the porous medium is145

φ =
Vf

V
=
Lzπ

∑N
i=1(ri)

2

V
. (14)

Dividing equation (13) by equation (14), we obtain146

S

φ
=
A

Vf
=

2
∑N
i=1 ωiri∑N
i=1(ri)2

. (15)

Recall the Damköhler number for first-order kinetics, equation (10), the Damköhler147

number at the Darcy scale is148

Dad =
S

φ

L2
zkp

D
, (16)

where the characteristic length, L, is chosen to be the length of the porous medium,149

Lz. The Darcy-scale Damköhler number for second-order kinetics is150

Dad =
S

φ

L2
z

√
kdkp

D
. (17)

Since we consider the porous medium as a bundle of tubes, the seepage velocity of the151

porous medium can be defined using a volume-averaged velocity,152

ū =

∑N
i=1 ui(ri)

2∑N
i=1(ri)2

=

∑N
i=1(ri)

4

8
∑N
i=1(ri)2

∆P

µLz
. (18)

Hence, the Péclet number at the Darcy scale is153

Ped =
ūLz
D

. (19)

Dispersion effects arise when the pore sizes are not uniform (Carbonell, 1979; Arriaza154

& Ghezzehei, 2013; Meng & Yang, 2017). Therefore, we introduce a longitudinal155

dispersion coefficient,156

DL = αLū, (20)

where αL is the longitudinal dispersivity with the unit of length. We derived the157

longitudinal dispersion coefficient using the spatial moments of the averaged solute158

concentration of the bundle of tubes model,159

DL = ū2t

∑N
i=1(ri)

6
∑N
i=1(ri)

2(∑N
i=1(ri)4

)2 − 1

 = ū2t f(r). (21)

The shape factor, f(r), abbreviates the expression of pore sizes in equation (21).160

Detailed derivations are presented in Appendix A. The longitudinal dispersivity is161

αL = ūt f(r) = z̄ f(r), (22)
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where z̄ is the center of mass of an instantaneous source injected in the porous do-162

main. The spatial moment analysis showed that the longitudinal dispersivity increases163

linearly as the distance traveled of an instantaneous source, which is reasonable in an164

infinite domain. In recent studies based on pore-network modeling, Mahmoodlu et al.165

(2020) observed the longitudinal dispersivity increases as travel distance increases.166

By scaling the longitudinal dispersion coefficient by the molecular diffusivity167

yields the nondimensional reactive transport model at the Darcy scale,168

∂C

∂t
+ Ped

∂C

∂z
−
(
1 + (Ped)2t f(r)

) ∂2C

∂z2
= qd, (23)

where qd is the reaction term that is yet to be defined. Note that when all pores have169

the same radius and effective-surface-area ratio, equation (23) reduces to the equation170

for a single pore, equation (6). In the next section, we discuss statistical distributions171

of pore sizes and effective-surface-area ratios.172

2.3 Statistical distributions of pore sizes and effective-surface-area ra-173

tios174

The pore sizes of porous media usually follow a log-normal distribution (Shi175

et al., 1991; Hefny et al., 2020). The probability density function of a log-normally176

distributed variable, r, is177

p(r) =
1

σr
√

2π
exp

(
− (log (r)− µ)2

2σ2

)
, (24)

where µ and σ are the mean and standard deviation of the variable’s natural logarithm,178

respectively. The sum of pore sizes raised to the power of m can be described by a179

raw statistical moment,180

1

N

N∑
i=1

(ri)
m = E(rm) =

∫ ∞
0

rmp(r)dr. (25)

If the pore-size distribution is known, the permeability, k, of the bundle can be calcu-181

lated as182

k =

∑N
i=1(ri)

4

8
∑N
i=1(ri)2

=
E(r4)

8E(r2)
. (26)

Using the moments of the lognormal distribution, we can now clarify the shape factor,183

f(r) = exp (4σ2)− 1. (27)

Since we are interested in not only the pore-size distribution but also the effective184

surface area of the reactive minerals, we utilize the effective-surface-area ratio, ω, which185

has a value between zero and one. A convenient choice for modeling the distribution of186

a variable bounded by zero and one is the beta distribution. The probability density187

function of the beta distribution is188

p(ω) =
Γ(a+ b)ωa−1(1− ω)b−1

Γ(a)Γ(b)
, (28)

where Γ(·) is the gamma function. Variables a and b shape the beta distribution.189

The specific surface area over porosity, S/φ, which is a part of the Darcy-scale190

Damköhler number, equations (16) and (17), can be defined as191

S

φ
=

2
∑N
i=1 ωiri∑N
i=1(ri)2

=
2E(ωr)

E(r2)
. (29)

–6–
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Such a definition of S/φ depends on the pore geometry. Inferring from Hussaini and192

Dvorkin (2021)’s compilation of specific surface area versus porosity using digital im-193

ages of natural rocks, S/φ can range from 0.15 (Fontainebleau sandstone) to 0.7 (Ken-194

tucky sandstone) when E(ω) = 1.195

2.4 A constitutive relation for reaction at the Darcy scale196

A constitutive relation is an additional equation that specifies properties of a197

material. For example, the longitudinal dispersivity describes the dispersion of solute198

introduced by variations in fluid velocities in a porous material. In this section, we199

develop a constitutive relation that models the average solute concentration of a porous200

medium with varying reaction rates in pores.201

2.4.1 First-order kinetics202

Before we approach the full reactive transport problems – equations (6) and (23)203

– we start with a single pore involving only mineral dissolution,204

dC

dt
= Da(1− C), C(t = 0) = C0, (30)

where C0 is the initial concentration of the mineral-forming solute in the pore. We205

consider an aspect ratio, r/Lz, small enough such that a volume-averaged concentra-206

tion is representative. Using equation (10), the Damköhler number in a cylindrical207

pore is208

Da =
2ω

r

L2
zkp

D
, (31)

where 2ω/r defines the pore-scale geometry and L2
zkp/D defines the physics of the209

problem. In this work, we focus on analyzing how pore-scale geometry affects solute210

concentration and reaction rate over time and assume L2
zkp/D constant. We abbreviate211

L2
zkp/D to Dap. The solution for the single-pore reaction problem is212

C(t; ω, r) = (C0 − 1)e(−2Dap ω/r)t + 1. (32)

We define the volume-averaged solution as213

Cavg(t) =

∫ 1

0

∫ ∞
0

C(t; ω, r)p(ω, r)r2drdω∫ ∞
0

p(r)r2dr

(33)

= (C0 − 1)

∫ 1

0

∫ ∞
0

e(−2Dap ω/r)tp(ω, r)r2drdω∫ ∞
0

p(r)r2dr

+ 1. (34)

The bounds of the integral over the pore size, r, should correspond to the bounds of the214

prescribed pore-size distribution. Consider C0 = 0 and expand the volume-averaged215

solution using a Taylor series around t = 0:216

Cavg(t) = −
∞∑
k=0

(
1

k!

∫ 1

0

∫ ∞
0

(−2 Dap ωt

r

)k
p(ω, r)r2drdω

)
/E(r2) + 1 (35)

= −
∞∑
k=1

(
(−2 Dap t)

k

k!

∫ 1

0

∫ ∞
0

p(ω, r)ωkr2−kdrdω

)
/E(r2) (36)

= −
∞∑
k=1

(
(−2 Dap t)

k

k!

E(ωkr2−k)

E(r2)

)
(37)

= 2 Dap t
E(ωr)

E(r2)
− 2(Dap t)

2 E(ω2)

E(r2)
+O(t3). (38)

–7–
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Let us now describe the Darcy-scale reaction in the same manner as we did for a single217

pore, equation (30). In this case, the definition of the Darcy-scale Damköhler number,218

Dad = 2 Dap
E(ωr)

E(r2)
, (39)

leads to a first-order approximation of the volume-averaged concentration. To bet-219

ter approximate Cavg, we propose a nonlinear reaction-rate model as a constitutive220

relation,221

dC

dt
= Dad(1− C)n, C(t = 0) = C0, (40)

where n is the reaction order (Lasaga, 1998). Many researchers have attempted to222

explain values for the reaction order in terms of dissolution or precipitation processes223

(e.g., Blum & Lasaga, 1987; Teng et al., 2000). However, attributions of a process224

on the basis of the value of this exponent is generally not defensible without further225

observations (Brantley, 2008). For further discussion, see Brantley (2003, 2008).226

The solution to the nonlinear reaction-rate model, equation (40), is227

C(t) = 1−
[
Dad(n− 1) t+ (1− C0)1−n]1/(1−n)

. (41)

Its Taylor series expansion around t = 0 while C0 = 0 is228

C(t) = 1−
∞∑
k=0

∏k−1
j=1 (j(n− 1) + 1)

k!
(−Dad t)

k (42)

= Dad t−
n

2
(Dad t)

2 +
n(2n− 1)

6
(Dad t)

3 +O(t4). (43)

We observe that the Darcy-scale Damköhler number, equation (39), still matches the229

first-order term of the volume-averaged solution, equation (38). If we define230

n =
E(ω2)E(r2)

E2(ωr)
, (44)

then the nonlinear reaction-rate model approximates the volume-averaged concentra-231

tion to the second order with respect to time. By Cauchy-Schwarz inequality, we infer232

n ≥ 1, which agrees with experimental observations. The inverse square root of this233

definition of the reaction order, n, is also known as Tucker’s congruence coefficient,234

which assesses similarity between two variables (Lorenzo-Seva & ten Berge, 2006).235

Figure 1 shows scatter plots of pore sizes and effective-surface-area ratios. Each236

point represents an observation of the pore size and the effective-surface-area ratio in237

a porous sample. Tucker’s congruence coefficient, rc, measures the similarity between238

pore size and effective-surface-area ratio. From the leftmost figure to the rightmost239

figure, the congruence coefficient decreases as the observations become less similar,240

or more heterogeneous. Since the reaction order, n, is the squared inverse of the241

congruence coefficient, the reaction order increases as the heterogeneity increases. Such242

a definition of the reaction order is a function of the geometric variables ω and r. Thus243

we can use the reaction order to infer pore-scale spatial heterogeneity of minerals.244

2.4.2 Second-order kinetics245

We model the single-pore problem with second-order kinetics by246

dC

dt
= Da(1− C2), C(t = 0) = 0, (45)

where the solution is247

C = tanh (Da ·t), (46)

–8–
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Figure 1. This figure shows scatter plots of pore sizes and effective-surface-area ratio. The

title of each plot shows the reaction order, n, and Tucker’s congruence coefficient, rc.

which is an odd function. Using equation (7), the Damköhler number in a cylindrical248

pore is249

Da =
2ω

r

L2
z

√
kdkp

D
, (47)

where L2
z

√
kdkp/D, which we abbreviate to Dap, defines the physics of the prob-250

lem for second-order kinetics. The volume-averaged concentration is defined using251

equation (33), and we apply a Taylor series expansion to the volume-averaged concen-252

tration,253

Cavg(t) =

∞∑
k=1

(
B2k4k(4k − 1)

(2k)!

∫ 1

0

∫ ∞
0

(
2 Dap ωt

r

)2k−1

p(ω, r)r2drdω

)
/E(r2) (48)

=

∞∑
k=1

(
B2k4k(4k − 1)(2 Dap t)

2k−1

(2k)!

∫ 1

0

∫ ∞
0

p(ω, r)ω2k−1r3−2kdrdω

)
/E(r2) (49)

=2 Dap t
E(ωr)

E(r2)
− (2 Dap t)

3

3

E(ω3r−1)

E(r2)
+O((Dap t)

5), (50)

where B2k is the Bernoulli number (Oldham et al., 2009). The Taylor series expansion254

of the hyperbolic tangent function, equation (46), converges for Da t < π/2, which is255

not of concern since we utilize only the derivatives of Cavg(t = 0).256

We propose the following constitutive relation that describes the solute concen-257

tration at the Darcy scale,258

dC

dt
= Dad(1− C2

)n, C(t = 0) = 0. (51)

We do not attempt to find a solution for C. However, we can still expand C around259

t = 0 with a Taylor series:260

C = Dad t−
n(n+ 1)

6
(Dad t)

3 +O(t4), (52)

which is also an odd function. See Appendix B for detailed derivations. Comparing261

the third-order term of equation (50) with that of equation (52) yields262

n(n+ 1)

2
=

E(ω3r−1)E2(r2)

E3(ωr)
. (53)

One can utilize the quadratic formula to explicitly determine n,263

n =

(
−1 +

√
1 + 8E(ω3r−1)E2(r2)/E3(ωr)

)
/2, (54)

where we consider only the larger value of n as a solution. Note that the reaction264

orders for first- and second-order kinetics are non-dimensional and, most importantly,265

independent of the length scale and the reaction rate constants.266
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2.5 Goodness of fit between the pore-scale and the Darcy-scale concen-267

trations268

There exists a variety of goodness-of-fit measures between models and experi-269

mental observations. For example, the coefficient of determination, R2, is often used270

to determine the kinetic rate law when applying the integral method (Brantley & Con-271

rad, 2008; Zhao & Skelton, 2014). The mean-squared error is also a goodness-of-fit272

measure, and the least-squares approach tends to minimize such a metric. We use an-273

other goodness-of-fit measure, the Jensen-Shannon divergence, which is based on the274

Kullback-Leibler divergence (Kullback & Leibler, 1951). The Kullback-Leibler diver-275

gence between some unknown distribution, p(x), and an approximating distribution,276

q(x), is:277

KL(p‖q) =

∫
p(x) log2

(
p(x)

q(x)

)
dx. (55)

The Kullback-Leibler divergence satisifies KL(p‖q) ≥ 0 with equality if, and only278

if, p(x) = q(x) (Bishop, 2006). Although KL(p‖q) ≥ 0, it may diverge to infinity279

depending on the underlying densities (F. Nielsen, 2020). Thus we use the Jensen-280

Shannon divergence,281

JS(p‖q) =
1

2

(
KL

(
p‖p+ q

2

)
+ KL

(
q‖p+ q

2

))
(56)

=
1

2

∫ (
p(x) log2

(
2p(x)

p(x) + q(x)

)
+ q(x) log2

(
2q(x)

p(x) + q(x)

))
dx, (57)

which is bounded between 0 and 1 when using base-2 logarithms (Lin, 1991). Through-282

out this work, we use the Jensen-Shannon distance, which is defined as the square root283

of the Jensen-Shannon divergence.284

Such a metric measures the distance between probability distributions (Endres &285

Schindelin, 2003; Österreicher & Vajda, 2003; Levene & Kononovicius, 2019). The fol-286

lowing describes how we apply this measure to solute concentration over time, Cavg(t)287

and C(t). Suppose we regard solute concentration over time as cumulative distribution288

functions. In that case, we measure the Jensen-Shannon divergence of their deriva-289

tives, which can be seen as the probability density functions or the reaction rates over290

time.291

When the observed solute concentration is not monotonically increasing over292

time like a cumulative distribution function, we simply use the root-mean-square error293

(RMSE) as a quality measure of the constitutive relation,294

RMSE =

√√√√√
∫

(p(x)− q(x))2dx

max (x)−min (x)
. (58)

2.6 Determination of the Darcy-scale Damköhler number, Dad, and the295

reaction order, n, using power series296

We test the constitutive relation using the volume-averaged concentration, Cavg(t),297

which is an analogy of solute concentration measurements from a dissolution experi-298

ment. Assume the solute concentration can be described by the constitutive relation299

within a certain error. Then we can use the Taylor series expansions, equations (43)300

and (52), to obtain the Darcy-scale Damköhler number,301

Dad = C
′

avg(t = 0), (59)

–10–



manuscript submitted to Water Resources Research

which is the initial rate of reaction. When the kinetics is of first order, the reaction302

order is obtained by differentiating equation (43) twice,303

n = −C
′′

avg(t = 0)

(Dad)2
. (60)

Differentiating equation (52) thrice and rearranging yields the reaction order for second-304

order kinetics,305

n(n+ 1) = −C
′′′

avg(t = 0)

(Dad)3
. (61)

This method of determining Dad and n utilizes power-series expansion and requires306

only the derivatives of the solute concentration at t = 0.307

We consider three sets of log-normally distributed pore sizes, R1, R2, and R3,308

which have S/φ ≈ 0.6 but different variances. The pore sizes are chosen such that they309

range from 10–80µm (Gong et al., 2020). Likewise, we assume the effective surface310

area follows the beta distribution, where Ω1 considers most pores fully reactive, Ω2311

assumes a larger variance of mineral surface area in the pores, and Ω3 implies that the312

reactive mineral constitutes a small portion of the porous sample. Figure 2 shows the313

details of the aforementioned probability distributions.314

The products of the random variables R and Ω form nine scenarios of the bundle-315

of-tubes model, which can be used as benchmarks for our power-series approach to316

obtain the Darcy-scale Damköhler number and the reaction order. We compare this317

method with a goodness-of-fit minimization using both Dad and n as unknowns, sim-318

ilar to the ideas of nonlinear least-squares model fitting (Fogler, 2016). Initially, the319

pores are filled with dissolving fluid with no solute concentration, C = 0. Then the320

mineral starts to dissolve into the fluid, such that the solute concentration increases.321

We assume we can observe the average concentration, Cavg, without transport effects.322

To capture the full reaction behavior, the simulation ends when the solute concentra-323

tion, Cavg, is larger than 0.99. The physics related parameters, Dap, is set as 50, such324

that the Darcy-scale Damköhler numbers of the scenarios are at a similar scale.
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0.15

0.20

p
df

R1 : µ = 3.5, σ = 0.1

R2 : µ = 3.42, σ = 0.25

R3 : µ = 3.14, σ = 0.5

0.00 0.25 0.50 0.75 1.00
ω(−)
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5.0

7.5

10.0

p
df

Ω1 : a = 10.0, b = 1.0

Ω2 : a = 5.0, b = 5.0

Ω3 : a = 2.0, b = 10.0

Figure 2. This figure shows the probability density functions of the distribution of pore sizes

and effective-surface-area ratio. The legends state the essential parameters for generating the

probability density functions.

325

2.7 Flow-through experiment326

In the previous section, we test the constitutive relation considering only mineral327

reaction. To measure the solute concentration of the fluid in a porous sample, one has328
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to push the fluid out of the porous sample. We now discuss this full reactive transport329

problem. Consider a flow-through experiment, i.e., injecting fluid that dissolves the330

mineral in a porous sample. We collect the fluid from the outlet and measure the solute331

concentration over time. Before the experiment, the porous sample should be saturated332

by the dissolving fluid. After a certain amount of time, the fluid has accumulated an333

initial solute concentration. Then we start the flow-through experiment by injecting334

fluid without solute under high Péclet number. We take fluid samples from the outlet335

and measure the solute concentration. Since we are injecting fluid with zero solute336

concentration, we expect the measured solute concentration at the outlet to decrease337

over time. When the outlet concentration is close to zero, we reduce the Péclet number338

to 0.1–1% of the original Péclet number in order to observe an increase of the outlet339

solute concentration. This process creates a V-shaped curve of outlet concentration340

over time.341

We use FEniCS (Alnaes et al., 2015) to solve the transient initial boundary value342

problem of each pore and apply equation (33) to obtain the average concentration.343

Details of the numerical methods are explained in Appendix C. We assume the porous344

sample can be described by a combination of the pore-size distribution, R1, and the345

effective-surface-area ratio, Ω3. In the following subsections, we discuss two cases of346

low and high Damköhler numbers. In both cases, we consider the molecular diffusivity,347

D, as 5× 10−9 m2 s−1.348

2.7.1 The low Damköhler-number case, Dad = 0.1349

The Darcy-scale Damköhler number, equation (39), is proportional to the length350

scale squared. This case is suitable when the mineral has low reaction rates or when the351

porous domain is short (small length scale), e.g., a 5 cm rock sample in a laboratory. We352

consider this our ”small length-scale scenario” for which the outlet solute concentration353

can be measured. Since the Damköhler number is low, the solute concentration during354

injection of the dissolving fluid should be far from chemical equilibrium. Therefore,355

we assume the reaction is of first order.356

Following the procedure of the flow-through experiment, we set the initial Péclet357

number as 10 and the Darcy-scale Damköhler number is 0.1. We reduce the Péclet358

number to 0.01 at 0.15 nondimensional time. The simulation ends at 1.5 nondimen-359

sional time, which for the 5 cm rock sample mentioned above would correspond to360

about 8.7 days.361

The solute concentration over time at the outlet of the porous sample is collected362

from the simulation data. Knowing the Péclet number and that the mineral reaction363

is of first order, we fit the observed concentration over time with the reactive transport364

model,365

∂C

∂t
+ Ped

∂C

∂z
−
(
1 + (Ped)2t f(r)

) ∂2C

∂z2
= Dad(1− C)n. (62)

The shape factor, f(r), is defined using equation (21). Utilizing the optimization366

procedures in SciPy (Virtanen et al., 2020), we find Dad and n by minimizing the367

RMSE between the observation and the model.368

Another method of fitting Dad and n is to utilize a part of Cavg(t), where the369

diffusion effects are dominant enough (Pe � 1) such that we can treat the concen-370

tration as constant over space. Owing to the divergence theorem and the boundary371

condition C(0, t) = 0, results in372

∂C

∂t
+ Ped C(1, t) = Dad(1− C)n. (63)
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Then, we can perform least-squares fitting on the left-hand side to determine Dad373

and n. Figure 3 shows the outlet concentration of the flow-through experiment and374

highlights the region in which we consider diffusion to be dominant. Such an approach375

relies heavily on the strong-diffusion assumption, and is therefore not suitable for the376

high Damköhler-number case, discussed in the next section.377
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Figure 3. The outlet concentration over time of the low Damköhler-number problem. The

orange line shows the part, where we apply the least-squares fitting technique (equation (63)).

The vertical dashed line indicates the time, t = 0.15, when the injection rate is reduced.

2.7.2 The high Damköhler-number case, Dad = 4× 104
378

Consider a field experiment in an aquifer, where the length scale is on the order379

of meters. Here, a fluid is injected in one well and produced at another well. In this380

case, it may not be possible to observe a concentration breakthrough at the outlet.381

Thus, we perform simulations of a flow-through experiment and measure the solute382

concentration at the inlet over time. The Darcy-scale Damköhler number is 4× 104.383

We assume a second-order kinetics model for the mineral reaction, and our reactive384

transport model is385

∂C

∂t
+ Ped

∂C

∂z
−
(
1 + (Ped)2t f(r)

) ∂2C

∂z2
= Dad(1− C2

)n. (64)

We consider three cases of intial Péclet numbers, 4× 103, 8× 103, and 8× 104. The386

injection stops at 2× 10−6 dimensionless time, and the simulation ends at 1× 10−5
387

dimensionless time, which is roughly 231.5 days considering a 100 m simulation domain.388

Though it is practically not possible to observe the inlet concentration during389

the injection phase, we perform the fitting of Dad, n, and f(r) using all information of390

Cavg at the inlet. In the latter phase when injection stops (rising limb of the curve in391

Figure 3), it should be possible to determine the concentration at the inlet by sampling392

the fluid in the injection well.393

3 Results394

In this section, we show the benchmarks of the power-series approach and the395

simulations of flow-through experiments. Then, we discuss the results in section 4.396
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3.1 Benchmark of the power-series approach397

We benchmark the power-series approach that obtains the reaction order, n, and398

the Darcy-scale Damköhler number, Dad, using a bundle of tubes characterized by399

the distributions of pore sizes and effective-surface-area ratio described in Section 2.6.400

Figures 4 and 5 show the benchmark for the first-order kinetics and the second-401

order kinetics, respectively. In the upper part of the figures, we plot the contour lines402

of log-scaled Jensen Shannon divergence between Cavg and C. The red points indicate403

the approximation of Dad and n using the power-series approach. In an ideal case, the404

red points should be in the minimum of the Jensen Shannon divergence. In the lower405

part of the figures, we plot the concentration over time of the scenarios that performed406

the worst.407
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Figure 4. The upper part of the figure shows the contours of the log-scaled Jensen Shannon

divergence between the observed concentration and the modeled concentration of first-order ki-

netics using the constitutive relation. The red points are the Darcy-scale Damköhler number and

the reaction order approximated by the power-series approach (equations (59) and (60)). The

legend shows the value of the log-scaled Jenson Shannon divergence using a gray scale, corre-

sponding to the brightness of the colored contour lines. The lower part of the figure shows the

concentrations over time Cavg and C of the scenarios R1Ω3, R3Ω3, and R3Ω2.

3.2 Flow-through experiment408

Figure 6 shows the observed concentration, Cavg, and the modeled concentration,409

C. Table 1 shows the Darcy-scale Damköhler number, the reaction order, and shape410

factor obtained by direct calculation (equations (39), (44) and (54)) and by RMSE411

minimization of the low and high Damköhler-number cases (Dad = 0.1 and Dad =412

40 000, respectively) and corresponding to the R1Ω3 distribution. The results of the413

least-squares curve fitting method, used only in the low Damköhler-number scenario,414

are Dad = 0.1 and n = 1.38.415
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Figure 5. The upper part of the figure shows the contours of the log-scaled Jensen Shannon

divergence between the observed concentration and the modeled concentration of second-order

kinetics using the constitutive relation. The red points are the Darcy-scale Damköhler number

and the reaction order approximated by the power series approach (equations (59) and (61)).

The legend shows the value of the log-scaled Jenson Shannon divergence using a gray scale, cor-

responding to the brightness of the colored contour lines. The lower part of the figure shows the

concentrations over time Cavg and C of the scenarios R2Ω3, R3Ω3, and R3Ω2, respectively.
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Figure 6. The figures show the concentration Cavg (solid lines) and the modeled concentra-

tion C (dashed lines) of the low and high Damköhler-number cases on the left and right panels,

respectively. The top panel shows the cases with fitting Dad and n. The bottom panel shows the

cases with fitting Dad, n, and the shape factor, f(r), additionally.
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Table 1. This table summarizes the Darcy-scale Damköhler number, Dad, the reaction order,

n, and the shape factor, f(r), obtained by fitting the concentration-over-time curve using the

constitutive relation with the RMSE metric. The values of the direct calculation are the result of

prescribing Dap and the R1Ω3 distribution. In the low Dad case, we assumed first-order kinetics.

Hence we use equation (44) to calculate the reaction order. We assumed second-order kinetics

for the high Da case, and equation (54) is used for calculating the reaction order for second-order

kinetics.

Initial Ped 10 4 000 8 000 40 000

Direct calculation

Dad 0.1 40 000
n 1.40 1.77
f(r) 4.081× 10−2

Minimum RMSE

Dad 0.1 52 528 45 154 38 464
n 1.57 1.57 1.66 1.30

Minimum RMSE with shape factor fitting

Dad 0.1 50 887 42 049 38 950
n 1.68 1.55 1.59 1.53
f(r) 2.39× 10−2 1.402× 10−1 1.222× 10−1 3.168× 10−2

4 Discussion416

4.1 Benchmark of the power-series approach417

In Figure 4, we observed that the power-series approach obtains Dad and n close418

to the minimum Jensen Shannon distance. The connections between nonlinear fitting419

of the parameters, Dad and n, and the geometric information of the porous medium420

are established since the power-series approach is exact for retrieving expected values421

of the pore-size and the effective-surface-area distributions.422

In Figure 5, we observed general agreement of Dad and n obtained by the power-423

series approach to those at the minimum Jensen Shannon distance. As the variance of424

the pore-size increases, the obtained Dad and n (red points) stray from the minimum425

Jensen Shannon distance. In the selected concentration plots, the modeled concen-426

tration fits well when C < 0.5. Some discrepancy between C and Cavg is present427

when C > 0.5. Comparing to the results of first-order kinetics, where C fits Cavg well428

throughout all concentrations, our averaged model of second-order kinetics can only429

fit reactions far from equilibrium (e.g., C < 0.5).430

The power-series approach of obtaining Dad and n suffers from the fact that:431

1. reaction rates at zero concentration can be hard to obtain, and432

2. numerical differentiation of higher-order derivatives can yield spurious results.433

Therefore, we require other nonlinear fitting methods by minimizing the divergence434

between models and observations. In the next section, we discuss the intricacies of435

nonlinear fitting of solute concentration during flow-through experiments.436
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4.2 Flow-through experiment437

The top-left panel of Figure 6 shows the low Damköhler-number, first-order-438

reaction case, where both the RMSE minimization and the least-squares fitting method439

fits the outlet concentration, Cavg. Both methods of obtaining Dad and n are accu-440

rate within 15% relative error as confirmed by direct calculation from pore-size and441

effective-surface-area distributions. The good agreement can be attributed to the fact442

that the solute can be mostly flushed out from the porous domain, due to the low443

Damköhler number. Hence, the solute concentration in each tube goes down to almost444

zero, and spatial gradients of the solute concentration in the z direction are negligible.445

This creates a situation similar to the problem considering only reaction effects, which446

is not the case for the scenarios of high Damköhler-number, second-order kinetics.447

Focusing on the high Damköhler-number scenarios, we observe general agreement448

of fitted parameters. For the case of initial Ped = 4 000, the error in Dad can be449

attributed to the fact that the volume injected is not enough, such that the dissolution450

in smaller pores is not observed in Cavg. The case of initial Ped = 8 000 approximated451

Dad closer to the prescribed value than the previous case. The third case of initial452

Ped = 40 000, performed the best in retrieving Dad. This may be because this case is453

similar to the low Damköhler-number case, in which the initial solute concentration of454

all pores is pushed out from the porous domain, such that Cavg is close to zero. The455

purpose of comparing these three cases is to emphasize that the inversion of parameters456

is influenced by how we perform the injection test, namely, by the selection of the initial457

Péclet number.458

Furthermore, we performed a fitting in all cases considering the shape factor as459

unknown. The bottom panels of Figure 6 show the cases where we fit the shape factor,460

f(r), in addition to Dad and n. For the low Damköhler number case, we have a good461

fit of f(r) within an order of magnitude. However, the obtained value for n exhibits a462

bigger error. This signals the vagueness of the reaction order and the shape factor in463

minimizing RMSE, where increasing or decreasing either one of the variables leads to464

similar RMSE.465

For the high Damköhler number cases, the obtained Dad improved slightly com-466

paring to the cases with a prescribed shape factor. All fitted shape factors are within467

an order of magnitude compared to the theoretical calculations. In particular, for468

the case of initial Ped = 40 000, we observe a good fit of the retrieved shape factor.469

Although imperfect, our method of parameter estimation using a solute concentration470

breakthrough curve is useful for modeling the average behavior of reactive transport471

in porous media. The results suggest that it is possible to infer pore-scale information472

using the inversion of averaged parameters.473

Figure 7 shows the concentration in pores, the averaged concentration, and the474

modeled concentration of the high Damköhler number, initial Ped = 40 000 scenario.475

When the injection stops, the increase of the inlet solute concentration is not only due476

to the reaction, but also due to the diffusion of solute from the reservoir to the inlet.477

We attribute the underestimated n to our reactive transport model, equation (64),478

not being able to capture the diffusion effects in each pore, which results in a lower479

reaction order. Certainly, this situation is not as ideal as the low Damköhler-number480

situation. Though, the modeled concentration, C, still represents the average behavior481

of the pore concentrations.482

In all of the flow-through experiments, we considered only one observation point,483

either the fluid inlet or the fluid outlet. This work serves as a demonstration of the484

base case with only one observation. To improve the fitting of the reaction order of the485

high Damköhler-number cases, one can incorporate more observation points, spatially486

distributed within the domain.487
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Figure 7. This figure shows the solute concentration in the pores, C, the averaged concentra-

tion, Cavg, and the modeled concentration, C, of the initial Ped = 40 000 scenario without shape

factor fitting. The left panel shows the solute concentration in the porous domain during fluid

injection. The right panel shows the solute concentration after fluid injection has stopped, as

indicated by the increasing fluid inlet concentration.

4.3 The applicability of the constitutive relations488

By adding an exponent to the pore-scale reaction model, the Darcy-scale reaction489

model effectively describes the averaged behavior of reactions taking place indepen-490

dently in different pores of the porous medium. We examine the applicability of the491

simple approach using the averaged concentration of first-order kinetics as an example.492

The averaged concentration, equation (34), can be considered as a continuous mixture493

of exponential distributions,494

Cavg(t) = 1−
∫ ∞

0

e−λtp(λ)dλ, (65)

where λ is a parameter that characterizes the exponential distributions. The finite495

mixture is known as the hyperexponential distribution, which is utilized for fitting496

long-tail distributions (Feldmann & Whitt, 1998; Okada et al., 2020). If λ is a gamma497

distribution, then Cavg(t) is a Pareto distribution (Balakrishna & Lai, 2009). The498

concentration of our proposed model, equation (41), has the following form when499

C0 = 0:500

C(t) = 1− [1 + Dad(n− 1) t ]
1/(1−n)

, (66)

which is the cumulative distribution function of the Pareto distribution, also called the501

Lomax distribution. There exists a particular ratio distribution of the effective surface502

area and the pore sizes, Ω/R, that satisfies C = Cavg. Such an existence contributes503

to the effectiveness of the constitutive relation for the first-order kinetics.504

In contrast, the theoretical basis of constitutive relations for second-order kinetics505

is less distinct. We simply followed the derivations of first-order kinetics and exploited506

the oddity of Cavg and C to obtain a second-order approximation. The solution for507

second-order kinetics in a single pore, equation (46), can be recast to508

C = tanh (Da ·t) =
1− e−2Da ·t

1 + e−2Da ·t , (67)

which is a cumulative distribution function of a scaled logistic distribution. If we con-509

sider time a semi-infinite domain [0,∞), such a distribution is also known as the half510
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logistic distribution (Balakrishnan, 1985). Though we did not find or derive the rela-511

tionships of the logistic distribution mixture, we denote the possibility of approximat-512

ing such a mixture using the Pareto distribution, equation (66), since the hyperbolic513

tangent function can be represented by a Laurent series,514

tanh (t) = 1− 2

∞∑
k=0

(−1)ke−2t(k+1), t > 0, (68)

which is a mixture of exponential distributions. Such expansion techniques would515

avoid relying on derivatives around C = 0 as is done in this study, which may be516

advantageous but requires more research.517

4.4 Limitations and outlook518

The main limitation of this study is that the reaction model we considered is519

simple and may not be adequate to describe complex geochemical processes, e.g., a520

rock sample which consists of multiple dissolving minerals. Though we considered521

two common models of first- and second-order kinetics, we treat the rate constant, kd522

and kp, as constant and, indeed, kd and kp may change as temperature, pH, or ionic523

strength changes.524

Moreover, the assumption that chemical reactions in each tube occur indepen-525

dently of the other tubes is idealized. In pore-network modeling, the porous medium is526

discretized as a network of pore bodies and pore throats, and the coordination number527

is defined as number of connections to each pore body. Experimental studies have528

reported that the average coordination number of a sandstone is ∼ 4 (e.g., Ioannidis529

& Chatzis, 2000; Øren & Bakke, 2003; Hefny et al., 2020). Our bundle-of-tubes model530

has an average coordination number of 0 (or 1, if one considers the pores reside at the531

fluid inlet and outlet boundaries), which is the base case for pore-network modeling.532

For this base case, the reaction order does not depend on Ped or Dad. The dependence533

of the reaction order on Ped or Dad for larger coordination numbers requires further534

studies.535

Nonetheless, our simple model reveals a possible mechanistic explanation to the536

usage of the Darcy-scale reaction order larger than one, and how it can reveal geometric537

information of the porous medium using the solute breakthrough curve. We suggest538

considerations of the aforementioned limitations as potential topics for future research.539

We propose another possible application of this work in view of energy conserva-540

tion in a porous sample, where there is only one definition of temperature of the fluid,541

T ∗f , and the porous solid, T ∗s . A special case of energy conservation without pressure542

work and viscous heating is analogous to equation (1):543

∂T ∗f
∂t∗

+ u
∂T ∗f
∂z∗

−Df
∂2T ∗f
∂z∗2

= qT , (69)

where Df is the thermal diffusivity of the fluid and qT is a heat source introduced by the
porous solid. Usually, such an energy conservation model of heat tracer tests assumes
thermal equilibrium between the fluid and the porous solid, Tf = Ts, (Shook, 2001;
Anderson, 2005; Saar, 2011). However, studies and modeling on thermal disequilibrium
between fluid and solid phases have gained interest lately (Karani & Huber, 2017; Koch
et al., 2021). If we consider a heat tracer test, where we create a breakthrough curve
like the ones in Figure 3, we can model the behavior by

∂T ∗f
∂t∗

+ u
∂T ∗f
∂z∗

−Df
∂2T ∗f
∂z∗2

=
DA

Vf

(T ∗s − T ∗f )

L∗
, (70)

where D is a certain average of the thermal diffusivity of the porous medium, and L∗544

is a characteristic length that defines the heat flux between the solid-fluid boundary.545
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The formulation is similar to our study of reactive transport with first-order kinetics.546

Therefore, it is possible to apply the same techniques described in this work to obtain547

the “reaction order” and infer pore-scale information.548

5 Conclusion549

Mineral reaction kinetics defined at the pore scale are not necessarily valid at the550

Darcy scale. We utilize a bundle-of-tubes model to study the modeling of dissolution551

kinetics in porous media at the Darcy scale. By adding an exponent, n (i.e. the Darcy-552

scale reaction order), to first- and second-order kinetics, the resulting constitutive553

relation approximates the average dissolution rate of the bundle-of-tubes model. Using554

the pore-size and the effective-surface-area ratio distributions to characterize the tube555

bundles, we expand the solute concentration of dissolving species with Taylor series556

and thus relate the Darcy-scale Damköhler number, Dad, and reaction order with557

the distribution moments. The Taylor-series expansions show that the Darcy-scale558

reaction order of first-order kinetics is the inverse square root of Tucker’s congruence559

coefficient (also known as the cosine similarity) between the pore sizes and effective-560

surface-area ratios. Therefore, an increase of reaction order indicates an increase of561

pore-scale heterogeneity. Such a relation gives a mechanistic meaning to the reaction562

order.563

Furthermore, we simulate flow-through experiments of dissolving porous media564

at the laboratory as well as the field scale and discuss how one can utilize the consti-565

tutive relation by fitting a solute concentration breakthrough curve with Dad and n566

as unknowns. As an additional benefit, we discuss cases of the flow-through experi-567

ments where the shape factor of longitudinal dispersivity is also considered as a fitting568

parameter. The inversion is successful, and the fitted parameters are close to the pre-569

scribed parameters calculated by the moments of pore-size and effective-surface-area570

ratio distributions. We infer that:571

1. detailed pore-scale information (characterized by functions of moments) can be572

inferred using averaged Darcy-scale quantities (such as solute concentration),573

and574

2. by analyzing the solute concentration of dissolving minerals over time using575

flow-through experiments, we can acquire the Darcy-scale reaction order and576

the dispersion coefficient, which represent heterogeneity at the pore scale.577

The relations we derived provide us a quantitative approach to measure the578

spatial heterogeneity of a porous domain using the Darcy-scale reaction order and579

reveal a mechanistic explanation for n > 1.580

Appendix A Derivation of the longitudinal dispersivity using spatial581

moment analysis582

We introduce an advection equation of solute concentration in a pore583

∂C∗

∂t∗
+ u

∂C∗

∂z∗
= 0. (A1)

The velocity, u, is defined using equation (12)584

∂C∗

∂t∗
+
r2

8

∆P

µLz

∂C∗

∂z∗
= 0. (A2)

When injecting a solute pulse at x = 0, the center of mass of the solute is located at585

z∗(t∗; r) = r2 ∆P

8µLz
t∗. (A3)
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Similar to the volume averaging procedure, Eq. (33), we define the center of mass in586

a bundle of tubes system587

z̄∗(t∗) =

∫ ∞
0

z∗(t∗; r)r2p(r)dr∫ ∞
0

r2p(r)dr

=
E(r4)

E(r2)

∆P

8µLz
t∗. (A4)

Following the procedures of spatial moment analysis (Goltz & Roberts, 1987; Dentz588

& de Barros, 2013; Lee et al., 2018; Natarajan & Kumar, 2018), the mean velocity is589

ū =
dz̄∗

dt∗
=

E(r4)

E(r2)

∆P

8µLz
(A5)

which is the volume averaged velocity, equation (18). The change of spatial variance590

over time is591

σ2
z =

∫ ∞
0

(z∗(t∗; r))2r2p(r)dr∫ ∞
0

r2p(r)dr

− (z̄∗(t∗))2 (A6)

=

(
E(r6)

E(r2)
− E2(r4)

E2(r2)

)(
∆P

8µLz
t∗
)2

(A7)

=

(
E(r6)E(r2)

E2(r4)
− 1

)(
E(r4)

E(r2)

∆P

8µLz
t∗
)2

(A8)

=

(
E(r6)E(r2)

E2(r4)
− 1

)
(ūt∗)2 (A9)

The longitudinal dispersion coefficient is592

DL =
1

2

dσ2
z

dt
=

(
E(r6)E(r2)

E2(r4)
− 1

)
ū2t∗, (A10)

which concludes the derivation of equation (21). The nondimensional solute transport593

equation is594

∂C

∂t
+ Ped

∂C

∂z
−
(
1 + (Ped)2t f(r)

) ∂2C

∂z2
= 0. (A11)

Following Crank (1975), the fundamental solution of the aforementioned transport595

equation is596

C(z, t) =
1√

4π(t+ (Ped t)2/2)
exp

(
− (z − z0 − Ped t)

2

4(t+ (Ped t)2/2)

)
. (A12)

We test the validity of the dispersion coefficient by comparing with volume-averaged597

solute concentration, equation (7). We consider two cases of pore size distributions R1598

and R2 with initial injection at z0 = 0 and Ped = 10.599

Figure A1 shows the comparison between C and Cavg at different time steps.600

When the travel distance increases, the difference between C and Cavg increases. Such601

effect is more pronounced when σ is larger, as shown in the right panel of Figure602

A1. Higher order method of moments are employed for better modeling of dispersion603

effects (Chatwin, 1970; Zhang et al., 2008; Vikhansky & Ginzburg, 2014; Jiang &604

Chen, 2019). However, we limit our analysis to second order to focus on the topic of605

Darcy-scale reaction order.606
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Figure A1. Comparison of the volume-averaged solute concentration and the modeled con-

centration. The left panel shows the case of pore size distribution R1, and the right panel shows

the case of pore size distribution R2.

Appendix B Taylor series of the averaged second-order kinetics model607

The averaged second-order kinetics model, equation (51), is608

C
′

= Dad

(
1− C2

)n
. (B1)

We show derivations of expanding equation (B1) using a Taylor series. A Taylor series609

expansion of C around t = 0 is610

C(t) = C(0) + C
′

(0)t+
C
′′

(0)

2
t2 +

C
′′′

(0)

6
t3 +O(t4), (B2)

which consists of derivatives of C. Differentiate equation (B1)611

C
′′

= −2 Dad n
(

1− C2
)n−1

C C
′

. (B3)

The initial condition, C(0) = 0, leads to C
′′

(0) = 0, which corresponds to the second-612

order term in equation (50). Instead of performing further differentiation, we rearrange613

equation (B1)614

C
′

= Dad

(
1− C

)n (
1 + C

)n
. (B4)

Applying the binomial approximation to (1 + C)n yields615

C
′

≈ Dad

(
1− C

)n (
1 + nC

)
for |nC| � 1. (B5)

Differentiate616

C
′′

= Dad nC
′ (
−
(
1− C

)n−1 (
1 + nC

)
+
(
1− C

)n)
, (B6)

which retains the property C
′′

(0) = 0. Further differentiate and omit C
′′

617

C
′′′

= Dad nC
′(

(n− 1)
(
1− C

)n−2 (
1 + nC

)
C
′

(B7)

− n
(
1− C

)n−1
C
′

− n
(
1− C

)n−1
C
′)
. (B8)

Hence,618

C
′′′

(0) = −(Dad)3 n(n+ 1). (B9)

Therefore, the Taylor series with an approximated third-order derivative is619

C(t) = Dad t−
n(n+ 1)

6
(Dad t)

3 +O(t4). (B10)
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Appendix C Numerical methods of the reactive transport model620

The continuity equation of the concentration is621

∂C

∂t
+∇ · (f(C)) = q, (C1)

where f is a function that defines the flux and q represents a source or sink of the622

concentration. The conservative form of the continuity equation is623 ∫
Ω

∂C

∂t
dΩ +

∫
∂Ω

f(C) · nds =

∫
Ω

qdΩ, (C2)

where Ω is an arbitrary control volume, ∂Ω denotes the boundary of the control volume,624

and n is the outward normal vector of the control volume. Following Koren (1993), a625

cell-centered finite volume discretization of equation (C2) in one dimension is626 ∫
Ωj

∂C

∂t
dz + f(C)

∣∣∣∣
j+1/2

− f(C)

∣∣∣∣
j−1/2

=

∫
Ωj

qdz, (C3)

where the half-integer indices j − 1/2 and j + 1/2 refer to the cell faces ∂Ωj−1/2 and627

∂Ωj+1/2, as illustrated in Figure C1. Instead of approximating the fluxes with a first-628

order upwind scheme, we utilize the κ interpolation scheme, originated from van Leer629

(1985),630

fj+1/2 = fj +
1 + κ

4
(fj+1 − fj) +

1− κ
4

(fj − fj−1), κ ∈ [−1, 1]. (C4)

The flux term f(C)|j+1/2 is abbreviated as fj+1/2. We use a second-order upwind631

scheme, κ = −1, for linear advection f(C) = C such that632

fj+1/2 = Cj +
1

2
(Cj − Cj−1). (C5)

Consider a Total Variation Diminishing (TVD) framework (Sweby, 1984), we define633

the ratio of concentration gradient assuming constant mesh size634

rj+1/2 =
f ′(C)|j+1/2

f ′(C)|j−1/2
=
Cj+1 − Cj
Cj − Cj−1

. (C6)

A flux limiter is a function that selects spatial discretization schemes based on the ratio635

of concentration gradient. In the case of linear advection, we apply the flux limiter636

ψ(r) to equation (C5)637

fj+1/2 = Cj +
ψ(r)

2
(Cj − Cj−1). (C7)

When ψ(r) = 1, we have the second-order upwind flux, and when ψ(r) = r, a centered638

difference flux is recovered. Note that the flux reduces to first-order given ψ(r) = 0.639

We choose the minmod limiter (Roe, 1986)640

ψ(r) = max (0,min (1, r)), (C8)

which switches the advection flux between second-order upwind and centered differ-641

ence in the second-order TVD region. Following the Discontinous Galerkin approach642

(Rivière, 2008), we reformulate the reactive transport model in a single pore, equa-643

tion (6),644 ∫
Ω

v
∂C

∂t
dΩ +

∫
∂Ω

v

(
Pe C − ∂C

∂z

)
· nds =

∫
Ω

vDa(1− C)dΩ, (C9)
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where v is a piecewise constant test function. We calculate the diffusion flux using the645

two-point flux approximation. Closely following the derivations of Roy et al. (2019)646

and utilize the flux-limited advection, we have647 ∫
Ω

v
∂C

∂t
dΩ +

∫
Γint

[v]

(
adv(C) Pe ·n +

[C]

h

)
dS =

∫
Ω

vDa(1− C)dΩ, (C10)

adv(C) = Cup +
ψ(r)

2
(Cup − Cupup) , (C11)

where Γint denote the union of all interior boundaries, h is the distance between two648

cell centers, and [·] is the jump operator. The superscript “up” denotes the upwind649

cell, and “upup” represents the upwind cell of the aforementioned upwind cell. For650

example, when the surface integral is performed over ∂Ωj+1/2, the advection term is651

adv(C)

∣∣∣∣
j+1/2

= Cj +
ψ(r)

2
(Cj − Cj−1), (C12)

which is the advection flux, equation (C7). Before we define the temporal discretization652

scheme, we abbreviate equation (C10)653 ∫
Ω

v
∂C

∂t
dΩ = −

∫
Γint

[v]adv(C) Pe ·ndS − FD(C) + F q(C), (C13)

where FD(C) is the diffusion term, and F q(C) represents the reaction term. To ap-654

proach second order accuracy in time, we utilize the explicit midpoint method655 ∫
Ω

v
Cn+1/2 − Cn

0.5∆t
dΩ = −

∫
Γint

[v]Cup,n Pe ·ndS − FD(Cn) + F q(Cn), (C14)∫
Ω

v
Cn+1 − Cn

∆t
dΩ = −

∫
Γint

[v]adv(Cn+1/2) Pe ·ndS

−FD(Cn+1/2) + F q(Cn+1/2), (C15)

where ∆t is the time step size. The superscripts n, n+ 1/2, and n+ 1 refers to current656

time step, midpoint step, and the next time step, respectively. The midpoint value657

Cn+1/2 is approximated using first-order upwind advection. Then we apply the flux658

limiter to the second step. To ensure numerical stability, the explicit midpoint method659

should follow the time step size limitation proposed by (Prabhakaran & Jones Tarcius660

Doss, 2015)661

∆t ≤ h2

2 + Pe h
. (C16)

Although the time step size limitation is derived for flux-limited advection diffusion662

equations with no source terms, it is treated as a maximum value for the time step663

size in the simulations while using the explicit midpoint method. The time step size664

limitation restricts the efficiency of explicit methods. Rearrange equation (C16)665

Pe ∆t

h
≤ 1− 2∆t

h2
, (C17)

where Pe ∆t/h is the CFL number, and 2∆t/h2 is the Fourier number. The maximum666

CFL number allowed while using the explicit upwind scheme is 1 normally. However,667

the explicit centered difference treatment of diffusion causes a degradation of the max-668

imum CFL number in equation (C17). To alleviate this issue, one may consider an669

implicit time discretization scheme for diffusion. This idea leads to the implicit-explicit670

(IMEX) time-discretization scheme, which consists of applying an implicit discretiza-671

tion for diffusion and an explicit one for advection (Ascher et al., 1997; Pareschi &672
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Russo, 2005; Boscarino et al., 2015). Of many possible implementations of IMEX673

schemes, we implement the following674 ∫
Ω

v
Cn+1/2 − Cn

0.5∆t
dΩ = −

∫
Γint

[v]Cup,n Pe ·ndS − FD(Cn+1/2) + F q(Cn), (C18)∫
Ω

v
Cn+1 − Cn

∆t
dΩ = −

∫
Γint

[v]adv(Cn+1/2) Pe ·ndS

−1

2
FD(Cn+1/2)− 1

2
FD(Cn+1) + F q(Cn+1/2), (C19)

where both steps include implicit diffusion terms. We benchmark the numerical675

method based on the solution of tracer transport with first order decay676

C(z, t) = 1− M√
4π(t+ t0)

exp

(
− (z − z0 − Pe t)2

4(t+ t0)
−Da t

)
, (C20)

where z0 is the center of mass of the inverted Gaussian, M and t0 are the parameters677

adjusted to bound the initial concentration between 0 and 1. In the benchmark, we678

set the initial condition with M = 0.2, t0 = 5× 10−3, and z0 = 0.5. The mesh679

size, h, is 0.04. For the explicit midpoint scheme, the time step size is 5× 10−4, and680

for the IMEX scheme, the time step size is 5× 10−3. The simulation ends at 0.1681

nondimensional time.682

Figure C2 and C3 shows the benchmark result at different time steps, and both683

numerical solution agrees with the analytical solution. However, since the IMEX684

scheme allows larger time step size during simulations, we use only the IMEX scheme685

in our simulations.686

Flow direction →

Ωj−2 ∂Ωj−3/2 Ωj−1 ∂Ωj−1/2 Ωj ∂Ωj+1/2 Ωj+1

z

h

Figure C1. An illustration of the cell-centered finite volume grid.
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Figure C2. Benchmark of the numerical methods with analytical solutions of tracer transport

with first-order decay using the explicit midpoint scheme. The CFL number is 0.25.
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Figure C3. Benchmark of the numerical methods with analytical solutions of tracer transport

with first order decay using the IMEX scheme. The CFL number is 2.5.
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Fischer, C., Kurganskaya, I., Schäfer, T., & Lüttge, A. (2014). Variability of crys-773

tal surface reactivity: What do we know? Applied Geochemistry , 43 , 132–157.774

https://doi.org/10.1016/j.apgeochem.2014.02.002775

–27–



manuscript submitted to Water Resources Research

Fischer, C., & Luttge, A. (2017). Beyond the conventional understanding of wa-776

ter–rock reactivity. Earth and Planetary Science Letters, 457 , 100–105.777

https://doi.org/10.1016/j.epsl.2016.10.019778

Fogler, H. S. (2016). Elements of chemical reaction engineering. Prentice Hall.779

Goltz, M. N., & Roberts, P. V. (1987). Using the method of moments to an-780

alyze three-dimensional diffusion-limited solute transport from temporal781

and spatial perspectives. Water Resources Research, 23 (8), 1575–1585.782

https://doi.org/10.1029/WR023i008p01575783

Gong, L., Nie, L., & Xu, Y. (2020). Geometrical and topological analysis of pore784

space in sandstones based on X-ray computed tomography. Energies, 13 , 3774.785

https://doi.org/10.3390/en13153774786

Hefny, M., Qin, C., Saar, M. O., & Ebigbo, A. (2020). Synchroton-based pore-787

network modeling of two-phase flow in nubian sandstone and implications for788

capillary trapping of carbon dioxide. International Journal of Greenhouse Gas789

Control , 103 , 103164. https://doi.org/10.1016/j.ijggc.2020.103164790

Hussaini, S. R., & Dvorkin, J. (2021). Specific surface area versus porosity from791

digital images. Journal of Petroleum Science and Engineering , 196 , 107773.792

https://doi.org/10.1016/j.petrol.2020.107773793

Ioannidis, M., & Chatzis, I. (2000). On the geometry and topology of 3d stochas-794

tic porous media. Journal of Colloid and Interface Science, 229 (2), 323–334.795

https://doi.org/10.1006/jcis.2000.7055796

Jiang, W., & Chen, G. (2019). Environmental dispersion in layered wetland: Mo-797

ment based asymptotic analysis. Journal of Hydrology , 569 , 252–264. https://798

doi.org/10.1016/j.jhydrol.2018.12.005799

Jung, H., & Navarre-Sitchler, A. (2018a). Physical heterogeneity control on ef-800

fective mineral dissolution rates. Geochimica et Cosmochimica Acta, 227 , 246–801

263. https://doi.org/10.1016/j.gca.2018.02.028802

Jung, H., & Navarre-Sitchler, A. (2018b). Scale effect on the time dependence of803

mineral dissolution rates in physically heterogeneous porous media. Geochim-804

ica et Cosmochimica Acta, 234 , 70–83. https://doi.org/10.1016/j.gca.2018.05805

.009806

Karani, H., & Huber, C. (2017). Role of thermal disequilibrium on natural convec-807

tion in porous media: Insights from pore-scale study. Physical Review E , 95 ,808

033123. https://doi.org/10.1103/PhysRevE.95.033123809

Kaufmann, G., & Dreybrodt, W. (2007). Calcite dissolution kinetics in the sys-810

tem CaCO3–H2O–CO2 at high undersaturation. Geochimica et Cosmochimica811

Acta, 71 (6), 1398–1410. https://doi.org/10.1016/j.gca.2006.10.024812

Koch, T., Weishaupt, K., Müller, J., Weigand, B., & Helmig, R. (2021). A (dual)813

network model for heat transfer in porous media. Transport in Porous Media.814

https://doi.org/10.1007/s11242-021-01602-5815

Koren, B. (1993). A robust upwind discretization method for advection, diffusion816

and source terms. In C. Vreugdenhil & B. Koren (Eds.), Numerical methods817

for advection-diffusion problems (pp. 117–138). Germany: Vieweg.818
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