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Abstract

This paper describes an implementation of the Combined Hybrid-Parallel Prediction (CHyPP) approach of Wikner et al. (2020)

on a low-resolution atmospheric global circulation model (AGCM). The CHyPP approach combines a physics-based numerical

model of a dynamical system (e.g., the atmosphere) with a computationally efficient type of machine learning (ML) called

reservoir computing (RC) to construct a hybrid model. This hybrid atmospheric model produces more accurate forecasts

of most atmospheric state variables than the host AGCM for the first 7-8 forecast days, and for even longer times for the

temperature and humidity near the earth’s surface. It also produces more accurate forecasts than a model based only on ML, or

a model that combines linear regression, rather than ML, with the AGCM. The potential of the approach for climate research

is demonstrated by a 10-year long hybrid model simulation of the atmospheric general circulation, which shows that the hybrid

model can simulate the general circulation with substantially smaller systematic errors and more realistic variability than the

host AGCM.

1



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

A Hybrid Approach to Atmospheric Modeling that

Combines Machine Learning with a Physics-Based

Numerical Model

Troy Arcomano1, Istvan Szunyogh1, Alexander Wikner2, Jaideep Pathak3,

Brian R. Hunt4, and Edward Ott2,5

1Department of Atmospheric Sciences, Texas A&M University, Texas, USA.

2Department of Physics, University of Maryland, College Park, Maryland, USA.

3Lawrence Berkeley National Laboratory, Berkeley, California, USA.

4Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, USA.

5Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland,

USA.

Key Points:

• A hybrid model incorporating machine learning produces more accurate forecasts

and more realistic climate than the host physics-based model.

• The hybrid model states are more realistically balanced and have substantially lower

biases than the host model.

• The hybrid model produces more realistic atmospheric variability than the host

model at time scales shorter than about a week.
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Abstract

This paper describes an implementation of the Combined Hybrid-Parallel Prediction (CHyPP)

approach of Wikner et al. (2020) on a low-resolution atmospheric global circulation model

(AGCM). The CHyPP approach combines a physics-based numerical model of a dynam-

ical system (e.g., the atmosphere) with a computationally efficient type of machine learn-

ing (ML) called reservoir computing (RC) to construct a hybrid model. This hybrid at-

mospheric model produces more accurate forecasts of most atmospheric state variables

than the host AGCM for the first 7-8 forecast days, and for even longer times for the tem-

perature and humidity near the earth’s surface. It also produces more accurate forecasts

than a model based only on ML, or a model that combines linear regression, rather than

ML, with the AGCM. The potential of the CHyPP approach for climate research is demon-

strated by a 10-year long hybrid model simulation of the atmospheric general circula-

tion, which shows that the hybrid model can simulate the general circulation with sub-

stantially smaller systematic errors and more realistic variability than the host AGCM.

Plain Language Summary

This paper presents a computationally efficient novel approach to construct a hy-

brid model of the atmosphere by combining a physics-based model of the global atmo-

spheric circulation with a machine learning component. The primary purpose of the hy-

brid model is to produce quantitative weather forecasts on the same grid as the physics-

based model. It is found that the hybrid model produces more accurate forecasts than

the host physics-based model for the first 7-8 forecast days for most forecast variables,

and for even longer times for the temperature and humidity near the earth’s surface. Fur-

thermore, the hybrid model is found to simulate the climate with substantially smaller

systematic errors and more realistic temporal variability than the host model.

1 Introduction

Numerical weather prediction (NWP) models have been the backbone of operational

weather prediction for several decades now (e.g., Lynch, 2006; Harper, 2008). A partic-

ular model implements a numerical solution algorithm for the physics-based set of cou-

pled partial differential equations that govern atmospheric motion (e.g., Szunyogh, 2014).

The resulting numerical equations form the dynamical core of the model. The effects of

processes not resolved explicitly by the dynamical core are taken into account by param-
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eterization schemes that contribute to the forcing terms of the equations. These schemes

are based on some combination of theoretical and empirical considerations (e.g., Sten-

srud, 2007). The initial conditions of the numerical model solutions are observation-based

estimates (analyses) of the state of the atmosphere, and the process that produces these

estimates is called data assimilation (e.g., Szunyogh, 2014). The advances in modeling

and data assimilation techniques, alongside with the increase of computing power and

the number of observations available for assimilation, led to a “quiet revolution of NWP”

(Bauer et al., 2015). The incorporation of machine learning (ML) techniques into the

NWP process promises to lead to further forecast accuracy gains by extracting additional

information from the observations.

The earliest applications of machine learning (ML) to atmospheric modeling focused

on improving the computational efficiency of the physics-based numerical models (e.g.,

V. Krasnopolsky et al., 2005; V. Krasnopolsky & Fox-Rabinovitz, 2006; V. M. Krasnopol-

sky, 2013). These applications employed neural networks to emulate the computation-

ally most expensive physics-based parameterization schemes at a reduced computational

cost. The term hybrid model was first used in reference to models using this technique.

One approach employed by this type of hybrid models is to use a single neural network

to emulate the combined effect of multiple parameterized processes, such as cumulus con-

vection, radiation, boundary layer transport, etc. (e.g., V. Krasnopolsky et al., 2010; V. M. Krasnopol-

sky, 2013; Brenowitz & Bretherton, 2018, 2019; Rasp et al., 2018). For this purpose, the

ML systems are often trained on data produced by model simulations at higher resolu-

tions, or with more sophisticated physical parameterization schemes.

Another type of ML-based parameterization scheme (e.g., Gentine et al., 2018; Rasp

et al., 2018; Chattopadhyay et al., 2020), is trained on observations or observations-based

reanalyses. Such a scheme has the potential to learn about the effects of processes that

the higher resolution and more sophisticated model simulations are still unable to cap-

ture. ML techniques have also been considered for the estimation of the free parameters

of physics-based parameterization schemes (Schneider et al., 2017). This approach takes

advantage of the knowledge built into the parameterization schemes, but may suffer from

the assumptions and approximations made by the schemes.

The hybrid approach we propose belongs to a class of techniques that are differ-

ent from those mentioned thus far. Techniques of this class use ML for the frequent pe-
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riodic interactive correction of the spatiotemporally evolving physics-based numerical model

solution after training on observational analyses. The specific approach we propose was

originally developed by Pathak, Wikner, et al. (2018) and later adapted to large dynam-

ical systems by Wikner et al. (2020), who named it Combined Hybrid-Parallel Predic-

tion (CHyPP). It evolves the hybrid forecasts iteratively, combining a short-term (e.g.,

6 h) numerical forecast with a state-dependent ML correction in each “time step” of the

“hybrid model integration”. CHyPP is not a postprocessing technique, because each “time

step” of the evolving hybrid model solution starts from the ML-corrected state of the

preceding step, whereas a postprocessing technique does not interact with the evolving

model solution. The ML component of CHyPP uses the computationally highly efficient

parallel reservoir computing (RC) algorithm of Pathak, Hunt, et al. (2018). The other

hybrid approaches of the same class use either a random forest (Watt-Meyer et al., 2021)

or use a deep learning ML component (Farchi et al., 2021), rather than one based on RC.

Wikner et al. (2020) demonstrated the potential of CHyPP for predicting the evo-

lution of a spatiotemporally chaotic system by experiments with the Kuramoto-Sivashinsky

(KS) model (Sivashinsky, 1977), a model that has a single state variable that depends

only on a single space dimension in addition to time. We implement CHyPP on the Sim-

plified Parameterization, primitive-Equation Dynamics (SPEEDY) (Molteni, 2003; Kucharski

et al., 2006) atmospheric global circulation model (AGCM). Ours is the first implemen-

tation of the approach on a model that has multiple state variables with a wide range

of values and depend on all three spatial dimensions. Because SPEEDY has a substan-

tially lower resolution than a state-of-the-art NWP or climate model, our primary goal

is to demonstrate the feasibility and potentials of CHyPP for an atmospheric applica-

tion, rather than to propose our current model as a potential replacement for a state-

of-the-art numerical model. The results of our forecast experiments show that the per-

formance of the hybrid model is superior to that of either SPEEDY, a model based only

on ML, or a model that uses linear regression rather than ML for the correction of the

short term (“one time step”) numerical forecasts.

In what follows, we first describe the hybrid approach and its implementation on

SPEEDY in detail (section 2). Then, we discuss the results of the forecast experiments

(section 3), and then the climate simulation (section 4). Finally, we summarize our key

findings and draw our conclusions (section 5).
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2 The Hybrid Model

In CHyPP, the physics-based numerical model state is evolved globally, while the

ML correction is done in parallel, in small local domains (Pathak, Hunt, et al., 2018).

The model state of a local domain is represented by a local state vector composed of the

relevant components of the global state vector. The global hybrid prediction is obtained

by piecing together the local hybrid predictions at the end of each ∆t-long “time step”

of the “hybrid model integration”. This approach can be implemented on any numer-

ical model by adjusting the definition of the local state vectors to the spatial discretiza-

tion strategy of the model. We note that the localization strategy of CHyPP is similar

to that employed by the Local Ensemble Transform Kalman Filter (LETKF) data as-

similation scheme (Ott et al., 2004; Hunt et al., 2007; Szunyogh et al., 2008), which has

been found to scale efficiently even for very high (kilometer) resolution operational weather

prediction models (e.g., Schraff et al., 2016).

2.1 The Global State Vector

SPEEDY is a spectral transform AGCM that was developed to produce rapid cli-

mate simulations, using simplified, but modern physical parameterization schemes (Molteni,

2003). We implement CHyPP on the standard configuration of Version 41 of the model:

the spectral horizontal resolution is T30, while the grid used for the computation of the

nonlinear terms and parameterizations has a nominal horizontal spatial resolution of 3.75◦×3.75◦

with state variables defined at eight vertical σ-levels (0.025, 0.095, 0.20, 0.34, 0.51, 0.685,

0.835, and 0.95), where σ is the ratio of pressure to the surface pressure. The three-dimensionally

varying state variables of the model are the two components of the horizontal wind vec-

tor, temperature, and specific humidity, while the single two-dimensionally varying state

variable is the natural logarithm of surface pressure. The global computational grid and

the state variables of the hybrid model are the same as those of SPEEDY.

2.2 The Local State Vectors

In our implementation of CHyPP on SPEEDY, each local state vector represents

the atmospheric state in a three-dimensional local domain that has the shape of a rect-

angular box with a 7.5◦×7.5◦ (2 × 2 horizontal grid points) base and extends vertically

from ground level to σ = 0.025. (The boundaries of the horizontal footprint of a local
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domain are marked by a blue rectangle in Fig. 1.) In what follows, we describe the com-

putations carried out in parallel for each of the L = 1, 152 local domains to evolve the

hybrid model state from time t to t+ ∆t.

Let v(t) be the local state vector for an arbitrary local domain at time t. The di-

mension of this state vector is 4×(8×4+1)=132 (resulting from the 4 grid points of a lo-

cal domain, the 8 σ-levels, the 4 volume distributed state variables, and the natural log-

arithm of surface pressure state variable). Because the different state variables have dif-

ferent units and ranges of values, where the ranges also depend on the geographical lo-

cation and vertical level, each grid-point value of each state variable is standardized to

have a mean of 0 and a standard deviation of 1 before forming v(t). The standardiza-

tion is done by using ERA5 reanalysis data (Hersbach et al., 2020) for the computation

of the climatological mean and standard deviation of each grid-point variable. We in-

troduce the notation vp(t), vh(t), and va(t) for the local state vector of SPEEDY, the

hybrid model, and the reanalysis, respectively. We also introduce the notations vgp(t),

vgh(t), and vga(t) for the related global state vectors. For instance, the components of

vga(t) in an arbitrary local domain are the components of va(t). In what follows, we ex-

plain the steps of the computation of vgh(t+∆t) from vgh(t). A flowchart of these steps

is shown in Fig. 2.a.

2.3 Reservoir Dynamics

The ML model uses (RC) (Jaeger, 2001; Lukoševičius & Jaeger, 2009; Lukoševičius,

2012) to evolve the ML model component from time t to t+ ∆t. In RC, the ML model

state is evolved by a high-dimensional dynamical system which, for our RC implemen-

tation, is defined by the discrete time map

r(t+ ∆t) = tanh [Ar(t) + Buh(t)]. (1)

This dynamical system is the reservoir, r(t) is the reservoir state vector, and uh(t) is the

local input state.

During the training, the input term uh(t) in Eq. (1) is replaced byua(t). The lo-

cal input uh(t) in our case is a m-dimensional extended local state vector, composed of

the components of the local state vector vh(t) plus additional components of the global

state vector vgh(t) from the neighboring local domains (see Fig. 1 for illustration), plus

the prescribed incoming solar radiation at the top of the atmosphere for the extended
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Figure 1. Illustration of the localization strategy. The black dots indicate the horizontal lo-

cations of the grid-points of the model. The blue rectangle marks the horizontal boundaries of a

particular local domain. The red rectangle indicates the horizontal boundaries of the associated

extended local domain.

local domain. The latter component is included to help the hybrid model to learn the

diurnal cycle from the input data. (SPEEDY uses the daily average value of the incom-

ing solar radiation at the top of the atmosphere at all times of the day.) For all of the

local domains, m = 16 × (8 × 4 + 1 + 1), except at the local domains adjacent to the

poles where m = 12× (8× 4 + 1 + 1).

Referring to Eq. (1), the dimension Dr of the vector r(t) is much higher than that

of a local state vector vh(t) (e.g., 6,000 vs. 132 in the present article). The activation

function with a vector argument, tanh [·], is a vector of the same dimension (Dr) as its

argument, and a component of this vector is the hyperbolic tangent of the correspond-

ing component of the argument vector. The matrix A is a sparse Dr×Dr weighted ad-

jacency matrix that represents a low-degree, directed, random graph (Gilbert, 1959). Each

entry of A is randomly chosen with a probability κ/Dr of being nonzero, where κ is the

degree of the graph (the average number of incoming connections per node), and with

the nonzero entries of A randomly drawn from a zero-mean uniform distribution. (The

ratio κ/Dr is a measure of the sparsity of A.) After randomization, the entries of A are

scaled such that the largest eigenvalue of A is a prescribed number ρ (0 < ρ < 1), which

is called the spectral radius. The spectral radius controls the length of the memory of
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the ML reservoir, and a value ρ < 1 typically makes the reservoir state r(t) depend only

on the past states of the modeled system (the atmosphere in our case), and not on the

initial reservoir state, when t is sufficiently large. This property of the reservoir is called

the echo state property (Jaeger, 2001).

The matrix-vector product Buh(t) is called the input layer in RC. In our model,

B is a m×Dr sparse random matrix with an equal number of nonzero entries in each

row. These nonzero entries, which are chosen randomly from a uniform distribution on

the interval [−α, α], couple the components of uh(t) to the reservoir nodes. The input

strength α is an adjustable parameter that controls the degree of non-linearity experi-

enced by the input signal uh(t) from the activation function.

2.4 The Hybrid Model

In addition to providing the input for Eq. (1), the global state vgh(t) is used as the

initial condition for a SPEEDY model forecast vgh(t+∆t). The next local hybrid model

prediction is then obtained by

vh(t+ ∆t) = W

vp(t+ ∆t)

r̃(t+ ∆t)

 , (2)

where the components r̃i(t+∆t) of the column vector r̃(t+∆t), i = 1, 2, ...Dr are de-

fined by r̃i(t+∆t) = ri(t+∆t), if i is odd, and r̃i(t+∆t) = r2i (t+∆t), if i is even, and

the column vector vp(t+∆t) represents the local state corresponding to the global SPEEDY

forecast vgp(t+∆t). The matrix-vector product on the right-hand side of Eq. (2) is the

RC output layer. The matrix W is a matrix of parameters to be determined by the train-

ing procedure described in Sec. 2.4.1. The local vectors vh(t + ∆t) for each local do-

main are combined to form the next global hybrid model prediction vgh(t+ ∆t).

Equation (2) can be written in the equivalent form

vh(t+ ∆t) = Wmodv
p(t+ ∆t) + Wresr̃(t+ ∆t), (3)

which corresponds to W = [Wmod Wres]. In the extreme case that Wmod = 0, which

should be the result of training when the numerical model has no skill according to the

training data, the hybrid prediction completely ignores the numerical model forecast vp(t+

∆t). The other extreme case is when Wmod = I and Wres = 0, which should occur

when the numerical model is perfect according to the training data. In a typical case,

–8–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 2. A flow chart of (a) the hybrid model and (b) the training operation of the hybrid

model. The notation is defined in Secs. 2.2 and 2.3. The steps inside the red boxes are carried

out in parallel for each of the L = 1, 152 local domains. The training finds the W that minimizes

the cost function of Eq. (4) by solving Eq. (5).

which falls between the two extremes, the ML output and the ∆t-long numerical pre-

diction are combined to maximize agreement with the training data.
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2.4.1 Training

Figure 2.b shows the flow of operations during training. First, we generate a se-

quence of perturbed global analyses vga(k∆t) + εg(k∆t), k = −K −Kt,−K −Kt +

1, ...,−1, where εg(k∆t) is a small-magnitude, zero-mean, normally distributed random

noise vector, uncorrelated in time and uncorrelated between components of the noise vec-

tor. The role of this noise is to help the ML model learn to return to the bounded set

of realistic atmospheric states (the “attractor”) in the presence of perturbations that may

arise in future forecasts (e.g., Jaeger, 2001; Wikner et al., 2020). The addition of noise

to the global analyses during training is essential for the hybrid model to produce sta-

ble, realistic predictions; predictions rapidly become unstable without it. Similar behav-

ior has been observed in RC applications involving the prediction of other spatio-temporal

systems (e.g., Patel et al., 2021).

The local input state ua(k∆t) is the extended local state vector associated with

vga(k∆t)+εg(k∆t), for k = −K−Kt,−K−Kt +1, ...,−1 for the particular local do-

main. The initial state r[(−K −Kt)∆t] of the reservoir can be chosen arbitrarily, be-

cause only the evolved reservoir states r[(k+1)∆t], k = −K,−K+1, . . . ,−1, are used

for training. The purpose of discarding the reservoir state of the first Kt (Kt � K) it-

erations is to ensure that the reservoir state r(t) has sufficient time to settle on its at-

tractor. The unperturbed global analyses vga(k∆t) are also used as the initial conditions

for SPEEDY to obtain vgp[(k + 1)∆t] for k = −K,−K + 1, ...,−1.

Formally, the training is carried out by computing the weight matrix W = [Wmod Wres]

that minimizes the cost-function

J(W) =

0∑
k=−K+1

‖vh(k∆t,W)−va(k∆t)‖2 +βmod‖Wmod−Wprior‖2 +βres‖Wres‖2. (4)

The local hybrid states vh(k∆t,W), k = −K+1,−K+2, ..., 0, represent the results of

Eq. (2) at those times for a particular W, and va(k∆t) is the local state vector for the

unperturbed global analysis vga(k∆t). (Notice that we use the notation W for both the

variable and the solution of the minimization problem.) The last two terms of the cost

function, in which ‖·‖2 denotes the sum of the squares of the entries of a matrix (the

Frobenius norm), are regularization terms meant to prevent overfitting, with βmod and

βres being the regularization parameters for the numerical model and reservoir compo-

nent, respectively. With these terms, the direct solution of the least-square problem is

a ridge regression (Tikhonov & Arsenin, 1977). The inclusion of the prior matrix Wprior,
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which was not part of Wikner et al. (2020), allows for a choice like Wprior = I, which

dictates that in the absence of training data that demonstrates imperfections in the nu-

merical model, the hybrid model should be equivalent to the numerical model. In our

experiments, we tried both Wprior = I and Wprior = 0, and found that the latter yielded

better stability. Thus, we report results with Wprior = 0, but think that other choices

for nonzero Wprior merit further study.

To obtain the direct solution for the matrix W that minimizes the cost function

J , we define matrix R̃ by choosing its column k to be r̃(k∆t) (see Eq. (2)), and matrix

Vp by choosing its column k to be the vp(k∆t) local state vector that corresponds to

the global SPEEDY forecast from vga((k−1)∆t). In addition, we define matrix Va by

selecting its column k to be the local analysis va(k∆t). Then, it can be shown that the

minimizing W is the solution of the linear problem

W

VpV
T
p + βmodI VpR̃

T

R̃VT
p R̃R̃T + βresI

 =

[
VaV

T
p + βmodWprior VaR̃

T

]
(5)

for W.

Because the dimension of the matrix products in this problem does not depend on

the length K∆t of the training period, the matrix products can be computed incremen-

tally, without simultaneously storing every column of R̃, Vp, or Va in memory (e.g., Lukoševičius,

2012). That is, in terms of computer memory usage, the resources used by the training

do not depend on the length of the training period. This is a highly desirable property

for Earth system modeling, in which long training periods are expected to be necessary.

In addition, the corresponding columns of R̃, Vp, and Va can be obtained by training

on multiple time series of training data. For example, suppose that the global analyses

vga(t) have a temporal resolution ∆ta that is finer than the ∆t temporal resolution of

the hybrid model with ∆t = J∆ta, where J is an integer. Then, the number of time

series available for training is J ; i.e., the first term in Eq. (4) can be replaced by

J−1∑
j=0

0∑
k=−K+1

‖vh(k∆t− j∆ta,W)− va(k∆t− j∆ta)‖2. (6)

2.4.2 Synchronization and Prediction

Let Kf∆t be the forecast start time. Starting the hybrid forecast requires the avail-

ability of the global analysis vga(Kf∆t) and the reservoir state r(Kf∆t) for each local

domain. Because according to the “echo state property” r(Kf∆t) is determined by the
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past states of the atmosphere, it can be obtained by synchronizing the evolution of the

reservoir states with the analyses for a sufficiently long time period that ends at Kf∆t.

Let Ks∆t be the start time of the synchronization. Synchronization is achieved by evolv-

ing the reservoir equation using uh(k∆t) = ua(k∆t) in Eq. (1) for k = Ks,Ks+1, . . . ,Kf .

Piecing together the local hybrid forecasts for all local domains yields the global

“one-step” hybrid forecast vgh[(Kf+1)∆t] (Fig. 2.a). The forecast can be extended ar-

bitrarily far into the future by using an iterative process for k = Kf + 1,Kf + 2, . . . ,

in which the extended local state vector uh(k∆t) extracted from vgh(k∆t) is used as uh(k∆t)

in the Eq. (1) to compute r[(k+1)∆t]. The global “one-step” hybrid forecast vgh(k∆t)

is also used as the initial condition of the vgh[(k + 1)∆t] SPEEDY component of the

hybrid forecast. In a cycled forecast system of an operational NWP center, in which anal-

yses are prepared and forecasts are started with a regular frequency (e.g., 6 h), the reser-

voir state can be kept continuously synchronized with the real-time evolution of the at-

mosphere.

2.5 Implementation with ERA5 Reanalysis Data

We use interpolated hourly global ERA5 reanalyses to train and synchronize the

hybrid model. We do the horizontal interpolation of the reanalysis fields onto the com-

putational grid of SPEEDY by a 2-dimensional quadratic B-spline interpolation. We then

compute the value of σ at each horizontal grid point and use a 1-dimensional cubic B-

spline for the vertical interpolation of the model state variables to the eight prescribed

constant σ levels of SPEEDY. The training starts at 0000 UTC on January 1, 1990 and

ends at 2300 UTC on June 26, 2011 (K ≈ 3.14×104), with the data discarded for the

first 6.25 days (K = 31355 and Kt = 25).

2.6 Selection of the Hyperparameters

Hyperparameters are adjustable parameters (e.g. κ, ρ, α, Dr,βres, βmod, ε, and ∆t)

that control overall characteristics of the hybrid model and require “tuning” to produce

desirable results. There exists “tricks of the trade” practical rules for the selection of the

hyperparameters of an RC model (Lukoševičius, 2012). These general rules also work

for the hyperparameters of the hybrid model. First, the hybrid model is only weakly sen-

sitive to κ and ρ. While we use κ = 6, other small values of κ (e.g., κ = 3) work sim-
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ilarly well. We use a value of ρ that monotonically increases toward the poles from 0.3

at the equator to 0.7 at 45◦, so that the reservoir mimics the general property of the at-

mospheric dynamics that its memory is shorter in the tropics than the extratropics. Chang-

ing these values by ±0.1−0.2 has little effect on the model performance. We choose Dr =

6, 000, because we find that further increasing the reservoir size does not lead to substan-

tial further improvement of the model performance. We find the hybrid model perfor-

mance to be somewhat sensitive to the value of α, which controls the amount of non-

linearity of the reservoir dynamics. Setting α ≤ 0.3 or α ≥ 0.7 yields noticeable degra-

dation of the errors compared to the value we use, α = 0.5. For each of the options Wprior =

I and Wprior = 0, we tried various powers of 10 for the regularization parameters βres

and βmod; we found that Wprior = 0 yielded better stability, and found that βres =

10−4 and βmod = 100 led to good model performance. Among the several values we tried,

in increments of 0.05, for the standard deviation of the components of the random noise

ε added to the training data, we chose the smallest value (0.20) for which all hybrid fore-

casts were stable. The time step ∆t is another important hyperparameter to tune; we

chose ∆t = 6 h, because using ∆t = 1 h or ∆t = 3 h (with other hyperparameters

tuned accordingly) led to clearly poorer model performance. Moreover, we use a time

step of ∆t/24 = 0.25 h for the numerical integration of SPEEDY, because longer time

steps degraded the 6 h forecast performance of SPEEDY. Since the temporal resolution

of the ERA5 reanalyses is 1 h (∆ta = 1), the training is done on ∆t/∆ta = 6 time

series of data.

3 Forecast Experiments

We compute forecast error statistics based on 100 21-day forecasts, with start times

equally spaced every 4 days between 0000 UTC, June 27, 2011 and 0000 UTC, July 28,

2012. We evaluate the forecast performance of the hybrid model by comparing it to that

of a variety of benchmark forecasts started from interpolated ERA5 reanalyses.

3.1 Benchmark Forecasts

The set of benchmark forecasts includes numerical forecasts produced by SPEEDY,

a model based only on ML, and a model in which the 6 h SPEEDY forecasts are cor-

rected by linear regression rather than by ML. We call the latter benchmark SPEEDY-

LLR, where LLR stands for local linear regression.
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Comparing the performance of the hybrid model to that of a model based only on

ML is important, because ML-only models (e.g., Arcomano et al., 2020; Rasp & Thuerey,

2021; Weyn et al., 2020) are considered a potential alternative to the hybrid approaches

for the utilization of ML in Earth syetem modeling. Our ML model is formally the same

as our hybrid model except that we use the constraint Wmod = 0 in Eq. (3), with Eqs.

(4) and (5) modified accordingly, and the hyperparameters are different: Dr = 9, 000,

βres = 10−6, ∆t = 3 h, and ε has a standard deviation of 0.28. (The smaller reser-

voir size necessary to obtain good results from the hybrid as compared to the ML-only

model is an important advantage of the hybrid model.) While this ML-only model is for-

mally identical to the one described by Arcomano et al. (2020), its forecast performance

is better, thanks mainly to using a time step of ∆t =3 h rather than ∆t =1 h and the

addition of the incoming solar radiation to the input of the reservoir.

The SPEEDY-LLR is the same as the hybrid model except that Wres = 0. In

this model, a larger regularization parameter is necessary to produce stable forecasts for

at least 10 days. We use βmod = 1600, which provides the most accurate short and medium

range (1-5 days) forecasts that also remain stable for at least 10 days. The stability of

the SPEEDY-LLR forecasts can be improved by further increasing βmod, but only at the

price of degrading the short and medium range forecast accuracy. (For βmod →∞, SPEEDY-

LLR becomes SPEEDY, which produces stable forecasts for indefinitely long lead times).

Since, SPEEDY-LLR does not include the nonlinear ML correction of the hybrid model

(the second term on the right side of Eq. (3)), training is a simple linear regression of

the numerical model forecast. With the help of this benchmark, we can assess the rel-

ative importance of making periodic corrections to the numerical forecasts based on lin-

ear regression of the model state alone versus making those corrections by the proposed

hybrid technique.

To assess whether a model forecast has skill, the figures also include comparisons

to forecasts based on persistence and daily climatology. The persistence forecasts are based

on the assumption that the state of the atmosphere at the beginning of the forecast per-

sists for the entire duration of the forecast, while the climatological forecasts are based

on the daily climatological mean for the calendar day at the particular geographical lo-

cation and pressure level for years 1990-2010.
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3.2 The Measure of the Forecast Error

The error of each forecast is measured by the area-weighted root-mean-square er-

ror,

RMSE =

√√√√ 1

NlonNlat

Nlon∑
i=1

Nlat∑
j=1

a(j)(V f
i,j − V a

i,j)
2, (7)

where,

a(j) =
cos (ϕ(j))

1
Nlat

∑Nlat

j=1 cos (ϕ(j))
. (8)

Here the subscript i, j refers to the value of a scalar state variable V for a specific fore-

cast lead time at a particular pressure level at grid point i, j of the verification region

defined by Nlon discrete longitudes and Nlat discrete latitudes. The RMSE is averaged

over the 100 forecasts to obtain a single scalar measure of the forecast error for each state

variable, pressure level, and forecast lead time. In what follows, the term forecast error

refers to this scalar measure. We call a forecast more accurate than another, if the fore-

cast error is lower for the former than the latter forecast. In addition, we say that a model

forecast has forecast value, if its forecast error is lower than that of both persistence and

climatology (the latter two are available without the substantial cost of preparing model

forecasts). The qualitative behavior of the errors of the model forecasts with respect to

the errors of these two references is well understood. In particular, if the model has re-

alistic climatology, in the sense that it represents the atmospheric variability (the vari-

ability of the atmospheric state) correctly, the error of the model forecasts and the er-

ror of persistence saturate at the same level. While the error is initially lower for per-

sistence than climatology, its saturation value is higher by a factor of
√

2 (e.g., section

3.8 of Szunyogh (2014)).

3.3 Comparisons of the Forecast Accuracy

3.3.1 Synopsis of the Forecast Verification Results

Figures 3 and 4 illustrate the temporal evolution of the forecast errors for the first

five forecast days in the NH midlatitudes and Tropics, respectively. The errors are shown

for the temperature (top row), meridional component of the wind vector (middle row)

and specific humidity (bottom row) at forecast lead times day 1 (left column), day 3 (mid-

dle column), and day 5 (right column). In general, the hybrid forecasts (blue curves) have

forecast value, except for the specific humidity at day 5 in the NH midlatitudes, for which

they are only about as accurate as the forecasts based on climatology. In addition, the
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hybrid forecasts are either more accurate than all benchmark forecasts, or similarly ac-

curate to the most accurate benchmark forecast. The hybrid model performance in the

SH midlatitudes (not shown) is similar to that in the NH midlatitudes. The advantage

of the hybrid model compared to the different benchmarks, however, strongly depends

on the forecast variable and lead time. Next, we discuss this dependence, as it provides

important insight into the mechanisms by which CHyPP improves the numerical fore-

casts.

3.3.2 Hybrid Versus SPEEDY Forecasts

Compared to SPEEDY, the advantage of the hybrid model is the largest for the

temperature. While all hybrid temperature forecasts have substantial forecast value for

the first 5 forecast days, the SPEEDY day 5 temperature forecasts have no forecast value

in the Tropics and in the stratosphere in the NH midlatitudes. In addition, the SPEEDY

forecasts have little forecast value at day 5 in the midlatitudes. The benefit of the ML

correction is particularly striking in the tropical upper troposphere, where the SPEEDY

forecasts have a large error with a maximum of 6 K at 200 hPa, while the error of the

hybrid forecasts remains below 1 K.

In addition to the temperature, the hybrid forecasts are also substantially more ac-

curate than the SPEEDY forecasts for the specific humidity, especially, in the lower tro-

posphere, where parameterizations play an important role in modeling the effects of moist

atmospheric processes. While in the NH midlatitudes the hybrid forecasts degrade only

to the level of the forecasts based on climatology by day 5, the error of the SPEEDY fore-

casts reaches saturation by that time.

In the two midlatitudes, the state variable for which the advantage of the hybrid

model is the smallest compared to SPEEDY is the meridional component of the wind

vector. This result is not surprising, as numerical models are known to capture synoptic-

scale Rossby wave dynamics, which dominate the variability of weather in the midlat-

itudes. In contrast, in the Tropics, where wave dynamics is coupled to the parameter-

ized process of deep convection, the advantage of the hybrid model for the meridional

wind component is more substantial.

To explore the scale-dependence of the performance of the hybrid and benchmark

forecasts, we examine the spectrum of the errors for the meridional component of the
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Figure 3. Northern Hemisphere midlatitudes (between 30◦N and 70◦N) forecast verification

results. Results are shown for the (blue) hybrid model, (green) SPEEDY, (orange) ML-only

model, (purple) SPEEDY-LLR model, (red) persistence, and (black) climatology. Shown is the

area-weighted root-mean-square error at the different atmospheric levels for (top row) the tem-

perature, (middle row) meridional wind, and (bottom row) specific humidity at (left column) day

1, (middle column) day 3, and (right column) day 5 forecast time.

wind at 500 hPa with respect to the zonal wave number (Figure 5). (This figure also shows

results for day 10, in addition to the results for forecast days 1, 3, and 5.) The left panel

shows the results for the hybrid and the SPEEDY model. Because SPEEDY is a spec-

tral transform model with cut-off wave number 30, the spectrum for SPEEDY has no

power at all beyond that wave number, and it is heavily dampened at wave numbers larger

than about 20. Therefore, the errors of the hybrid forecasts, which have realistic power
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Figure 4. As in Fig. 3 for the Tropics (between 30◦S and 30◦N)

at all wave numbers, are expected to saturate at a level that is higher than that for SPEEDY

at the tail-end of the spectrum. At day 1, the hybrid forecasts have a clear advantage

over the SPEEDY forecasts at the synoptic and large scales (zonal wave numbers lower

than about 20). A smaller, but spectrally similar advantage still exists at day 3, while

the advantage of the hybrid forecasts disappears, except at wave numbers 5 and 6, by

about day 5.

3.3.3 Hybrid Versus ML-only Forecasts

While the errors of the ML-only forecasts (orange curves in Figs. 3-5) are only slightly

larger than that of the hybrid forecasts at day 1, they grow much faster in the next four
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days and the ML forecasts typically have no value by day 3. This result suggests that

while the RC-based ML technique can produce accurate forecasts in the short range (day

1-2), it is more effective in assisting SPEEDY than directly predicting the weather be-

yond that range. A comparison of the left and middle panels of Fig. 5 suggests that the

information provided by SPEEDY to the hybrid is particularly beneficial at the large

scales (wave numbers lower than about 6).

3.3.4 Hybrid Versus SPEEDY-LLR Forecasts

Next to the hybrid model, the benchmark that performs the best in the medium

(day 2-5) forecast range is the SPEEDY-LLR (purple curves). While the hybrid fore-

casts are more accurate than the SPEEDY-LLR forecasts, the forecast error differences

between the two models are modest, except for those in the stratosphere. The fact that

the forecast error differences are smaller for the hybrid model versus SPEEDY-LLR than

for the hybrid model versus SPEEDY indicates that the periodic interactive correction

of the SPEEDY forecasts itself makes an important contribution to the good performance

of the hybrid model. The additional forecast improvement, however, is not the only ben-

efit of using ML rather than local linear regression for the forecast correction: while the

hybrid forecasts remain stable indefinitely (see section 4), some of the SPEEDY-LLR fore-

casts fail as early as day 11 lead time, with about 60% of the forecasts reaching the in-

tended 21 days.

It should be noted that the fact that local linear regression can efficiently correct

the errors of a 6 h forecast is not completely surprising, considering that linear regres-

sion can be used to model the short-term forecast error dynamics for even a state-of-the-

art NWP model (Bishop et al., 2017), in which nonlinear effects are expected to play a

more important role even at short lead times. It is a nontrivial result, however, that the

information provided by such a linear approach can be used for the periodic, interactive

correction of an evolving numerical forecast. It is also a nontrivial result that an RC-

based ML technique stabilizes the resulting hybrid model indefinitely, and leads to fur-

ther forecast improvement in the short and medium (day 1-5) range.
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Figure 5. Spectral distribution of the 500 hPa meridional wind forecast error in the NH mid-

latitudes (between 30◦N and 70◦N) with respect to the zonal wave number. The power spectra

of the forecast errors are shown (left) for the the hybrid model (blue) vs SPEEDY (green), (mid-

dle) the hybrid model (blue) vs the ML-only model (orange), and (right) hybrid model (blue) vs

SPEEDY-LLR (purple) at day 1 (solid square), day 3 (open circle), day 5 (solid triangle), and

day 10 (open diamond).

3.4 Global Mean and Spatially Varying Errors

To gain further insight into the ways the hybrid approach improves forecast per-

formance, we decompose the global RMSE into a bias and a standard deviation compo-

nent. (The sum of the squares of the two components is equal to the square of the root-

mean-square error.) The bias measures the global mean error, while the standard de-

viation measures the spatially varying part of the forecast error. The time evolution of

the two error components, averaged over the 100 forecasts is shown for three represen-

tative state variables in Fig. 6.

For the temperature near the surface (at 950 hPa, top panel), SPEEDY rapidly de-

velops a warm bias that oscillates around a mean of 0.75 K with the diurnal cycle. This

bias is the result of SPEEDY using a single daily average value of the incoming solar ra-

diation at the top of the atmosphere at all times of the day. The hybrid model greatly

reduces the magnitude of the bias and also removes its diurnal oscillation. The biases

of the ML model and SPEEDY-LLR are comparable to that of the hybrid model in mag-

nitude, but the SPEEDY-LLR bias exhibits diurnal variability.
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The spatially variable component of the low-level temperature error remains lower

for the hybrid model than for SPEEDY throughout the 14-day period shown in the fig-

ure. The same component is initially similarly low for the hybrid and ML-only model,

but it increases much more rapidly for the ML-only model. (Even with this rapid increase,

the ML-only forecasts remain more accurate than the SPEEDY forecasts until about day

4). This component is initially lower for the hybrid model than for SPEEDY-LLR, but

their accuracies are essentially the same after about day 8. Also, while the curves for SPEEDY

and the hybrid model saturate at the same level as persistence, the curve for the ML-

only model saturates at a higher level, indicating that the ML-only model overestimates

the spatial variability of the low-level temperature at the longer forecast times.

SPEEDY rapidly develops a positive specific humidity bias near the surface (950

hPa, middle panel) that saturates at about 1 g/kg at day 7 lead time. Both the hybrid

model and the other two benchmarks eliminate most of this bias. The spatially varying

component of the error behaves similarly to that for the low level temperature, with the

hybrid model outperforming the benchmarks for lead times from 1-7 days.

For the meridional wind component in the upper troposphere (200 hPa, bottom

panel) none of the models develop a noteworthy bias. Thus, the differences in forecast

performance are solely due to differences in the spatially varying component of the fore-

cast error. This error component is still smaller for the hybrid model than SPEEDY for

the first 9 forecast days, and than for the other benchmarks for the the first 6 forecast

days.

3.5 Atmospheric Balance

Maintaining the delicate balance between the wind (momentum) and mass field in

a numerical model, especially at short forecast lead times, has been one of the biggest

challenges of atmospheric modeling since the dawn of NWP (e.g., Lynch, 2006). In a mod-

ern NWP model, a weakened balance is a short-lived transient property and the mag-

nitude of the initial transient can be greatly reduced by initialization techniques (e.g.,

section 8 of Lynch (2006)). In the hybrid model and SPEEDY-LLR, however, no initial-

ization is done before a corrected 6 h forecast is used as the initial condition of the next

6 h numerical forecast. Hence, the corrections inevitably upset the balance in the nu-

merical component of the hybrid forecasts every 6 h. The forecast verification results dis-

–21–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Forecast Day

0

1

2

3

4

5

E
rr

or
 (K

el
vi

n)

Global Mean and Standard Deviation of the Error 
 950 hPa Temperature

SPEEDY Mean Error
SPEEDY SD Error
Hybrid Mean Error
Hybrid SD Error
Persistence Mean Error
Persistence SD Error
LLR Mean Error
LLR SD Error
ML Model Mean Error
ML Model SD Error

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Forecast Day

0.0

0.5

1.0

1.5

2.0

E
rr

or
 (g

/k
g)

Global Mean and Standard Deviation of the Error 
 950 hPa Specific Humidity

SPEEDY Mean Error
SPEEDY SD Error
Hybrid Mean Error
Hybrid SD Error
Persistence Mean Error
Persistence SD Error
LLR Mean Error
LLR SD Error
ML Model Mean Error
ML Model SD Error

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Forecast Day

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

E
rr

or
 (m

/s
)

Global Mean and Standard Deviation of the Error 
 200 hPa V-wind

SPEEDY Mean Error
SPEEDY SD Error
Hybrid Mean Error
Hybrid SD Error
Persistence Mean Error
Persistence SD Error
LLR Mean Error
LLR SD Error
ML Model Mean Error
ML Model SD Error

Figure 6. The time evolution of the (dashed) standard deviation and (solid) mean of the

forecast errors. Each color indicates forecasts by a particular model: (blue) hybrid model, (green)

SPEEDY, (purple) SPEEDY-LLR model, (orange) ML model, and (red) persistence. Results are

not shown for SPEEDY-LLR beyond day 11, at which time some of the the forecasts for that

model fail.
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cussed thus far suggest that these imbalances do not outweigh the positive effects of the

corrections on the accuracy of the hybrid forecasts. But, can the hybrid model produce

realistic surface pressure tendencies by also correcting the surface pressure field for the

effects of gravity waves excited by the imbalances? We investigate this possibility by ex-

amining the global root-mean-square of the surface pressure tendency in the forecasts

for the hybrid and the benchmark models (Fig. 7). We assume that the value computed

for ERA5 (red curve), which is about 0.4 hPa/h, provides a realistic estimate of the global

root-mean-square of surface pressure tendency in the atmosphere.

As can be expected from a numerical model started from an uninitialized initial

condition, the initial tendency for SPEEDY (about 1 hPa/h) is higher than desired. As

forecast time increases, the the magnitude of the mean tendency drops, first rapidly, and

then at a decreasing rate until it settles below the natural level, at about 0.28 hPa/h.

The latter behavior suggests that the diffusion built into the model to combat imbalances

over-smooths the temporal variability of the forecasts beyond day 1. While the magni-

tude of the mean tendency for the hybrid forecasts (about 0.38 hPa/h) is initially slightly

smaller than the natural value, and further decreases in the first 72-84 h (to about 0.36

hPa/h), it is closer to the natural value than those for the benchmark forecasts. The SPEEDY-

LLR is less effective than the hybrid model in eliminating the initial transient and it also

produces an average tendency at the later forecast times (about 0.30 hPa/h) that is fur-

ther below the natural level. The ML-only model behaves similarly to the hybrid model

for the first two forecast days, but the saturation value is clearly lower (about 0.33 hPa/h)

than for the hybrid model.

3.6 Sensitivity to Training Length

To test the sensitivity of the performance and stability of the hybrid model to the

training length, we carry out a series of experiments with the same hyperparameters as

before, but for shorter training periods. In particular, we train the model on 2 years, 5

years, or 10 years of reanalysis data, with the training always ending at 2300 UTC, June

26, 2011, as for the original forecast experiments. (We recall that the length of the train-

ing for the original experiments is 20.5 years.) The results of these experiments for the

usual 100 21-day forecast cases for select variables are summarized in Fig. 8.
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Figure 7. Atmospheric balance in the model forecasts. Shown is the global root-mean-square

of the approximate surface pressure tendency computed by finite-differences based on 6-hourly

data for the (blue) hybrid model, (green) SPEEDY, (orange) ML-only model, and (purple)

SPEEDY-LLR model. The (red) value computed for 2011-2012 based on the ERA5 reanalyses is

also shown for reference.

While training the hybrid model for only 2 years already significantly improves the

forecast performance for the near-surface temperature and specific humidity compared

to that of SPEEDY, extending the training length further improves the forecasts. The

hybrid model trained for 2 years does not improve the meridional wind component in

the upper troposphere, and actually degrades the forecasts beyond 3 days. A longer train-

ing makes the hybrid model perform better initially than SPEEDY. The length of the

superior performance of the hybrid model becomes longer as the length of the training

period increases. The results shown in Fig. 8 also suggest that a further modest improve-

ments of the forecast performance could be achieved by using a training period even longer

than 20.5 years.

4 Climate Simulation Experiment

To evaluate the long term stability of the hybrid model and its ability to simulate

the climate, we compute an 11 year long free run with the model. For this simulation
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Figure 8. Time evolution of the global root-mean-square forecast error for different lengths of

the training of the hybrid model. Results are shown for a (purple) 2 years, (green) 5 years, (red)

10 years, and (blue) 20.5 years training period. For reference, the forecast errors are also shown

for (brown dashes) SPEEDY and (black dashes) climatology.

experiment, the hybrid model is trained on ERA5 reanalyses for the 19-year period from

January 1, 1981 to December 27, 1999. The simulation starts from the ERA5 reanaly-

sis valid at 0000 UTC, January 1, 2000. To suppress the effects of initial transients and

the initial condition on the model diagnostics, we discard the data from the first year

of the simulations before computing the diagnostics. To compare the performance of the
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hybrid model and SPEEDY in simulating the climate, we assume that the two simula-

tions attempt to simulate the climate of the 10-year period from 2001-2010 as represented

by ERA5.

4.1 Zonal Mean Biases

Figures 9 and 10 show the zonal mean biases of the simulations by SPEEDY (left

panels) and the hybrid (right panels) for the boreal winter (December, January, and Febru-

ary) and boreal summer (June, July, and August), respectively. These figures can be used,

not only to compare the quality of the two simulations, but also to assess the average

magnitude of the corrections made by the ML component of the hybrid model. In par-

ticular, the difference between a left panel and the corresponding right panel is the zonal

mean of the ML correction for a particular state variable.

The top left panels show that SPEEDY has a large upper tropospheric warm bias

for the tropical regions, during both the boreal winter and summer. In both polar re-

gions SPEEDY has a cold bias for the upper troposphere and stratosphere during the

boreal winter and a warm (cold) bias in the southern (northern) polar region during the

boreal summer. The magnitude of the bias is not surprising given the coarse resolution

and simplified parameterizations used in SPEEDY (Molteni, 2003). The top right pan-

els show that the hybrid model greatly reduces, but does not completely eliminate, these

biases when the model is cycled over a long period of time. The bias reduction is par-

ticularly notable in the the tropics and the midlatitudes. The largest remaining biases

are in the polar regions.

The hybrid model reduces the zonal component of the wind bias, especially in the

stratosphere and upper troposphere, and in the lower troposphere in the SH midlatitudes

in the boreal summer. The only exception is the introduction of a positive zonal com-

ponent of the wind bias in the stratosphere in the tropics. The hybrid model also greatly

reduces the large positive humidity bias of SPEEDY with maxima in the tropics.

Figure 11 shows the mean surface pressure biases for the simulations by SPEEDY

(left panels) and hybrid model (right panels) for the boreal winter (top row) and boreal

summer (bottom row). The mottled short scale patterning seen in the two left panels

of the figure are due to the spectrally truncated topography of SPEEDY, which is much

smoother than the topography determining the interpolated ERA5 reanalyses used for
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Figure 9. Comparison of the zonal mean biases of the SPEEDY and hybrid simulation sim-

ulations for the boreal winter (December, January, February). Results are shown for (top) the

temperature (middle) zonal wind, and (bottom) specific humidity for (left) SPEEDY and (right)

the hybrid model.
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Figure 10. Same as Fig. 9, except for the boreal summer (June, July, August).

the evaluation of the simulations, and for the training of the hybrid model. In combi-

nation with the artifacts caused by the spectral truncation in SPEEDY, the large local

differences in the mountainous regions lead to substantial surface pressure biases in the
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SPEEDY simulations. The hybrid model corrects the large local biases, but still has smaller

magnitude large scale biases. The wave-number-two structure of the large-scale hybrid

model bias in the NH suggests that these biases are related to the low resolution rep-

resentation of the topography and the land-sea contrasts in the numerical model. The

remaining biases are also relatively large in the polar regions, especially in the boreal sum-

mer. We speculate that the bias of the hybrid model in the polar regions might be re-

lated to our particular strategy to do the localization on a cylindric (Mercator) map pro-

jection. On the other hand, the bias is not concentrated at the poles for the variables

shown in Figures 9 and 10.
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Figure 11. The mean surface pressure bias in the SPEEDY and hybrid climate simulations.

Shown is the bias for (top) the boreal winter (December, Januar, February) and (bottom) boreal

summer (June, July, August) for (left) SPEEDY and (right) the hybrid model.

4.2 Temporal variability

To investigate the temporal variability of the atmosphere in the SPEEDY and hy-

brid climate simulations, we examine the temporal dependence of the 950 hPa temper-

ature at the four model grid points that fall in the Sahara Desert. The top two panels

of Fig. 12 show the power spectra of the temporal variability for the two models. These

power spectra are computed by applying a Hamming filter first, and then a discrete Fourier

transform to the 10 years of 6-hourly simulation data, and finally computing the square
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of the absolute value of the Fourier coefficients. The results show that both simulations

correctly capture the variability at time scales longer than about a week. At the shorter

time scales, however, SPEEDY increasingly underestimates the variability. The ML cor-

rection greatly reduces, but does not completely eliminate, this problem: the hybrid model

underestimates the variability at the scales between one week and one day only slightly,

and reduces the underestimation by SPEEDY at the even shorter scales. Most impor-

tantly, unlike SPEEDY, the hybrid model has a strong diurnal cycle. It should be noted

that an earlier version of the hybrid model, which did not include the incoming solar ra-

diation at the top of the atmosphere as an input to the reservoir, lost the diurnal cycle

at around the end of year 4. This motivated us to add the incoming solar radiation as

an input parameter, even though it had no significant effect on the forecast accuracy. We

find it a noteworthy, nontrivial result that the earlier version of the hybrid model was

able to learn the diurnal cycle strictly from the training data.

The fact that a simulation correctly captures the variability at a number of frequen-

cies does not guarantee that the phases of the temporal changes (e.g. the timing of the

seasons) are also correct. To exclude the possibility of such a flaw of the simulations, we

plot (bottom panel of Fig. 12) the time series of the average 950 hPa temperature for

the same four Saharan grid points for the last full year of the simulations. The points

along these curves should fall within two standard deviations from the mean for the given

date and time (the interval marked by gray shading) with a 95% observed frequency. Based

on the full ten years of data, the observed frequency is 88.2% for SPEEDY and 98.0%

for the hybrid model.

5 Conclusions

In this paper, we described results from the first implementation of the hybrid mod-

eling approach CHyPP of Wikner et al. (2020) on a realistic atmospheric model. We used

a low-resolution AGCM based on the full set of primitive equations, along with ERA5

reanalysis data for training and verification, to demonstrate the potentials of CHyPP

for both NWP and climate modeling. The spatio-temporal structure of the improvements

of the forecasts and simulations suggests that the ML component of the model primar-

ily corrects for errors caused by the limitations of the parameterization schemes of the

AGCM. While state-of-the-art numerical models have much higher resolutions and more

advanced parameterization schemes than SPEEDY, the weather forecasts and climate
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Figure 12. Temporal variability of the 950 hPa temperature in the Sahara Desert for the

ten years of simulations. Shown are the power spectra for (top) the hybrid model and ERA5

and (middle) SPEEDY and ERA5. The bottom panel shows the time series of simulated tem-

peratures for the last full year of the simulations. The gray shading represents the range of

plus/minus two standard deviations from the mean in the ERA5 reanalyses for 2001-2010.

simulations they provide still have substantial biases. We expect the hybrid approach

to effectively reduce these biases.

Because the ML component of the hybrid model is based on RC, training the model

is computationally highly efficient. Specifically, the training described in this paper re-

quires only 30 minutes wall-clock time using 1,152 Intel Xeon E5-2670 v2 processors on

a supercomputer that is much less powerful than those at the operational NWP centers.

Using the same computational resources, preparing a 21-day forecast takes about 52 sec-

onds, while carrying out a one-year simulation takes about 15 minutes. These numbers

are only 25% higher than those for SPEEDY, and the extra time is mainly due to the

overhead associated with the frequent restart of SPEEDY.

Due to the parallel nature of the computational algorithm, we expect it to scale

well for higher model resolutions and larger number of processors. A modification of the

current implementation of our method that might be helpful for scaling is vertical lo-

calization. By “vertical localization” we mean the use of local domains that, as well as

being limited in horizontal extent as shown in Fig. 1, are also of limited height and are
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stacked vertically with overlap from ground-level to the top of the atmosphere. Though

we do not use vertical localization in this article, we plan to test it soon for potential im-

provements with SPEEDY.

The ideal size of a local domain still needs to be determined through additional ex-

perimentation, both for SPEEDY and for higher-resolution models. Thus, it is hard to

make a precise quantitative projection for scaling, but here is a comparison that indi-

cates feasibility for operational models. The current computer of ECMWF has 129,960

processors (about 100 times more than what we used), and their operational model has

6.5×106 horizontal grid points (about 180 times more than SPEEDY) (“IFS Documen-

tation CY47R1 - Part III: Dynamics and Numerical Procedures”, 2020). If the local re-

gions for the ECMWF model would be defined by four horizontal and all vertical grid

points, as in our paper, each processor would have to handle less than twice as many lo-

cal regions at ECMWF than in our model. Also, there is no obvious reason to believe

that the computational overhead of the hybrid model would be substantially higher than

the 25% we found for SPEEDY. The high computational efficiency of the approach would

allow for a large number of experiments to find the optimal configuration of a future op-

erational hybrid model. Developing an efficient systematic approach to find a near op-

timal combination of the hyperparameters, nevertheless, would be highly desirable and

is one of the subjects of our ongoing research efforts. =An unknown factor that could

have a very favorable impact on future scaling considerations is the ongoing rapid tech-

nological developments of alternative, fast, cheap physical implementations of reservoir

computing, e.g., implementations based on photonics or on Field Programmable Gate

Arrays.

We emphasize that while the ML component of the hybrid model is highly efficient

in correcting the biases of the forecasts and simulations prepared by the host model, it

is not a ML-based postprocessing technique. While a technique of the latter type cor-

rects the numerical-model-based forecasts of a specific forecast variable or phenomenon

(e.g., Rasp & Lerch, 2018; Chapman et al., 2019; Kim et al., 2021) without interacting

with the numerical model, the ML component of the hybrid model makes frequent pe-

riodic interactive corrections to the numerical model solution. Hence, it also greatly im-

proves the representation of the spatiotemporal variability of the atmospheric state by

the model.
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We expect that the performance of the hybrid model can be further improved by

investigating the relationship between the parameters of the ML model and the repre-

sentation of basic atmospheric processes. Such an investigation could lead to further im-

provements of the model, similar to the way studies of the interactions between numer-

ics and dynamics (e.g., Arakawa & Lamb, 1977) led to much improved physic-based nu-

merical models. For instance, one potentially important fundamental question is the op-

timal relationship between the size of the local domains, the overlap between the local

domains in the input of the reservoir, and the length of the time step ∆t. The fact that

the ML component is more effective in correcting localized errors than errors at the larger

scales in the current version of our hybrid model may be partly the result of using lo-

cal domains and an overlap that are less than optimal for the selected time step. In our

experiments, the size of the overlap was primarily dictated by the structure of our code

and the available computer resources, but larger local domains and a larger overlap could

be used in the future.

An intriguing possibility is to use the hybrid model for data assimilation in addi-

tion to forecasting, as data assimilation could greatly benefit from the higher accuracy

and smaller biases of the short term hybrid forecasts used as background. Furthermore,

integrating ML and data assimilation may allow in the future to do online training of

the ML component of the hybrid model on real-time observations rather than canned

reanalyses data. The availability of such training procedure would make it possible to

extend the hybrid modeling approach to numerical models for which high-quality reanal-

ysis data are not available (e.g., an AGCM that also includes a sophisticated model of

the upper atmosphere well beyond the lower stratosphere). It could also allow the ML

component of the model to adjust to variability and changes of the climate. We have made

a first step toward this ambitious goal, in which we iteratively use the hybrid model to

prepare an updated set of analyses, which is then used to train the next iteration of the

hybrid model (Wikner et al., 2021). Our plan is to test this approach with the hybrid

model of the current paper.
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