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Abstract

The ‘eddying’ ocean, recognized for several decades, has been the focus of much observational and theoretical research. We here

describe a generalization for the analysis of eddy energy, based on the use of ensembles, that addresses two key related issues:

the definition of an ‘eddy’ and the general computation of energy spectra. An ensemble identifies eddies as the unpredictable

component of the flow, and permits the scale decomposition of their energy in inhomogeneous and non-stationary settings.

We present two distinct, but equally valid, spectral estimates: one is similar to classical Fourier spectra, the other reminiscent

of classical EOF analysis. Both satisfy Parseval’s equality and thus can be interpreted as length-scale dependent energy

decompositions. The issue of ‘tapering’ or ‘windowing’ of the data, used in traditional approaches, is also discussed. We apply

the analyses to a mesoscale ‘resolving’ (1/12$ˆ\circ$) ensemble of the separated North Atlantic Gulf Stream. Our results

reveal highly anisotropic spectra in the Gulf Stream and zones of both agreement and disagreement with theoretically expected

spectral shapes. In general, we find spectral slopes that fall off faster than the steepest slope expected from quasi-geostrophic

theory.
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Abstract13

The ‘eddying’ ocean, recognized for several decades, has been the focus of much obser-14

vational and theoretical research. We here describe a generalization for the analysis of15

eddy energy, based on the use of ensembles, that addresses two key related issues: the16

definition of an ‘eddy’ and the general computation of energy spectra. An ensemble iden-17

tifies eddies as the unpredictable component of the flow, and permits the scale decom-18

position of their energy in inhomogeneous and non-stationary settings. We present two19

distinct, but equally valid, spectral estimates: one is similar to classical Fourier spectra,20

the other reminiscent of classical EOF analysis. Both satisfy Parseval’s equality and thus21

can be interpreted as length-scale dependent energy decompositions. The issue of ‘ta-22

pering’ or ‘windowing’ of the data, used in traditional approaches, is also discussed. We23

apply the analyses to a mesoscale ‘resolving’ (1/12◦) ensemble of the separated North24

Atlantic Gulf Stream. Our results reveal highly anisotropic spectra in the Gulf Stream25

and zones of both agreement and disagreement with theoretically expected spectral shapes.26

In general, we find spectral slopes that fall off faster than the steepest slope expected27

from quasi-geostrophic theory.28

Plain Language Summary29

The ocean displays ‘weather’ in a manner analogous to the atmosphere, even if it30

is characterized by much different length and time scale. Such oceanographic variabil-31

ities are referred to as ’eddies’, and they are known to be important to the participation32

of the ocean in climate. The oceanographic community therefore has a strong interest33

in eddies and their physical description. Here, by using numerical simulations of the North34

Atlantic Ocean, we describe and employ a a new statistical method to define and ana-35

lyze eddies. Among the advantages of our technique is its applicability to the normally36

complex settings of most geophysical interest.37

1 Introduction38

That the ocean is ‘turbulent’, i.e. energetically variable in time and space, has been39

known for several decades. A useful overview of the field circa 1980 is provided by Wunsch40

(1981) where a discussion of several open questions about eddies at that time appears,41

along with the recognition that the definition of an ‘eddy’ was an elusive thing. In the42

decades since, appreciation of the dynamical significance of ocean variability has grown,43
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alongside the discovery of novel forms of variability, such as the ocean sub-mesoscale. The44

almost impossibly large number of contributions are usefully reviewed in Hecht and Ha-45

sumi (2008) and McWilliams (2016). Powerful new tools for the study of eddies have ap-46

peared, such as gliders, satellites and numerical models and large organized efforts have47

grown in order to implement them, such as the ARGO program and the various model48

intercomparison initiatives.49

Interest in the dynamical effects of eddies on climate projection has also invigorated50

the study of eddy-parameterization, i.e. the restatement of feedback of ocean variabil-51

ity on the ‘mean’ flow as a function of the resolved variables. As emphasized in several52

publications by Berloff and collaborators, almost all eddy parameterizations appeal to53

some form of a space-time filtering, leaving the definitions of both the mean and eddies54

ambiguous at the level of the filtering parameters (cf. Bachman et al., 2015; Gent & Mcwilliams,55

1990; Zanna et al., 2017). Berloff et al. (2021) is an interesting attempt to develop more56

general parameterizations independent of the filtering process.57

A traditional, perhaps ‘the’ traditional, measure of the eddy field is the kinetic en-58

ergy spectrum, which is the distribution of the energy in the eddy field in the wavenum-59

ber, frequency or wavenumber-frequency domain. At a basic level, a spectrum is a pow-60

erful descriptor of the eddy field, useful for several quantitative purposes and provides61

fundamental measures that should guide eddy parameterizations. At a deeper level, the62

shape of the spectrum can lead to important clues about dynamical processes control-63

ling the eddy field, with well-known examples being those for quasi-geostrophy (QG; Char-64

ney, 1971) and surface quasi-geostrophy (SQG; Held et al., 1995; Lapeyre & Klein, 2006).65

Indeed with the advent of global surface observations from satellites and eddy-resolving66

models, there has been an emphasis in the physical oceanographic community on quan-67

tifying the wavenumber spectral slopes of mesoscale eddies (Capet et al., 2008a; Callies68

& Ferrari, 2013; Khatri et al., 2018). The general understanding has been that the en-69

ergetic western boundary current and Antarctic Circumpolar Current (ACC) regions,70

are a mixture of QG, mixed-layer instabilities (MLIs) and internal waves while the qui-71

escent regions are governed by SQG and frontogenesis (Xu & Fu, 2011, 2012; Rocha, Gille,72

et al., 2016; Vergara et al., 2019; Cao et al., 2019; Dong et al., 2020; Khatri et al., 2021).73

The derivations of the QG and SQG spectral shapes rest on a number of assump-74

tions that render the problem tractable. Amongst the most essential, in addition to quasi-75
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geostrophy, are those of statistical stationarity and spatial homogeneity. Implicit also76

are the assumptions that mean fields are irrelevant and forcing is constant.77

These are constraints which clearly do not apply to most oceanographic settings.78

For example, the Gulf Stream possesses a very strong and structured mean flow to which79

the eddy field is sensitive. Any Gulf Stream mean flow also almost certainly represents80

a response to a temporally variable atmospheric forcing. Characterizations of this sort81

are not restricted to the Gulf Stream, but can arise in virtually any part of the ocean.82

Immediate connections to theoretical predictions are thus somewhat obscured, but one83

hopes that the predictions represent demonstrations of general statements which have84

been derived in special settings.85

To test this idea requires calculations of spectra that are valid in the inhomoge-86

neous and non-stationary regions of geophysical interest. Traditional spectra, in contrast,87

employ assumptions of stationarity and homogeneity and process the data prior to anal-88

ysis in ways that distort the underlying structure and thus interfere with their ultimate89

intepretation. The results are therefore somewhat suspect in their validity. We argue an-90

alyzing ensembles of models permits calculation of spectra in non-stationary and inho-91

mogeneous settings. Admittedly, modeling is special in that an ensemble can be built,92

as opposed to observations, where all that exists is the single, observed realization. A93

lofty, long-term goal is the development of ways to view the single, observed realization94

as a member of an ensemble, thus embedding its interpretation within an ensemble frame-95

work.96

This paper has two objectives. The first objective is to address the above issues97

within the context of numerical modeling by exploiting the relatively recent methodol-98

ogy of ocean ensemble generation. Two methods for spectral calculation are proposed99

that provide complementary views of the eddy energy field. Both satisfy Parseval’s equal-100

ity, and therefore can be interpreted as wavenumber dependent energy spectra. The first101

is a relatively straightforward generalization of classical spectral analysis, while the sec-102

ond is related to empirical orthogonal function theory already widely used in oceanog-103

raphy. The latter technique has also been employed by the turbulence community (Lumley,104

1970; Berkooz et al., 1993; Moser, 1994). These two techniques provide complementary105

views of the eddy energy field. The second objective is to apply the techniques to the106

separated Gulf Stream region as a proof of concept and to comment on the local eddy107
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spectra. Accordingly, we find our results are somewhat at odds with previous spectral108

estimates in the Gulf Stream and we find departures from theoretical power law behav-109

iors. The results also comment on the assumptions of isotropy that are often built into110

classical spectral analysis.111

The next section introduces ensemble based mean and eddy definitions and reviews112

the basics of Fourier spectral analysis. We then describe our procedures for energy spec-113

tral computation and argue their roles as generalizations of the Fourier spectral approach114

to inhomogeneous and non-stationary settings. The application of these procedures to115

the separated Gulf Stream appears in Section 3 and we end with a brief summary and116

discussion of further applications and developments.117

2 Fundamentals118

Ensemble modeling, long a practice in meteorology, has only recently gained trac-119

tion in oceanography. A recent QJRMS special issue (Buizza, 2018) reviewed the last120

few decades of ensemble studies, in which only one paper discussed ocean ensembles (Zanna,121

2018). Perhaps the most widely recognized ocean ensemble is from the French OCCIPUT122

effort (Penduff et al., 2011), consisting of 50 global ocean simulations at eddy-permitting123

0.25◦ resolution. More recently, Jamet et al. (2019) and Jamet et al. (2020) analyze a124

regional North Atlantic ensemble consisting of 60 members in various configurations at125

an eddying 1/12◦, and Aoki et al. (2020) discuss an 80-member 1/36◦ eddy-resolving re-126

gional Kuroshio model. It is clear that oceanography is still in the early stages of exploit-127

ing ensemble methodologies, particularly at resolutions adequate to reliably host mesoscale128

eddy dynamics.129

2.1 Ensemble Means Versus Classical Means130

As emphasized above, the idea of an ensemble is rooted in numerical simulation,131

where collections of possible solutions of the governing equations can be analyzed. Ob-132

servations, in contrast, are unique; no other observed ensemble members can be obtained.133

But, if numerical simulation is to be believed, observations are composed of both mean134

and eddy components, and represent a single realization of the dynamical state of the135

ocean. It is here that analyzing a numerical ensemble can assist in rationally decompos-136

ing observations into a ‘mean’ flow with superposed ‘eddies’.137
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Consider a collection of spatially and temporally variable data, fi(x, t), where i de-138

notes the ith member of a set of size N . Numerically, this collection will have been gen-139

erated by solving the equations of motion subject to specified forcing, initial and bound-140

ary conditions. A common procedure for ensemble generation, used in this study, involves141

holding forcing and boundary conditions fixed and varying initial conditions. Given the142

chaotic nature of the fluid equations, different initial conditions develop into different143

flows that, due to their adherence to the equations, are nonetheless dynamically consis-144

tent states.145

An ensemble mean can be formed via

〈f(x, t)〉 =
1

N

N∑
i=1

fi(x, t), (1)

representing that part of the original data present in all the members. We refer to this146

quantity as the ‘mean’ flow. Since the collection possesses common forcing and bound-147

ary conditions, we will interpret the mean as reflecting the presence of those features through-148

out the domain. In this sense, the ‘mean’ is the predictable, or reproducible, component149

of the flow.150

The fluctuations about the mean for each member, f ′i(x, t) = fi(x, t)−〈f(x, t)〉,151

are dynamical contributions to the data not common across the members, and arise due152

to the differing initial conditions. The nonlinearity in the equations essentially assures153

us that small initial differences lead to large differences in dynamical state over relatively154

short times. Defining the ‘eddies’ as f ′i identifies them as the effectively unpredictable155

components of the flow. Of course, both the mean and the eddies have some dependence156

on the ensemble size, N , but presumably converge to unique statements as N grows.157

In contrast, the means that can be formed from a single realization, such as

f(x, t) =
1

T

∫ t+T

t

f(x, t)dt, (2)

for a temporal mean, depend explicitly on the parameter T . The ‘eddies’ associated with158

(2) are obtained as the residuals about the mean and also reflect T . Neither the mean159

nor the eddies converge to unique statements as T grows. Since there is no basis for the160

choice of this parameter, both the mean and eddies are somewhat ambiguous. It is also161

common practice when analyzing observations to invoke an assumption of stationarity,162

or equivalently that the value of the absolute time t doesn’t matter. This is a question-163

able assumption for most parts of the ocean. It is possible to partially remedy any such164
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concerns by performing conditional averages, such as by averaging over the so-called DJF165

winter months for several consecutive years. But even then, the assumption is made that166

the value of the year is unimportant, which is again questionable given interannual vari-167

ability.168

These confounding issues do not plague ensembles, leading us to our first propo-169

sition that (1) yields an unambiguous statement of what is meant by the mean flow and170

eddies. In this definition, it is recognized that any inhomogeneity or non-stationarity of171

the eddy field is captured.172

2.2 Overview of Fourier spectra173

We briefly review classical spectral analysis focussing on spatial spectra, although174

similar techniques apply to frequency spectra.175

In any practical situation, we have spatially finite data, u(x), over a domain A. The

data can be forced into a periodic form by tapering it such that the data goes to zero

at the domain edges, and then repeating the data indefinitely in space. A Fourier series

representation for a purely periodic function always exists, and, calling uw the tapered

data, is

uw(x, y) =

∞∑
(n,m)=0

ûw;n,me
−2πi( nxLx+my

Ly
)
, (3)

where x = (x, y) and Lx, Ly are the spatial periodicities of uw, such that

uw(x, y) = uw(x+ pLx, y + qLy). (4)

The quantities p, q are integers. For the remainder of the study, we only consider the eddy

field (uw, u) obtained by removing the ensemble mean. The Fourier coefficients are given

by

ûw;n,m =
1

A

∫ Lx

0

∫ Ly

0

uw(x)e
2πi( nxLx+my

Ly
)
dxdy, (5)

where A = LxLy is domain area.176

We can form the product ew;n,m = ûw;n,mû
∗
w;n,m where the ∗ denotes a complex

conjugate. A fundamental idea behind spectral analysis is that the data uw is random,

and hence that ew;n,m is also random, if non-negative. Averaging is required to arrive

at an estimate of the underlying spectrum. The theory behind spectral analysis assumes

that an ensemble average is performed. In practice, there are several techniques that are

used for averaging. Standard techniques include averaging neighboring spectral estimates,
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or the original data is broken into several pieces and the spectral estimates at each wavenum-

ber from the various areas are averaged. Note that in this process windowing necessar-

ily impacts the domain scale spectral estimates. If the underlying fields are homogenous,

the result is an estimate of an ensemble average. Denoting the average by brackets, 〈·〉

〈ûw;n,mû
∗
w;n,m〉 =

1

A2

∫
x

∫
ψ

〈uw(x)uw(ψ)〉e2πi(
n(x−ψ)
Lx

+
m(y−η)
Ly

)
dψdx, (6)

where ψ = (ψ, η) denote location. At this point, the assumption of spatial homogene-

ity is explicitly introduced by saying that the statistics of the field depend only on sep-

aration in each of the spatial dimensions

〈uw(x)uw(ψ)〉 = ρuu(|x− ψ|, |y − η|). (7)

The Fourier transform of the two point correlation function ρuu can now be computed

and is usually written in the form

〈ûw;n,mû
∗
w;n,m〉 = Ewuu;n,m, (8)

where the Fourier transform of ρuu is written Ewuu;n,m, and interpreted as (twice) the spec-177

tral energy density of the spatial series uw(x).178

This interpretation comes from Parseval’s theorem, i.e.

∞∑
(n,m)=0

Ewuu;n,m =
1

A

∫
x

〈uw(x)2〉dx, (9)

as can be shown from (6), arguing that the ensemble mean energy in domain A can be179

broken into contributions of energy Ewuu;n,m in the waveband n,m. An additional assump-180

tion of isotropy is sometimes invoked, which further reduces the correlation function from181

ρuu(|x−ψ|, |y−η|) to ρuu(|x−ψ|). Well-known issues with this classical approach are182

that (1) in important parts of the ocean, like the separated Gulf Stream jet, the assump-183

tions of homogeneity and isotropy are not justifiable, (2) the additional assumption of184

stationarity in the view of seasonality and intrinsic variability is suspect and (3) the need185

to taper the data also complicates the understanding of the results.186

2.3 An Ensemble Based Generalization of Spectra187

2.3.1 The Classical Approach188

Perhaps the simplest and most straightforward way to use ensembles to avoid the

above mentioned issues is to replace the averaging methods in (6) by an ensemble av-

erage, denoted by angle brackets (〈·〉). A somewhat subtler point is that this can be done
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on the Fourier transform of the original data, rather than the Fourier transform of the

windowed data, where longer length scales have fewer degrees of freedom due to the win-

dowing. (A broader discussion of the issues associated with windowing is provided in the

Appendix A.) Referring to the latter as ûn,m, the spectral energy estimate becomes

Ewuu;n,m = 〈ûn,mû∗n,m〉. (10)

It is straightforward to show (10) satisfies Parseval’s equality based on the original data

∞∑
(n,m)=0

Ewuu;n,m =
1

A

∫
x

〈u(x)2〉dx, (11)

rather than the windowed data. This permits the interpretation of Ewuu;n,m as the wavenum-189

ber dependent decomposition of (twice) the ensemble mean kinetic energy of the eddies.190

In addition, the spectra belongs to the region A; i.e. no assumptions of homogeneity are191

involved and the wavenumber decomposition is that of the domain.192

2.3.2 An EOF Based Approach193

A different, but equally valid empirical orthogonal function (EOF) based decom-

position was proposed by Moser (1994), who was interested in three-dimensional, inho-

mogeneous turbulence. Consider the integral equation∫
x′
rij(x,x

′)φj(x
′)dx′ = λφi(x) (12)

where rij = 〈ui(x)uj(x
′)〉 is the two point, (x, x′), covariance matrix of a velocity field.194

The subscripts i, j track the velocity components, the brackets (〈·〉) again denote an en-195

semble average and repeated indices i, j imply summation. Equation (12) defines an eigen-196

function/eigenvalue (φi(x), λ) problem which, as pointed out by Berkooz et al. (1993),197

is a classic problem in the calculus of variations. Specifically, that problem is to find the198

(eigen)functions φi, from the class of all functions, which are ‘most similar’ to the ve-199

locities, uni , of all the ensemble members. The resulting decomposition into the set of200

functions φi(x) arises in several branches of physics. In the turbulence community, this201

is known as the Proper Orthogonal, or Karhunen-Loeve, decomposition (Lumley, 1970;202

Berkooz et al., 1993); in oceanography, the eigenmodes are equivalent to EOFs (Preisendorfer203

& Mobley, 1988).204

First, note if rij is homogeneous, which for a finite sized observation set implies pe-205

riodicity, then the choice φj = e2πik·x satisfies (12). Note this is true for both compo-206

nents of the of the velocity field, hence the insensitivity of the eigenmode to the index207
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j. Equivalently, Fourier modes act as the needed eigenfunctions in that case. Further,208

if the eigenfunctions are Fourier modes, rij must be homogeneous (Berkooz et al., 1993),209

so (12) defines Fourier modes as the proper expansion basis for homogeneous flows. The210

novelty of the analysis we present here comes when rij is not homogeneous, in which case211

(12) yields a more general spatial decomposition.212

For simplicity of discussion and familiarity within oceanography, the integral equa-

tion in (12) will be converted to a discrete form, where it becomes a matrix equation.

Restricting the discussion from here on to two horizontal dimensions of ensemble and

space, (12) can be written

[R][φ] = λ[φ], (13)

where r1,1 r1,2

r2,1 r2,2

 = [R],

and

[φ] =

 φ1

φ2

 .
To fit the form of (13), the data array uij composed of velocity values at spatial

location (xi, yj) multiplied by an area-like element (to account for the spherical coor-

dinate in a consistent manner with MITgcm’s finite volume discretization; Appendix C),

is converted to a vector uij 7→ ui+(nx−1)j of length nxny where nx and ny are the num-

ber of observations in the zonal and meridional directions, respectively. The matrix [R]

is of dimension (2nxny)×(2nxny) and [φ] is a vector of length 2nxny, there being two

velocity components. The matrix [R] is also symmetric, i.e. Rij = Rji where i, j are

row and column matrix locations, and therefore basic linear algebra assures us that [R], [φ],

and λ possess a number of properties. Principle among these is that [R] can be diago-

nalized, i.e.

[R] = [Φ]T [Λ][Φ], (14)

where [Φ] is a matrix whose ith column is the eigenfunction φi and [Λ] is a diagonal ma-

trix whose (i, i) component consists of the eigenvalue λi associated with φi. The nota-

tion [Φ]T denotes the transpose of the matrix [Φ]. Further the eigenfunctions are oth-

ogonal and can be normalized

[Φ]T [Φ] = AI, (15)

where I is the identity matrix and A is the domain area.213
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Another useful result of linear algebra is that the diagonalization in (14) implies

the traces of the matrices [R] and [Λ] must be identical. Noting that

tr([R]) =

2nxny∑
i=1

〈uTi ui〉, (16)

= 〈u1u1〉+ . . .+ 〈unxnyunxny 〉+ 〈v1v1〉+ . . .+ 〈vnxnyvnxny 〉

is twice the ensemble-mean eddy kinetic energy, the sum of the eigenvalues measures the214

mean energy of the samples. In more familiar EOF language, the eigenvalue represents215

the fraction of the observational variance captured by its associated mode. We remind216

the reader that while it is common to define the eddy velocity (ui) as temporal anoma-217

lies in EOF analyses (e.g. Hannachi et al., 2007), here we define it as the fluctuations218

about the ensemble mean.219

The full set of eigenfunctions, φk, is complete, so it is possible to represent each

of the original ensemble members un using the φk as a basis

un(x) =

M∑
k=1

an;kφk(x) (17)

where the superscript n denotes the ensemble index, and k is the index of EOF mode.

In principle, M = 2nxny, as the matrix R is of size 2nxny × 2nxny. However, by ap-

pealing to singular value decomposition theory, the number of significant eigenvalues is

set by the ensemble size. Using the orthogonality condition

1

A

∫
x

φi · φjdx = δij , (18)

equivalently (15) in its discretized form,

an;k =
1

A

∫
x

un · φkdx, (19)

'
2nxny∑
i=1

uni φ
k
i

with the spatial integrations equivalent to summing over discretized spatial points and220

A =
∫
x
dx. Note, unlike the standard approach where each velocity component is trans-221

formed independently, the EOF procedure operates directly on the full velocity vector.222

A single set of expansion coefficients, an;k, along with the vector-valued basis elements,223

φk = (φk1 , φ
k
2) exactly reconstructs both components of the velocity vector in any re-224

alization; the spatial distribution of un comes from the first half of φk (i.e. φk1) and that225

of vn from the second half (φk2).226
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Inserting the decomposition given in (17) into the definition of the ensemble-mean

eddy kinetic energy and using the orthogonality of the EOF basis implies∑
k

〈unk
Tunk 〉 =

∑
k

〈an;kan;k∗〉 =
∑
k

λk. (20)

In other words, the sum of the expected variance of the coefficients an;k is also twice the227

ensemble-mean eddy kinetic energy (Moser, 1994). Inasmuch as an:k in the present case228

plays same the role as ûn in a standard Fourier analysis, this completes the connection229

between the {φ} and Fourier bases. The expected value of the coefficient magnitudes230

can be related to the sample energy as in (20), which is effectively a Parseval’s equal-231

ity. The difference here is the expansion basis is the vector valued set {φ}, rather than232

the independent complex exponentials employed by Fourier analysis. Note also that it233

has not been necessary to taper the data.234

At this point, what remains is to assign a length scale to each member of the set

{φ}. This is important for the application of the decomposition in tests of theory, as the

equations of motion relate length scales, energy levels and parameters to expectations

for spectral shape, as in Kolmogorov (1941). For Fourier modes, the length scale is ob-

vious as the inverse of the wavenumber. Note, if φ is a Fourier complex exponential (viz.

φ = e−ik·x)

|k| =
[∫
x
|∇φ|2dx∫
x
|φ2|dx

]1/2
. (21)

Equation (21) can also be applied to the eigenfunction to generate a lengthscale. In this

paper, we define zonal (k) and meridional (l) wavenumbers independently according to

|k| =
( 1

A

∫
x

(φx)2dx
)1/2

, (22)

and

|l| =
( 1

A

∫
x

(φy)2dx
)1/2

, (23)

(recall that 1
A

∫
x
φ2dx = 1). The subscripts x and y denote partial derivatives.235

2.3.3 Connections Between the Classical and EOF Based Spectra236

The two techniques described above both decompose the same domain integrated

kinetic energy, and so are related. To see this, note that the velocity realizations can be

expressed in terms of Fourier transforms and EOFs as

usi (x) =
∑
n,m

ûsi;n,me
−2πi( nxLx+my

Ly
)

=
∑
p

as;pφpi (x). (24)
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Each φpi (x) can be itself Fourier analyzed

φpi (x) =
∑
r,q

φ̂pi;r,qe
−2πi( rxLx+ qy

Ly
)
, (25)

leading to the result

ûsi;n,m =
∑
p

as;pφ̂pi;n,m. (26)

By design, the EOFs produce the most compact representation possible of the ki-237

netic energy field. This is inherent in their derivation as a solution to a maximization238

problem. EOFs are also aware of the statistical connections between the velocity com-239

ponents u and v as they are both in the covariance matrix [R]. Because each of the EOFs240

can be reconstructed from Fourier modes, they are composed of the contributions of the241

variance from the various wavenumbers which are needed to meet this maximally com-242

pact constraint. In this sense, the EOF decomposition provides a view of the energy field243

that is complementary to the classical Fourier spectrum.244

To summarize, generalizations of spectral theory to non-homogeneous settings have245

been described. Given an ensemble of velocity realizations, averaging can be performed246

directly to arrive at classical Fourier based energy spectra, or EOFs of two-point corre-247

lation function, [R], can be estimated and used to compute an associated energy decom-248

position. Neither procedure requires windowing, or tapering, the data (for further de-249

tails, see Appendix A). Both procedures yield energy spectra satisfying Parseval’s equal-250

ity, so the energy structure as a function of length scale can be compared with theoret-251

ically expected slopes.252

3 Application to the Separated Gulf Stream253

An essential element of this analysis is the use of ensembles to define both eddies254

and perform needed averaging. We here use 36 realizations from a North Atlantic en-255

semble extending from 1963 to 1967. The model consists of a 1/12◦ deployment of the256

MITgcm (Marshall et al., 1997). The strategy used to produce the 36-member ensem-257

ble is described in Appendix B. We will pay particular attention to an area in the sep-258

arated Gulf Stream located away from any topography.259

Figure 1 contains a plot of ensemble mean surface speed off the US east coast for260

12am, January 1, 1967. The mean Gulf Stream separates at Cape Hatteras and moves261

east northeast into the open Atlantic. Surface speeds are quite strong, in excess of 2 m s−1,262
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and evidence of persistent standing meanders are seen. The box enclosed by thick white263

lines is our region of focus, a 4◦× 4◦ square centered on (36.0N, 70.2W). The domain264

was chosen to focus on the separated Gulf Stream. Also, as we do not window the data265

prior to taking the Fourier transform (see Appendix A), we can examine the full domain266

size length scales. We will concentrate on the depths of 94 m and 628 m, i.e. near sur-267

face and mid depth zones where spectral expectations differ. Figure 2 contains plots of268

ensemble mean zonal and meridional velocities at these depths. The near surface zonal269

flow is quite strong and is accompanied by a meridional flow weaker by a factor of four.270

Gulf Stream baroclinicity is evident, with a reduction of mean flow to roughly 0.3 m s−1271

in the zonal direction at 628 m, and of order 0.05 m s−1 in the meridional direction. These272

fields define the inhomogeneous environment on which the eddy field develops. The mean273

flows appearing in Fig. 2 are removed from all the 36 ensemble members, leaving us with274

effectively 35 degrees of freedom for the description of the eddy field.275
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1 ]

Figure 1. North Atlantic regional model domain. The contours are the ensemble-mean sea

surface speed for 12a.m., January 1, 1967. The white box encloses the region studied in this

paper.

3.1 Fourier Wavenumber Spectra276

The result of computing the two dimensional, zonal, meridional energy spectrum277

according to (10), and to a detrended version of the data, appear in Figs. 3 and 4. (The278
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a) b)

Figure 2. Ensemble mean velocities in the study domain denoted by the white box in Fig.

1. Panel a is from a depth of 97 m and b from a depth of 628 m. The colors indicate speed in

[m s−1].

method of detrending is detailed in Appendix A.) Figure 3 comes from the near surface,279

at a depth of 94 m and Fig. 4 from 628 m, which is well within the main thermocline280

and away from surface influence. The left hand column shows the two dimensional spec-281

tra and the right hand column one-dimensional projections of the two dimensional spec-282

tra, along the zonal (blue) and meridional (green) directions. The upper row in both fig-283

ures shows the spectrum obtained from the full data, and the lower row from a detrended284

version of the data. The solid black line is the result of azimuthally averaging the 2-d285

spectrum to produce an isotropic spectral estimate. The magenta line follows the k =286

l trajectory in the wavenumber plane.287

The left-hand column illustrates that the spectra are strongly non-isotropic, sug-288

gesting that Gulf Stream structure is imprinting on the eddy field. Indeed, the primary289

spectral amplitudes occur along the zonal and meridional directions. The right-hand col-290

umn shows interesting similarities and departures from the theoretically predicted spec-291

tral slopes of −5/3, −2 and −3. These slopes appear on the right as the dot-dashed grey292

lines and represent the expected slope of the upscale energy cascade (−5/3), frontal, MLI293

or internal waves (−2) and the enstrophy or SQG cascades (−3) (Charney, 1971; Held294

et al., 1995; Rocha, Gille, et al., 2016; Vallis, 2017; Cao et al., 2019; Dong et al., 2020;295

Khatri et al., 2021). The overall structure of the spectra compare well between the sur-296

face and the main thermocline in that the relative spectral slopes from the two depths297
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are similar. The primary distinction lies in the spectral amplitudes, which are larger roughly298

by a factor of two near the surface, as expected.299

The overall trend for all the one-dimensional projections is that they fall off at faster300

rates than the steepest −3 slope and tail off towards −5/3 at the largest wavenumbers,301

although the full data and detrended data differ in the details. For the full data, the slopes302

are steeper than −3 at wavenumbers smaller than ∼ 3×10−2 cpkm but shoal towards303

−5/3 at larger wavenumbers. For the detrended data, the opposite is true: the slopes304

are steeper for wavenumbers larger than ∼ 10−2 cpkm but roll off towards −5/3 at smaller305

wavenumbers. The isotropized slope is essentially identical to the meridional projection,306

although it is clearly not representative of either the zonal or k = l projections. All slopes307

are generally different from those reported in Ajayi et al. (2021), all of which assumed308

isotropy and all of which were more characteristically between −2.5 and −3. Capet et309

al. (2008b) describe spectra with slopes of −2 in the California Current system. We note310

that the models examined in both of these studies were at much higher, sub-mesoscale311

permitting resolution, a feature which may well account for much of the difference. Our312

results do however question the interpretation of azimuthally averaged spectra in the Gulf313

Stream region of the ocean. We suspect this will be true also with sub-mesoscale reso-314

lutions in regions of strong mean flow.315

The spectra appearing in the upper panels (Figs. 3a,b and 4a,b) are characterized316

by much larger amplitudes extending along the k = 0 and l = 0 axes relative to the317

lower panels (Figs. 3c,d and 4c,d). These ridges, while two to three orders of magnitude318

lower than the energies at low wavenumbers, are due mostly to the presence of the dis-319

continuities at the zonal and meridional boundaries of the domain causing the slopes to320

shoal towards higher wavenumbers (cf. Fig. A1). This is demonstrated by the lower plots,321

where spectra removing the discontinuities by means of detrending are shown. Note that322

the detrending has an unnoticeable effect on the energies at low wavenumbers, indicat-323

ing that the largest spectral amplitudes are dominated by the structure interior to the324

domain. Anisotropy is evident in both plots. It is generally seen that the full spectra drop325

off somewhat more steeply than the detrended spectra, but in all cases the slopes are greater326

than −3 at scales O(100 km).327

In summary, departures from theory appear in these spectral representations of the328

Gulf Stream eddy field. Perhaps clearest is the lack of spectral isotropy in the two-dimensional329
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spectra. Beyond that, well resolved model length scales tend to exhibit steeper slopes330

than are predicted by theory.331

3.2 An EOF-based Spectral Examination332

It is also possible to use the ensemble to estimate the correlation matrix from the333

domain in Fig. 1 and to extract its eigenvalue/eigenfunction content. We show in Fig. 5334

the first two velocity eigenfunctions for 94 m depth (top row) and 628 m (bottom row)335

and third and fourth eigenfunctions in Fig. 6. Perhaps the most prominent feature of336

the eigenfunctions is their similarity in structure even though separated by roughly 530m337

in the vertical. Beyond that, first EOF resembles a standing eddy. Given that the mean338

flow exhibits a standing meander in the region, this mode represents strengthening or339

weakening of this feature. The second mode is much more zonally elongated, and shows340

reversals to the north and south of the primary flow at jet center. This mode captures341

the broadening or narrowing of the main Gulf Stream jet. The next two modes are more342

spatially complex, and difficult to interpret simply in terms of their effects on the Gulf343

Stream. However, both are amplified in the eastern sector of the domain, suggesting an344

increasing tendency for the Gulf Stream to become less coherent with increasing sepa-345

ration from the coast.346

We next computed the modal spectra within the 4◦×4◦ square at the two depths347

of 94 m and 628 m. The results appear in Fig. 7 as three dimensional scatterplots. The348

horizontal axes are the log of the wavenumbers and the vertical axis is the log of the spec-349

tral amplitude. Each eigenmode is assigned a single zonal and meridional wavenumber350

according to (22) and (23), and the locations of those pairs are indicated by the blue dots.351

The spectral amplitude of the eigenmode for each wavenumber pair appears as the ma-352

genta crosses. The projections of the energies on the zonal and meridional axes appear353

as the green and red dots, respectively, and on those planes, black lines with a slope of354

−3 are given as reference.355

As suggested by the solid black lines, the EOF spectra typically fall off more steeply356

than the −3 slope, which is consistent with the classical spectral results. There is no clear357

indication of the −5/3 slope at low wavenumbers hinted at in Figs. 3 and 4. Beyond this,358

there are interesting comparisons to be made with the classical results, which underscore359

the different philosophies behind the two spectral estimates. The assignment of single360
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zonal and meridional wavenumbers to each mode implies that the EOF spectral plot is361

really a single line in the three-dimensional wavenumber, energy diagram. This shows362

up in Fig. 7 in the blue dot distribution in the k-l plane, which are the collection of the363

EOF ‘wavenumbers’. The magenta dots, one per blue dot, describe a trajectory in the364

plot, nominally following the line described by the blue dots. Note that, although there365

is scatter, the spectral line is closer to an ‘isotropic’ configuration than would be indi-366

cated by Fig. 3. Best fit wavenumber lines suggest l = 1.4k near the surface and l =367

1.1k at depth. Thus there is a weak indication of compression of the variability in the368

across-stream direction near the surface, and less so at depth. This is seemingly in keep-369

ing with the stronger down stream flow found near the surface relative to that at depth.370

In any case, the picture emerging from these plots is much different than the anisotropic371

configurations seen in Figs. 3 and 4.372

These very different spectral impressions can be understood by appealing to their373

derivations. The EOF spectra emerge from an examination of the two-point correlation374

function, (12), which in turn contains information about statistical relationships between375

zonal and meridional velocity. In contrast, all such information is lost in the classical Fourier376

spectra, which consider the two velocity components independently. The spectra of the377

individual zonal and meridional velocity components from the detrended data appears378

in Fig. 8, where the top row is from 94 m and the bottom row is from 628 m. The left379

column is the zonal velocity spectrum and the right column the meridional velocity spec-380

trum. The sum of each row yields the full spectrum seen in the bottom rows of Figs. 3381

and 4. The zonal flow tends to contribute variance to the total near to the k = 0 axis,382

meaning this component of the flow exhibits long downstream lengthscales, and pronounced383

cross-stream structure. The opposite is true for the meridional velocity, which contributes384

heavily near to the l = 0 axis, indicative of the downstream structure of the cross-Gulf385

Stream eddy flow. When added, the spectrum that emerges is the anisotropic version386

observed in Figs. 3 and 4. These various structures however, are not statistically inde-387

pendent, and when this is accounted for, by analyzing R(x,x′), the spectral represen-388

tation falls along a line much closer to k = l. Recall that both energetic decomposi-389

tions completely reconstruct the total kinetic energy in the domain, so both are equally390

valid descriptions. The EOF spectra, by combing through the wavenumber plane to com-391

bine the coherent variance at each wavenumber as determined by the statistics, provides392

a view of the eddies in a manner complementary to the classical spectra.393
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The statistical dependence of the u and v fields plays an important role in describ-394

ing the regional variability. It is possible to partially reconstruct the velocity fields of the395

realizations by adding the contributions of the first few modes to the ensemble mean flow.396

Doing so demonstrates that the role played by the first few EOFs is to mimic the sin-397

uous motion of the Gulf Stream within the jet. This is shown in Fig. 9. Figure 9a is the398

94 m velocity field of one of the ensemble members. Figure 9b is the ensemble mean ve-399

locity field. Clearly, the realization differs markedly from the ensemble mean, and so pos-400

sesses a strong eddy field. On the other hand, it is clear the structure of the realization401

is dominated by the coherent Gulf Stream jet. The lower two rows (Fig. 9c,d) show the402

effect of adding the first and second EOFs multiplied by the appropriate projection co-403

efficient, respectively, to the ensemble mean. The comparison demonstrates that this par-404

tial reconstruction brings the fields much closer to the realization. Of course, this should405

be the result of adding the EOFs to the mean, but the comparison serves to illustrate406

that the regional variability is dominated by the vacillations of a highly coherent feature,407

and that the underlying regularity of the velocity field is captured by the EOFs. This408

statistical relationship between the velocity components is lost in the classical EOF en-409

ergy spectrum.410

4 Discussion and Summary411

We illustrate the use of ensembles to compute ocean kinetic energy spectra, from412

the perspective of emphasizing how they readily permit the examination of spectra in413

the non-stationary, inhomogeneous and anisotropic settings of most oceanically inter-414

esting settings. This is primarily because the development of the ensemble permits the415

straightforward application of ensemble averaging to compute the mean fields, the ‘ed-416

dies’ and the averages needed to obtain robust results. Amongst their advantages are417

an ability to define ‘parameter’ free mean and eddy fields. It is also not necessary to in-418

voke the assumptions normally used to generate spectra. We have also discussed vari-419

ants on the normal spectral theme. In additional to the classical Fourier based decom-420

position which has seen wide-spread usage in oceanography, we have adopted a technique421

used in the turbulence literature for the study of inhomogeneous settings. In order to422

capture the inhomogeneous nature of oceanic flows, Sadek and Aluie (2018) recently de-423

veloped a method where they spatially decompose the kinetic energy using a coarse-graining424

approach. Here, we have instead effectively migrated EOF analysis to energy by exam-425
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ining the two-point correlation matrix of the velocity field. The modal eigenvalues from426

the analysis play the role of the spectral amplitudes, but now describe the contribution427

of the EOF to the total energy, rather than that of a given complex exponential. The428

assignment of length scales to the energy is made via the gradients of the eigenmodes,429

a procedure that is itself a generalization of the Fourier technique. We also do not ta-430

per or window the data prior to analyzing it.431

We apply the methods to the eddies to a section of the separated Gulf Stream, a432

strongly inhomogeneous and eddy rich area of the world ocean. The classical spectra ar-433

gue strongly that the region is anisotropic, with energy predominantly found in the low434

velocity modes (Fig. 8). The slopes of the spectra, when viewed from various one-dimensional435

perspectives, exhibit a number of novel characters. There is a suggestion at the lowest436

resolved wavenumbers of the −5/3 slope expected from inverse energy cascade arguments437

(Fig. 3). Moving towards higher wavenumbers, however, the slopes fall off more steeply438

than the steepest (−3) slope expected from QG theory. This result differs from other439

analyses employing standard methods. We suggest these differences are at least partly440

due to the unique separation between mean and eddies that an ensemble permits.441

We examine surface and mid-thermocline depths, finding the spectral structures442

strongly resemble each other. This appears in the similarity of the spatial EOFs as well443

as the distributions of the classical spectra. The energy levels are, of course, different,444

with the deeper level less energetic. The deeper level is, according to the EOF spectra,445

slightly less anisotropic than the surface, a result consistent with the weaker mean flow446

structure at depth.447

The big distinction between the spectral views is in the apparent change between448

the highly anisotropic conditions suggested by the classical spectra and the much more449

isotropic looking spectral structure associated with the EOFs. Both techniques yield valid450

decompositions of the regional energy and each possesses its own strengths. Fourier anal-451

ysis unambiguously assigns lengths scales to the spectral amplitudes and therefore can452

readily be used to investigate spectral slopes for comparison with theory. On the other453

hand, complex exponentials experience some degree of contamination due to the non-454

periodicity inherent in geophysical data. Length scales can also be assigned to EOFs via455

the procedure outlined in this paper, but the results tend to be less regular due to the456

complex spatial EOF structure. Testing for spectral slopes becomes much more subtle.457
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The new information available to the EOFs, however, is found in the velocity cross-correlations458

(as opposed to in classical kinetic energy spectrum where such information is lost), which459

results in spatial structures reflecting the preferred modes of the data. These structures460

are well suited to the finite domain size and inhomogeneity of the data. In effect, the pro-461

cedure illustrates how the energy is assigned across statistically coherent structures. Al-462

though this seems a valuable extension of classical Fourier analysis, in view of the broad463

usage of Fourier spectra in oceanography, we suggest the three views including the coarse-464

graining approach (Sadek & Aluie, 2018) provide complementary energy views.465

Given these ensemble techniques, and with nesting technology their capacity for466

resolving the full time and space evolution of spectra, there are a dizzying number of av-467

enues to pursue. We are particularly interested in comparing and contrasting the eddy468

fields of the ocean interior with those from the separated Gulf Stream. The latter is, as469

emphasized above, strongly inhomogeneous while the former region is more likely to meet470

conditions of isotropy. The regions are also starkly different in terms of their eddy en-471

ergies. In view of these contrasts, we anticipate spectral distinctions will arise, with the472

interior likely to exhibit spectral structures like those anticipated from theory. We are473

also interested in exploring the departures of the Gulf Stream spectra from classical re-474

sults. The presence of the mean flow and the departure of the region from quasi-geostrophic475

character are possible explanations, but which of these, if either, is dominant is not clear.476
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Appendix A Windowing Considerations489

It is standard practice when working with data of a finite extent, as is always the490

case, to window or taper the data, to avoid contaminating the spectra with edge effects.491

Literally, this implies multiplying the original data by a function that tapers the bound-492

ary values to zero so that the underlying data structure is consistent with the spatial pe-493

riodicity of the Fourier functions, as used in Arbic et al. (2014), Uchida et al. (2017) and494

Ajayi et al. (2021). We note that this is not necessary for our EOF spectral analysis: the495

two point correlation function can be computed for all points within the domain, and496

the eigenfunctions extracted, without further manipulating the data. We also note that497

in classical spectra, tapering distorts the underlying data thus effecting the outcomes of498

the computation. We do not taper, or window, the data in the classical way. The ratio-499

nal for that decision is discussed here.500

Tapering is usually invoked to minimize edge effects occurring, for example, when501

an open ocean section of the Gulf Stream section is examined. Tapering the data to ze-502

ros at the domain edge then seamlessly permits the Fourier transforming of the data as503

if it were a purely periodic signal. In addition, it helps to control edge effects as an ef-504

fect on averaging, a problem that we do not encounter as our averaging is a true ensem-505

ble averaging.506

A well known result of Fourier theory is that the transform of the tapered data is

a convolution, i.e. if the windowed data is

uw(x) = u(x)w(x), (A1)

the transformed data is

ûw(k) =

∫
p

û(p)ŵ(p− k)dp, (A2)

where ŵ is the Fourier transform of the window. The windowed transform, ûw, is a weighted507

average of the underlying ‘true’ transform. The artistry of window construction revolves508

around designing w such that its transform is reasonably narrow band, and dies off quickly509

with distance from the origin. It is impossible to avoid side lobes in ŵ, but a well-designed510

window hopefully minimizes the distortion of the underlying spectrum.511

While accepting this premise, we point out two views, one mathematical and one

conceptual, that suggest for many applications, windowing can usefully be avoided. First,

one reason to taper is to avoid contamination from edge effects, a contamination that
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often falls under the title of Gibbs phenomena. This is a well-known problem with Fourier

representations of discontinuous data that manifests in the unavoidable appearance of

noise in the vicinity of the discontinuity. We do not dispute the reality of Gibbs phenomenon,

but also point out that a discrete Fourier transform is entirely invertible. This implies

that the discrete Fourier transform of a data stream of length N consists of a sequence

of N/2 complex values whose inverse discrete Fourier transform returns the original data

set to machine accuracy. If

ûn =
∑
p

upe
2πi pnN , (A3)

then

up =
1

N

∑
n

ûne
−2πi pnN , (A4)

and no information is lost in the forward/backward transformation. An example appears512

in Fig. A1, where the original data, appearing in the left panel, consists of a straight line,513

and thus possesses a large discontinuity at the edge. This input is forward and backward514

discrete Fourier transformed. The result appears in the lower left panel, and the differ-515

ence of the two appears on the lower right. The difference is machine precision zero, which516

simply reflects the above argument.517

It is also sometimes argued that the presence of the discontinuity will force the pres-518

ence of high wavenumber content into the transform that is clearly not present. The top519

right panel shows the log plot of the transform of the original data, where it is seen that520

spectral variance is present throughout the wavenumber band, but that after the first521

few wavenumbers, the spectral amplitudes drop by four orders of magnitude. While this522

is the introduction of high wavenumber variance in what clearly is a very smooth func-523

tion, the contamination by high wavenumbers is small.524

A conceptual issue we raise with windowing is in its resultant filtered connection525

to the so-called underlying ‘true’ spectrum. Indeed, the aim of window design is to give526

as pure a view of that spectrum as is possible with finite data. The issue as we see it here527

is that we are focussing, in a broad sense, on the ocean. The true underlying velocity528

transform in that case, brushing aside questions of domain irregularities and the like, would529

be the transform of the global ocean velocity field. This of course mixes the momentum530

of Pacific waters with those of the Indian and Southern oceans all together, which then531

presents one with the problem of interpreting what the results mean; a local signal in532

space is global in the wavenumber domain and visa versa.533
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If we move away from this rather abstract example to our present case of the North534

Atlantic, provided that we could somehow adequately isolate the North Atlantic and ex-535

tract a Fourier transform of its velocity field, we would then be looking at the results of536

simultaneously considering all the differing regimes of the North Atlantic in a single trans-537

form. But the North Atlantic, by itself, still houses dramatically distinct dynamic regimes,538

from the chaotic and eddy rich Gulf Stream extension to the much more quiescent in-539

terior westward drift to the Loop Current dominated Gulf of Mexico (Jamet et al., 2021).540

In this case, the ‘true’ underlying transform mixes all these various regions together to541

provide a single value for an amplitude at a given wavenumber.542

If we consider the fundamental question driving our investigation in this paper, it543

is to study the spectral representation of the eddy field in the Gulf Stream extension,544

a region notable for its extraordinary behavior when compared to any other sector of the545

North Atlantic, and indeed to essentially all of the worlds oceans. One can rightly ask546

of what value is it when pursuing this question to extract from the regional data a look547

at the underlying ‘true’ spectrum. In a sense this question is avoided if the transform548

of the raw, unwindowed data is used. In view of the invertibility of the Fourier trans-549

form, all of the wavenumber content of the regional data is perfectly contained in the550

raw transform, and full information about how that energy is structured in wavenum-551

ber space is available. In addition, it provides a product that is comparable and com-552

patible to the EOF based decomposition which, by design, involves no windowing.553

It is evident in Figs. 3 and 4 that the energy lying along the k and l axes is one554

of the major anisotropic features of those spectra, even if their amplitudes are orders of555

magnitude smaller than the dominant spectral amplitudes at lower wavenumbers. In view556

of the contribution of the edge discontinuities to high wavenumbers inherent in Fig. A1,557

it is fair to ask if the perception of anisotropy survives if the effects of the discontinu-558

ities are removed. We have therefore computed the regional spectra of so-called ‘detrended’559

data, where the detrending is carried out as described below.560

A1 Detrending561

First, consider the finite Fourier transform of a line,

x̂(k) =

∫ L

0

xe2πikxdx, (A5)
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with the inverse transform

x =

∫ ∞
−∞

x̂e−2πikxdk. (A6)

Equation (A5) can be written

x̂ =
1

2πi

∫ L

0

d

dk
e2πikxdx =

1

2πi

d

dk

∫ L

0

e2πikxdx, (A7)

leading eventually to

x̂ =
1

4π2k2
(e2πikL − 1)− iL

2πk
e2πikL. (A8)

Given a non-periodic field f(x) inside a finite, square domain of zonal length Lx

and meridional length Ly, we define a second field periodic in x, f1, according to

f(x) = f1(x) +
(f(Lx, y)− f(0, y))x

Lx
. (A9)

It is easily shown that

f1(0, y) = f1(Lx, y) = f(0, y). (A10)

Next, we define a field f2(x) according to

f1(x) = f2(x) +
(f1(x, Ly)− f1(x, 0))y

Ly
. (A11)

It is easily shown that

f2(x, 0) = f2(x, Ly) = f1(x, 0). (A12)

Eliminating f1 from (A11) using (A9) yields eventually562

f(x) = f2(x) +
(f(x, Ly)− f(x, 0))y

Ly
+

(f(Lx, y)− f(0, y))x

Lx
+

(f(Lx, 0)− f(0, 0)− f(Lx, Ly) + f(0, Ly))xy

LxLy
, (A13)

from which it can be shown that

f2(0, y) = f2(Lx, y), (A14)

and

f2(x, 0) = f2(x, Ly), (A15)

so f2 is a periodic function both zonally and meridionally. It is the spectra of the result-563

ing f2 field that we present in Figs. 3 and 4. If one is interested in the total energy, one564

only needs to add the spectra of the other terms on the right-hand side of (A13).565
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Appendix B Macro and micro initial conditions566

Our 36-member ensemble is composed of 24 members run with ‘micro’ Initial Con-567

ditions (ICs; Jamet et al., 2019), and 12 other members run with ‘macro’ ICs. ’Micro’568

ICs are meant to reflect the growth of dynamically consistent ocean perturbations in re-569

sponse to infinitesimally small perturbations of the ocean state. Here, they are gener-570

ated as follow: 24 oceanic states separated 48 hours each were taken during an initial571

month-long integration beginning December 8, 1962, upon which 24 simulations were run572

using these as the initial conditions under a yearly repeating atmospheric and bound-573

ary condition of 1963. We have verified that the spread so generated is consistent with574

another strategy found in the literature (Germe et al., 2017), where Gaussian white noise575

with a standard deviation of 3.5×10−3 K is applied to the 3-dimensional temperature576

oceanic field. The 12 next realizations were initialized with ‘macro’ ICs. These ICs are577

meant to more strongly involve decorrelated lower, interannual frequency ocean intrin-578

sic variability. They have been constructed here through a 50-year long run exposed to579

yearly repeating forcing, from which the January 1 model states separated by 4 years580

have been used. The interested reader is referred to Stainforth et al. (2007) for a broader581

description of these different initialisation strategies.582

Appendix C EOF analyses on a sphere583

The eigenvalue problem governing the EOFs is∫
x′
Rij(x,x

′)dx′ = λφi(x), (C1)

where Rij = 〈ui(x)uj(x
′)〉. The volume element on a sphere is

dx = a2 cos θdθdϕ, (C2)

where a is the Earth radius and θ, ϕ are latitude and longitude, respectively. The vari-584

able volume element is an issue with simply forming the covariance matrix and extract-585

ing the EOFs, as the various elements in equation (C1) are weighted differently accord-586

ing to the latitude. What follows is a proposed fix for this issue.587

We will use the notation

x→ (θ, ϕ) (C3)

with the same for x′.588
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Breaking up the cos θ′ into the product of square roots and multiplying equation (C1)

by
√

cos θ, we get∫
x′

√
cos θ〈ui(x)uj(x

′)〉
√

cos θ′
√

cos θ′φj(x
′)a2dθ′dϕ′ = λ

√
cos θφi(x). (C4)

Now, defining
√

cos θφi(x) = Φi(x), equation (C4) becomes∫
x′
ρij(x,x

′)Φj(x
′)a2dθ′dϕ′ = λΦi(x) (C5)

with

ρij(x,x
′) = 〈

√
cos θui(θ, ϕ)

√
cos θ′uj(θ

′ϕ′)〉. (C6)

The form of equation (C5) is the same as that of (C1) except that the weightings given589

all elements are the same. We can now form the new covariance matrix ρija
2dθdϕ and590

extract its eigenvalues. We note that such consideration for varying latitude is often dis-591

carded in Fourier spectral analysis which assumes a local Cartesian plane.592

Appendix D Confidence interval for spectrum593

In formulating the spectrum (E), we are averaging squared quantities where the

quantity being squared has zero mean and are independent from one another. The zero

mean is guaranteed as we have subtracted out the ensemble mean and non-linearity of

the system ensures decorrelation amongst ensemble members. The distribution of the

squared quantities, therefore, follows approximately a χ2 distribution (Rocha, Chereskin,

et al., 2016; Menke & Menke, 2016; Uchida et al., 2017). Under such distribution, the

probability of our spectral estimate (Eest) falling close to the unknown ‘true’ spectrum

(Etrue) is

P

(
χ2
N,1−α/2 < N

Eest

Etrue
< χ2

N,α/2

)
= 1− α, (D1)

where N = 35 is the degrees of freedom and 1− α = 0.95 the significance level. After

some equation manipulation, this yields

P

(
N

χ2
N,α/2

<
Etrue

Eest
<

N

χ2
N,1−α/2

)
= 1− α. (D2)

In other words, we can reject the null hypothesis that the true spectrum doesn’t lie within

the range of

N

χ2
N,α/2

Eest < Etrue <
N

χ2
N,1−α/2

Eest, (D3)

with a 1− α significance level.594
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Total
a) b)

c) d)
Detrended

Figure 3. Classical Fourier spectra based on ensemble averaging. Both rows portray data

from 94 m. The upper row shows Fourier spectra without any windowing, and the lower row uses

detrended data, as discussed in Appendix A. The left column are two-dimensional plots of the

log of the spectra as a function of the zonal and meridional wavenumbers. The right column are

plots of one-dimensional cuts through the wavenumber plane along the straight lines appearing in

the upper left plot. Note the units of spectra are all in spectral density. The 95% confidence in-

tervals are shown in the colored shadings (see Appendix D for details). The dot-dashed grey lines

on the right are slopes of −5/3, −2 and −3, which are the upscale energy, frontal and enstrophy

or SQG cascade slopes expected from QG theory. The solid black line is the azimuthally averaged

slope extracted from the two-dimensional spectra. The left column shows the spectra are highly

anisotropic.
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Total

Detrended

a) b)

c) d)

Figure 4. Same as Fig 3, except at 628 m.

a)

d)c)

b)

Figure 5. First and second EOF of the velocity fields (EOF 1 left and EOF 2 right, 94 m top

and 628 m bottom) shown as vectors, from the square in Fig. 1. The colors indicate speed.
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a)

d)c)

b)

Figure 6. Same as Fig. 5, but for the third and fourth EOF.
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Figure 7. Modal spectra for depths 94 m and 628 m shown as scatterplots. The horizontal

axes are the logs of zonal and meridional wavenumbers and the vertical axis is log of spectral

amplitude in [m2 s−2]. The magenta crosses are the EOF eigenvalues for the 35 modes, which

follow the trajectory through the wavenumber plane painted by the blue dots. Projections on the

zonal and meridional plane of the eigenvalues appears as the green and red dots. The solid black

lines both have slopes of −3.
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Z = − 94 [m]

Z = − 628 [m]

a) b)

c) d)

Figure 8. Zonal (left) and meridional (right) Fourier spectra, shown independently from z =

94 m (top) and z = 628 m (bottom).
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FIG. 9. The velocity field arising from one of the ensemble members appears on the upper left. The ensemble

mean velocity field is on the upper right. The result of sequentially adding the first and second EOFs to the mean

field appear in the lower left and right panels, respectively. This difference between the upper two plots defines

the ‘eddies’ in this realization, which clearly relates the eddies to the variations of the coherent Gulf Stream jet.

The reconstruction illustrates the role played by the EOFs in correcting the ensemble mean towards the realized

jet. This reconstruction heavily involves the coherent patterns of the zonal and meridional velocities.
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a) b)

d)c)

Figure 9. The velocity field arising from one of the ensemble members appears on the upper

left. The ensemble mean velocity field is on the upper right. The result of sequentially adding

the first and second EOFs to the mean field appear in the lower left and right panels, respec-

tively. This difference between the upper two plots defines the ‘eddies’ in this realization, which

clearly relates the eddies to the variations of the coherent Gulf Stream jet. The reconstruction

illustrates the role played by the EOFs in correcting the ensemble mean towards the realized jet.

This reconstruction heavily involves the coherent patterns of the zonal and meridional velocities.
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FIG. 10. An example of Fourier transform invertibility. The upper left panel shows the original data, charac-

terized by an edge discontinuity. The lower left panel shows the result of forward and backward transforming

that data and the lower right panel shows the difference between the two. The difference is clearly machine pre-

cision zero. The upper right panel shows the spectrum of the transform of the original data. High wavenumbers,

representing small scale contributions to the transform, are orders of magnitude smaller than the amplitudes of

the primary low wavenumbers.

706

707

708

709

710

711

42

a)

d)c)

b)

Figure A1. An example of Fourier transform invertibility. The upper left panel shows the

original data, characterized by an edge discontinuity. The lower left panel shows the result of

forward and backward transforming that data and the lower right panel shows the difference be-

tween the two. The difference is clearly machine precision zero. The upper right panel shows the

spectrum of the transform of the original data. High wavenumbers, representing small scale con-

tributions to the transform, are orders of magnitude smaller than the amplitudes of the primary

low wavenumbers.
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