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Abstract

Spatial variation in landscape attributes can account for much of the variability in water quality compared to land use factors.

Spatial variability arises from gradients in topographic, edaphic, and geologic landscape attributes that govern the four dominant

processes (atmospheric, hydrological, microbially mediated redox, physical and chemical weathering) that generate, store,

attenuate, and transport contaminants. This manuscript extends the application of Process Attribute Mapping (PoAM), a

hydrochemically guided landscape classification system for modelling spatial variation in multiple water quality indices, using

New Zealand (268,021 km²) as an example. Twelve geospatial datasets and >10,000 ground and surface water samples from

2,921 monitoring sites guided the development of 16 process-attribute gradients (PAG) within a geographic information system.

Hydrochemical tracers were used to test the ability of PAG to replicate each dominant process (cross validated R2 of 0.96 to

0.54). For water quality, land use intensity was incorporated and the performance of PAG was evaluated using an independent

dataset of 811 long-term surface water quality monitoring sites (R2 values for total nitrogen of 0.90 - 0.71 (median = 0.78),

nitrate-nitrite nitrogen 0.83 - 0.71 (0.79), total phosphorus 0.85 - 0.63 (0.73), dissolved reactive phosphorus 0.76 - 0.57 (0.73),

turbidity 0.92 - 0.48 (0.69), clarity 0.89 - 0.50 (0.62) and E. coli 0.75 - 0.59 (0.74)). The PAGs retain significant regional

variation, with relative sensitivities related to variable geological and climatic histories. Numerical models or policies that do

not consider landscape variation likely produce outputs or rule frameworks that may not support improved water quality.
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Key Points:

• A few dominant processes (atmospheric, hydrological, redox, chemical and
physical weathering) govern spatial variability in water quality

• Hydrochemistry is used to guide the mapping of dominant process-
gradients and

expert knowledge and machine learning is used to validate

• Failure to consider dominant process-gradients in modeling and
policy application risks poor water quality outcomes
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Abstract

Spatial variation in landscape attributes can account for much of the variability
in water quality compared to land use factors. Spatial variability arises from
gradients in topographic, edaphic, and geologic landscape attributes that govern
the four dominant processes (atmospheric, hydrological, microbially mediated
redox, physical and chemical weathering) that generate, store, attenuate, and
transport contaminants. This manuscript extends the application of Process
Attribute Mapping (PoAM), a hydrochemically guided landscape classification
system for modelling spatial variation in multiple water quality indices, using
New Zealand (268,021 km²) as an example. Twelve geospatial datasets and
>10,000 ground and surface water samples from 2,921 monitoring sites guided
the development of 16 process-attribute gradients (PAG) within a geographic
information system. Hydrochemical tracers were used to test the ability of
PAG to replicate each dominant process (cross validated R2 of 0.96 to 0.54).
For water quality, land use intensity was incorporated and the performance of
PAG was evaluated using an independent dataset of 811 long-term surface water
quality monitoring sites (R2 values for total nitrogen of 0.90 - 0.71 (median =
0.78), nitrate-nitrite nitrogen 0.83 - 0.71 (0.79), total phosphorus 0.85 - 0.63
(0.73), dissolved reactive phosphorus 0.76 - 0.57 (0.73), turbidity 0.92 - 0.48
(0.69), clarity 0.89 - 0.50 (0.62) and E. coli 0.75 - 0.59 (0.74)). The PAGs
retain significant regional variation, with relative sensitivities related to variable
geological and climatic histories. Numerical models or policies that do not
consider landscape variation likely produce outputs or rule frameworks that
may not support improved water quality.

Plain Language Summary

In the wrong place, or at excessive concentrations, nutrients (nitrogen and phos-
phorus) and sediment become contaminants. Along with pathogens (harmful
microbes), they require reduction to improve water quality globally. Landscape
variation can result in significant differences in water quality despite similar
land use pressures. Landscape variation been mapped for New Zealand using a
novel landscape classification system, termed Process Attribute Mapping to ex-
plain how and why water quality varies spatially. The classification uses twelve
pre-existing map datasets and >10,000 ground and surface water samples from
2,921 monitoring sites to depict differences as national process attribute gradi-
ent (PAG) maps. Each PAG was tested against tracers (such as chloride, iron,
and calcium) measured in surface water samples. The ability of PAG to repre-
sent steady-state water quality, as indicated by nitrogen, phosphorus, sediment,
and a microbial indicator, was assessed by combining an independent dataset
of 811 long-term surface water quality monitoring sites and a map representing
the gradient in land use intensity. The modelling identified regional climatic
and geological variation as key controls on water quality variation across New
Zealand. The PAG will now be combined into a single national classification for
water quality. This methodology should be applicable globally.

1 Introduction
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Water quality, as indicated by concentrations of nitrogen and phosphorus
species, organic and inorganic sediment, and the faecal indicator bacterium
Escherichia coli (E. coli), can vary spatially across a landscape, even when
land use is spatially uniform. These water quality differences occur because
of natural spatial variation in several processes (atmospheric, hydrological,
microbially mediated redox, physical and chemical weathering) that determine
the composition of water (Moldan and Černý, 1994; Clark and Fritz, 1997,
Drever and Stillings, 1997; Kendall and McDonnell, 1998; Güler et al., 2002;
McMahon and Chapelle, 2008; Tratnyek et al., 2012; Daughney et al. 2015).
These processes are also coupled to gradients in landscape attributes, such as
topography and geology.

Gradients in the volume and intensity of precipitation, an atmospheric process,
are primarily driven by weather patterns and local scale topographic variation
(landscape attribute) (Clark and Fritz, 1997; Drever and Stillings, 1997; Kendall
and McDonnell, 1998). The hydrological process is driven by climate, catchment
topography, edaphic and geological attributes (Clark and Fritz, 1997; Kendall
and McDonnell, 1998; James and Roulet, 2006; Inamdar, 2011). Groundwater
redox depends on the abundance of electron donors within an aquifer (Drever
and Stillings, 1997; Krantz and Powars, 2000; McMahon and Chapelle, 2008).
Mass weathering processes are determined by bedrock characteristics (Mueller
and Pitlick, 2013). The pH, ionic composition, and alkalinity of surface and
ground waters is strongly influenced by the acid neutralising capacity of soil
and rock (Wright, 1988; Drever and Stillings, 1997; Leybourne and Goodfellow,
2010). These and other component processes may account for the majority of
water quality variation, compared to land use on its own, through regulating the
generation, storage, attenuation, and transport of contaminants in the environ-
ment (Johnson et al., 1997; Hale et al., 2004; King et al., 2005; Dow et al., 2006;
Shiels, 2010; Becker et al., 2014). Accordingly, the role that landscape plays in
determining water quality variation is critically important, and especially so for
geologically diverse settings, such as New Zealand (Johnson et al., 1997).

Given the importance of landscape attributes, many ‘controlling landscape fac-
tor’ classifications have been developed to generate landscape or riverine classes
that discriminate variation in water quality. Such classification schemes include:
1) the United States Environmental Protection Agency’s and the United States
Geological Survey’s Ecoregion and Ecological land approaches, which have been
applied globally (Dinerstein et al., 2017; Omernik and Griffith, 2014; Sayre et
al., 2014); 2) the European Water Framework Directive’s Ecoregions (Hughes
and Larsen, 1988; European Commission, 2000); and 3) the River Environ-
ment Classification, which has been applied across New Zealand (Snelder et
al., 2005). These landscape classification schemes typically employ a top-down
approach that groups landscape attributes into classes according to similar cli-
matic, topographic, edaphic, or geologic attributes, and these have been used
to discriminate variation in a wide range of characteristics, including hydrology,
water quality and ecological characteristics.
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In the work presented here, hydrochemical knowledge, in conjunction with mea-
sures of process-specific tracers in surface and shallow groundwaters, is used
to guide the identification, organisation, and subsequent classification of land-
scape attributes that govern gradients in each dominant process. The focus on
mapping dominant processes gradients and the use of hydrochemical tracers to
guide the classification of the landscape differs from traditional landscape factor
classification methods (Hughes and Larsen, 1988; Omernik and Griffith, 2014;
Sayre et al., 2014; Dinerstein et al., 2017). Surface and groundwater chemistry
is a valuable tool for reconstructing the origins and history of water (Clark and
Fritz, 1997; Drever, 1997; Kendall and McDonnell, 1998). Analysing hydrochem-
ical tracers, for a given process, within surface waters and shallow unconfined
aquifers also provides a process-level reference or control point. This permits
relationships between processes and landscape attributes to be evaluated and
hypotheses regarding such relationships to be refined. Thus, hydrochemistry is
useful for guiding the production of a more representative classification than is
possible through a purely top-down approach.

In addition to the established understanding of the relationship between process
gradients and landscape attributes provided by hydrochemistry, we also hypoth-
esise that a small number of dominant processes govern spatial variation in water
quality. This hypothesis follows Grayson and Blöschl’s (2001) dominant process
concept, which suggests that the response of environmental systems is generally
explained by a small number of dominant processes. Grayson and Blöschl (2001)
also proposed that a logical way to identify the dominant processes is by evalu-
ating the sensitivity of the system to each of the individual processes (believed
to have influence) through a (high-order) multi-variable sensitivity analysis and
selecting those variables with significant influence (Sivakumar, 2004; 2008).

This manuscript describes the application and testing of a hydrochemically
guided landscape classification system specifically for water quality. The
method, developed originally for Southland, New Zealand, is termed Process-
Attribute Mapping (PoAM) (Rissmann et al., 2019). PoAM applies a practical
hydrochemical method, at a macroscale, to generate spatial representations of
the four dominant processes that determine spatial variation in water quality:
this generates a series of graphical outputs, or maps. Each graphical output
is referred to as a ‘process-attribute gradient’ that represents, at a macroscale,
the coupling between a dominant process (or component process) and its
controlling landscape attributes.

2 Materials and Methods

2.1 High level overview of PoAM method

The PoAM conceptual framework and model presented here was developed from
Rissmann et al. (2018a, 2019; Fig. 1) and a step-by-step description of the
PoAM method is provided in the supporting information S1. Two examples of
process-attribute gradient development are also provided to support the read-
ers understanding of the method (S2 and S3). Further, examples of the use of
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hydrochemical and water quality data to generate process-attribute gradients
are provided by Rissmann et al. (2016a, 2018a, b, 2019). The PoAM method
results in a depiction of the landscape, at a macroscale, showing zones within
the landscape at a level where dominant process occur (e.g., redox, not deni-
trification). Through mapping each dominant process gradient instead of an
individual contaminant (e.g., nitrate only), reaction process (e.g., denitrifica-
tion only), or hydrological pathway (e.g., vertical percolation through the soil
matrix to an underlying aquifer only), PoAM produces macroscale, landscape
classifications capable of providing process-level context. For example, ’why’ is
nitrate concentration elevated in one stream but not another?

Figure 1. A flow chart summary of key steps in process-attribute mapping
(PoAM) (adapted from Rissmann et al., 2019; see S1). The conceptual model
provides a spatial representation of the key processes and contaminant trans-
port pathways whilst the numerical models provide an estimate of steady-state
median surface water concentration. PAG: process-attribute gradient.
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PoAM utilises existing geospatial classifications of climate, topography, soil, ge-
ology and hydrochemical data to build graphical representations of each process-
attribute within a geographic information system (GIS). During the develop-
ment of process-attribute gradients, hydrochemical data is used to:

1. refine hypotheses about controlling landscape factors through
evaluating the relationship between hydrochemical process sig-
nals and landscape attributes;

2. support the identification and combination of relevant land-
scape attributes from pre-existing geospatial datasets to
generate process-attribute gradients; and

3. drive the grouping of landscape attributes into classes.

Following process-attribute gradient development, a series of high-level hypothe-
ses are proposed about the likely sensitivity and magnitude of response (i.e.,
increase or decrease in concentration) of each hydrochemical tracer(s) for each
dominant process. Each hypothesis is tested using the hybrid deterministic
genetic programming (HDGP) approach of Schmidt and Lipton (2015). The
HDGP method is specifically designed to reveal the underlying relationships
between a target variable (i.e., hydrochemical tracer) and one or more predic-
tors (i.e., process-attribute gradients). The method employs symbolism (white
box), is unsupervised and evolutionary, discarding any process-attribute gradi-
ents that do not reduce the modelled relationships uncertainty and complexity
(Khu et al., 2001; Schmidt and Lipson, 2009, 2015; Rissmann et al., 2019).
The machine defined sensitivities and magnitude of response for each tracer are
compared with the hypothesised response derived from expert knowledge of the
process level controls (Fig. 1; Rissmann et al., 2019). If the machine defined
response is consistent with the hypothesis for each hydrochemical tracer and the
modelled relationships are reasonable, i.e., cross-validated R2 > 0.65, they are
considered to provide a representation of the actual process-attribute gradient.
Only then are process-attribute gradients deemed fit to be combined with a rep-
resentation of land-use pressure and development of water quality models. If a
region is characterised by a distinct geological feature (e.g., geothermal activity),
or climatic history (e.g., no history of glaciation), deviation from the high-level
hypotheses is expected.

In practice, the multivariate testing of process-attribute gradients requires sur-
face water capture zones to be generated for each surface water hydrochemi-
cal site (n = 730 nationally) and mean scores for each process-attribute gradi-
ent to be calculated. Median hydrochemical concentrations and mean process-
attribute scores are then spatially joined in a tabular format and used as the
input for multivariate assessment (Fig. 1). Following multivariate testing of
the hydrochemical tracers of each dominant process, a representation of land
use pressure (i.e., intensity) is incorporated and process-attribute gradients are
used to evaluate spatial variation in median total nitrogen, nitrate-nitrite ni-
trogen, total phosphorus, dissolved reactive phosphorus, E. coli, clarity (black
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disk), and turbidity (Nephelometric turbidity units) across 811 long-term sur-
face water quality monitoring sites nationally.

2.2 Case study setting

New Zealand is characterised by a diversity of topography, climate, soil type,
geology, and land cover. The New Zealand climate varies from subtropical
in the north to cool temperate in the south, with cold (< 0 °C mean annual
temperature) alpine conditions in the mountainous areas. Rainfall is typically
between 300 and 1600 mm per annum, although this can exceed 9000 mm across
alpine regions of the South Island. Relief is up to 3724 m along the north-
northeast trending Southern Alps mountain chain that bisects the South Island
(Fig. 2), and isolated volcanic centres are up to 2797 m-high on the North Island.
Andosols and Cambisols (United Nations, Food and Agricultural Organisation
Soil Classification) are the dominant soil types, with multiple other soil types
present, including Podzols, Luvisols, Gleysols, Arenosols, Acrisols, Panosols,
Phaeozems and Nitisols (de Sousa et al., 2020). The geology of New Zealand is
divided into a variety of volcanic, intrusive and sedimentary terranes that make
up the basement rocks of the Austral Superprovince, and the overlying, mainly
sedimentary and volcanic rocks of the Zealandia Megasequence, are separated
from basement by a diachronous regional unconformity between 117 and 105 Ma
(Edbrooke et al., 2015). Land cover (updated 2018) is dominated by pasture
(c. 40 %), indigenous forests (c. 26 %), cropland, exotic forest and urban areas.
New Zealand has > 70 major river systems and c. 425 000 km-length of rivers
and streams, with 51 % in catchments dominated by native vegetation and
the rest in modified landscapes (Ministry for the Environment and Stats NZ,
2020). High temperature (> 180 °C) volcanic-hydrothermal activity is mainly
restricted to the Taupo Volcanic Zone (Fig. 2).
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Figure 2. Map of New Zealand subdivided by region. Also shown is the trace
of the Southern Alps mountain chain and the location of the Taupo Volcanic
Zone. Base layer is realistic land cover from Geographx (2009).

3 Data

3.1 Hydrochemical and water quality datasets

Chemical analyses of low, median, and event flows were taken from 730 long-
term surface water monitoring sites across the regions of Northland, Auckland,
Waikato, Bay of Plenty, Manawatū-Whanganui, Canterbury, and Southland (58
% of New Zealand), between 2017 and 2019 (Table 1 and Fig. 3). Across the
same regions and for the same time period, data for the sample chemical con-
stituents were collected at 2,191 long-term groundwater monitoring sites (Table
1). The respective hydrochemical datasets for surface water and groundwater
were subsequently combined with pre-existing hydrochemical data collected be-
tween 2007-2017 and median concentrations calculated (Pearson and Rissmann,
2021a). Detailed information of the sampling methodologies, field measures,
laboratory analysis, calculation of hydrochemical metrics (e.g., major ion facies,
saturation indices) and quality assurance and quality control of the samples
used in this project are provided in Rissmann et al. (2016).

Table 1. Hydrochemical and water quality analyses used in this study.
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Dataset Type Analyte Units Parameter
Name

Hydrochemical
(surface
water and
groundwater)

Major
Constituents

Ca mg/L Dissolved
calcium 1

Cl mg/L Dissolved
chloride

DOC mg/L Dissolved
organic
carbon

HCO3 mg CaCO3/L Dissolved
bicarbonate
alkalinity 2

K mg/L Dissolved
potassium

Mg mg/L Dissolved
magnesium

Na mg/L Dissolved
sodium

SO4 mg/L Dissolved
sulphate

SiO2 mg/L Dissolved
reactive silica

Minor
Constituents

B mg/L Dissolved
boron

Br mg/L Dissolved
bromide

F mg/L Dissolved
fluoride

Fe mg/L Dissolved
iron

I mg/L Dissolved
iodide

Mn mg/L Dissolved
manganese

Field
Parameters

Clarity m Visual clarity

DOField mg/L Dissolved
oxygen (field
measured)
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Dataset Type Analyte Units Parameter
Name

EC µS/cm Electrical
conductivity
3,
temperature
corrected

ORP mV Oxidation-
reduction
potential

pHField pH units pH (field
measured)

pHLab pH units pH (lab
measured)

Temp °C Water
Temperature

Water
quality
(surface
water)

Nutrients TN mg N/L Total
nitrogen

NNN mg N/L Nitrate
nitrite
nitrogen

TP mg P/L Total
phosphorus

DRP mg P/L Dissolved
reactive
phosphorus

Suspended
Sediment

Black disk m Visual clarity

Turb NTU4 Turbidity
Biological E. coli cfu/100 mL Escherichia

coli

1 Most samples were filtered (0.45 µm) prior to analysis, and therefore analytical
results reflect “dissolved” rather than total concentrations. However, it is noted
that many colloidal species will pass through a 0.45 µm filter.
2 The United States Geological Survey notes that alkalinity is not a chemical in
water, but, rather, it is a property of water that is dependent on the presence
of bicarbonates, carbonates, and hydroxides. As such, alkalinity is defined as a
measure of the ability of the water body to neutralize acids and bases and thus
maintain a fairly stable pH level.
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3 Microsiemens per centimeter.
4 Nephelometric turbidity units.

An independent surface water quality dataset comprising 991 long-term moni-
toring sites across New Zealand was downloaded from Land Air Water Aotearoa
(LAWA) for 2014 – 2018 (Table 1 and Fig. 3a). This dataset was collected
by each regional authority, with quality assurance performed according to Na-
tional Environmental Monitoring and Reporting Standards (Davies-Colley et al.,
2012). A minimum of 60 repeat measures are included for each site. Internal
quality control in this project removed urban catchments and sites with point
source impacts, including sites downstream of municipal wastewater discharges,
reducing the dataset to 811 sites. Site water quality medians were calculated
for each monitoring point (Pearson and Rissmann, 2021b). No water quality
measures from the 811 long-term monitoring sites were used in the generation
of process-attribute gradients.

Figure 3. a) Surface and ground water sample locations for hydrochemical
(Table 1) and water quality data sets (Table 2 – a minimum of 60 repeat samples
for each site) used in PoAM; and b) A map of the land use intensity gradient
across New Zealand. The regional boundaries are shown by black outlines.

3.2 Geospatial datasets

For the national application of PoAM, attributes were selected from several
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national and one regional GIS datasets. This included: 1) topography, ele-
vation and altitude from an 8 m digital elevation model (Land Information
New Zealand, 2012); 2) geological attributes from the 1:250 000 geological map
series (QMAP, Heron, 2014) and the New Zealand Land Resource Inventory
(NZLRI; 1:50 000; Manaaki Whenua Landcare Research, 2000a,b; Newsome et
al., 2008; Lynn et al. 2009); 3) soil attributes from SMap (1:50 000, Man-
aaki Whenua Landcare Research, 2019a) and Fundamental Soils Layer (1:50
000; Manaaki Whenua Landcare Research, 2000c); 4) land cover from the Land
Cover Database (LCDBv5; Manaaki Whenua Landcare Research, 2019b); and
5) land use from Land Use Mapping Report (LUCASv006; Ministry for the En-
vironment, 2019). For hydrological input data: 1) river lines, stream Strahler
order and catchment areas (capture zones) were sourced from the River Envi-
ronment Classification (v 2.4; Snelder and Biggs, 2002); 2) precipitation volume
was derived from the National Climate Database (Ministry for the Environment,
2016); 3) �18O-H2O of precipitation came from the national isoscape model of
Baisden et al. (2016); 4) water table depth is from Westerhoff et al. (2018); and
5) geothermal extent is from Bibby et al. (1995) for the Taupo Volcanic Zone
(Fig. 2).

Land use intensity and land use for microbial contaminants were derived by
combining the Land Use Capability classification of Lynn et al. (2009), LCDBv5
land cover (Manaaki Whenua Landcare Research, 2019b) and LUCAS land use
(Ministry for the Environment, 2019) and ranking land use intensity from 1ow
to high using expert judgement (Fig. 3b).

3.3 Process-attribute gradient generation

After quality assurance, hydrochemical and geospatial datasets were used to
generate 16 national-scale process-attribute gradients depicting the four domi-
nant processes (Tables 2, Fig. 1). A high-level summary of the hypotheses
and process-attribute gradients are included in Supporting Information 1.
Examples of the assessment and development of the precipitation source �18O-
H2O (V-SMOW) and geological reduction potential process-attribute gradients
are provided in Supporting Information 2 and 3, with further detail of the
process-attribute gradients developed provided in Pearson (2015a, b) and Riss-
mann et al. (2016a, 2018a).

During process-attribute gradient development, a series of high-level hypothe-
ses were developed linking the likely sensitivity and magnitude of the response
of individual process-attribute gradients to one or more tracers of each domi-
nant process (see S1). For example, based on observed relationships between
process signals in water and landscape attributes, a hypothesis was formulated
that the conservative tracers of water source, e.g., Cl and Br, will exhibit a posi-
tive magnitude (concentration increases) across the macroscale recharge domain
from (lowest) Alpine to Hill to Lowland (highest). This hypothesis is consistent
with the role of altitude and distance from the coast over the rainout of marine
aerosols, an orographic atmospheric process (Clark and Fritz, 1997; Nichol et al.,
1997; Rissmann et al., 2016a; see S1 and S2). Hypothesis development included

12



recognising that two or more dominant processes and multiple process-attribute
gradients may be required to adequately explain the spatial distribution of one
or more hydrochemical tracers across the surface water network (Rissmann et
al., 2019). If a region is characterised by a distinct geological (e.g., geothermal
activity), or climatic history (e.g., no history of glaciation), variation in the
process-attribute gradients retained is expected.

When used for generating water quality models, overland flow, soil slaking and
dispersion process-attribute gradients were normalised by the area of developed
land (i.e., non-native land cover). This normalization is based on evidence of
contaminant source limitation, i.e., low/no anthropogenic contaminant loads,
across large areas of undeveloped hill and high country where overland flow is
highest, in contrast to developed land with similar topography. The normalisa-
tion of these two process-attribute gradients within water quality model devel-
opment defines a process response resulting in a negative magnitude for most
water quality measures, or a sink, for undeveloped land and positive magnitude
of these measures for developed land.

A regional-scale geothermal process-attribute gradient was also developed using
the apparent resistivity (log of apparent resistivity Ωm) model of Bibby et al.
(1995); there is evidence for diffuse geothermal inputs, from high enthalpy (� 180
°C) volcanic-hydrothermal systems, influencing hydrochemical composition and
water quality of the Bay of Plenty and Waikato regions.

Table 2. Summary of the 16 national-scale process-attribute gradients. Rele-
vant datasets and their scale are also shown.

Process PAG Process
attribute
gradient

Relevant
datasets and
scales

Attributes

Atmospheric O18 Precipitation
source

m DEM,
�18O-H2O
precipitation
isoscape (4
km2 pixel)

�18O-H2O,
altitude,
distance from
the coast

PPT Precipitation
volume

Annual
average
rainfall (5
km2 pixel)

Precipitation
volume

Hydrological RCD Macroscale
recharge
domain

Soil surveys
(1:50,000),
Aquifer type
and extent
(1:50,000)

Altitude,
temperature
isotherm,
river network,
Typic
Udifluvent
(Fluvial
Recent) soils
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Process PAG Process
attribute
gradient

Relevant
datasets and
scales

Attributes

OLF Overland
flow

Soil surveys
(1:50,000), 8
m DEM

Soil texture,
drainage
class,
permeability,
slope, area of
developed
land

DD Deep
drainage

Soil surveys
(1:50,000)

Drainage
class,
permeability,
depth to
slowly
permeable
horizon

LAT Lateral
drainage

Soil surveys
(1:50,000)

Drainage
class,
permeability,
depth to
slowly
permeable
horizon,

ART Artificial
drainage

Soil surveys,
8 m DEM,
Land Cover
(1 ha)

Drainage
class,
permeability,
depth to
slowly
permeable
horizon,
slope,
agricultural
land cover

HYD Soil slaking
and
dispersion as
a soil
hydrological
index

Soil surveys
(1:50,000)

Soil texture,
drainage
class,
permeability,
area of
developed
land

NBP Soil zone
bypass

Soil surveys
(1:50,000)

Cation
exchange
capacity, pH
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Process PAG Process
attribute
gradient

Relevant
datasets and
scales

Attributes

EWT Equilibrium
water table
and aquifer
potential

Water Table
Model (0.04
km2 pixel)

Modelled
water table
depth

Redox SRP Soil
reduction
potential

Soil surveys
(1:50,000);
soil chemistry
profile
points.

Drainage
class, carbon
content

GRP Geological
aquifer
reduction
potential

Geological
surveys
(1:50,000 -
1:250,000)

Rock type
(main and
sub rocks)

Weathering SANC Soil acid neu-
tralization
capacity

Soil surveys
(1:50,000);
geochemical
baseline
survey (8
km2)

Soil pH,
cation
exchange
capacity

GANC Geological
acid neutral-
ization
capacity

Geological
surveys
(1:50,000 -
1:250,000);
geochemical
baseline
survey (8
km2)

Rock type

SGC Surface/top
regolith
strength

Geological
surveys
(1:50,000 -
1:250,000)

Rock type
and strength

BGC Basal
regolith
strength

Geological
surveys
(1:50,000 -
1:250,000)

Rock type
and strength
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Process PAG Process
attribute
gradient

Relevant
datasets and
scales

Attributes

Geothermal GTH High
enthalpy
geothermal
(�180 °C)

Log of
resistivity
(limited to
extent of
Taupo
Volcanic
Zone, Fig.1)

Resistivity

PAG: process attribute-gradient; DEM: digital elevation model

4 Multivariate Assessment

4.1 Pre-processing of data

Following process-attribute gradient production, mean surface water capture
zone process-attribute scores were calculated for the 730 regional hydrochemical
and 811 national water quality monitoring sites (Fig. 1). Mean land use
intensity scores and capture zone area (ha) were calculated for each capture
zone. Mean capture zone scores were joined with the hydrochemical and 5-year
water quality datasets. A constant was added to all numeric data to remove
0 or negative values, and the dataset log10 transformed prior to multivariate
assessment.

4.2 Hypotheses testing and evaluation of the representativeness of process-
attribute gradients

Multivariate testing was first applied to the hydrochemical dataset (Step 4,
Fig. 1; see S1). In this analysis, tracers of each dominant process are the target
variables, and process-attribute gradients the predictors. The multivariate as-
sessment provides an independent test of the sensitivity (importance) and mag-
nitude of response (increase or decrease in concentration) of process-attribute
gradients relative to specific hydrochemical tracers of each dominant process
(i.e., atmospheric, hydrological, redox, and weathering). This step is important
for evaluating the validity of the high-level hypotheses generated during process-
attribute gradient development (see Table S1.1 and S1.2). For example, the
performance of the process-attribute gradients in replicating water source and
hydrological connectivity is evaluated against the conservative hydrological trac-
ers Cl and Br; the representativeness of the redox process-attribute gradients
is evaluated against FeII and dissolved organic carbon (DOC), and so on. The
hydrochemical tracers are chosen based on their relevance as an indicator for
a given process. Tracers that have a significant land use origin, e.g., nitrogen,
phosphorus or E.coli are not used to test process-attribute gradients. For exam-
ple, dissolved FeII, not total, is used as a redox tracer because of its role as a
terminal electron acceptor during microbially mediated redox succession. Iron
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is also the 5th most abundant element in Earth’s crust so is rarely source-limited
(Hem, 1985). However, evaluating physical weathering process-attribute gradi-
ents is limited by the lack of suitable geochemical tracers, with simple proxies
such as clarity and turbidity, a poor substitute for multi-element or isotope
proxies of sediment source. Testing of process-attribute gradients was under-
taken on the combined data set for the seven regions and repeated with focus
on regional subsets due to evidence for geographically independent process level
controls over water quality (e.g., geothermal activity).

4.3 Water quality models

Given the evidence for geographically independent process-level controls (e.g.,
geothermal activity), water quality models were run as regional subsets charac-
terised by similar climatic and geological histories.

5 Results

5.1 Process-attribute gradients

Sixteen process-attribute gradients defining the dominant processes governing
hydrochemistry were produced nationally (Fig. 4, S2 and S3). Of the 16
process-attribute gradients, two are associated with atmospheric drivers prior
to the routing of water by the hydrological network and are macroscale; pre-
cipitation volume (Fig 4a) and �18O-H2O of precipitation (V-SMOW; see S2).
Eight process-attribute gradients are associated with the hydrological drivers
of spatial variation in hydrochemistry. Of these, the recharge domain and hy-
drological connectivity layer are macroscale (Fig. 4b). The remaining seven
hydrological process-attribute gradients are all associated with the soil zone and
represent mesoscale hydrological gradients in percent precipitation occurring as
overland flow, deep drainage through the soil profile, lateral drainage, artificial
drainage of the soil profile, soil slaking and dispersion, shrink-swell mediated
soil zone bypass (Fig 4c-h) and water table depth and aquifer potential (see
S3). The two redox (Fig 4i, S3) and both chemical and physical weathering
processes (5 process-attribute gradients) are comprised of separate soil and geo-
logical process-attribute gradients (Fig. 4j-n). Soil process-attribute gradients
overlie geological process-attribute gradients, except where bedrock outcrops
(Rissmann et al., 2019). Across lowland areas, the geological process-attribute
gradients represent the upper portion of the unconfined aquifer system (Riss-
mann et al., 2019). The regional-scale geothermal process-attribute gradient
represents high enthalpy (� 180 °C) diffuse volcanic-hydrothermal inputs over
the hydrochemistry and water quality (i.e., ammoniacal N and P) of shallow
ground and surface water across the Taupo Volcanic Zone (Fig. 4o). Combined,
these layers provide the user with a conceptual, macroscale understanding of
the landscape factors known to influence water quality across New Zealand.
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Figure 4. Examples of process attribute gradients representing the 4 dominant
processes. a) atmospheric process showing precipitation volume, b) hydrological
process showing recharge domain, c) overland flow, d) deep drainage, e) lateral
drainage, f) artificial drainage, g) soil hydrological index of slaking and disper-
sion, h) natural soil zone bypass under soil moisture deficit, i) redox process
showing soil reduction potential.

Figure 4 continued. Examples of process attribute gradients representing the
4 dominant processes. j) weathering (chemical) showing soil acid neutralizing
capacity by pH, k) soil acid neutralizing capacity by cation exchange capacity,
l) geological acid neutralizing capacity, m) weathering (physical) showing sur-
face lithology and rock strength, n) basal lithology and rock strength, and o)
geothermal process showing resistivity for the Taupo Volcanic Zone. Acronyms
are defined in Table 2.
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5.2 Hypothesis testing and representativeness evaluation

The performance of PoAM to replicate the effective atmospheric, hydrological,
redox, and weathering gradients across the seven regions is presented in Table
3. Machine-defined functions for the dominant processes responded as hypoth-
esised, and except for clarity (R2 0.52), cross-validated R2 values of 0.61 to
0.84 indicate moderate to very good representation of macro- and mesoscale
hydrological gradients and mesoscale redox and chemical weathering gradients
(Table 3).

Table 3. Cross-validated performance of process-attribute gradients to estimate
hydrochemical tracers of each dominant process across 7-regions.

Process Tracer R2 Correlation Coefficient Maximum Error Mean Squared Error Mean Absolute Error Complexity
Hydrology Cl 0.69 0.83 1.98 0.24 0.36 57

Br 0.70 0.83 1.89 0.21 0.32 78
K 0.73 0.86 1.99 0.20 0.30 72

Redox FeII 0.61 0.79 2.78 0.32 0.36 31
DOC 0.80 0.90 2.53 0.25 0.33 26

Chemical Weathering Total Alkalinity 0.71 0.84 2.07 0.28 0.39 35
Ca 0.67 0.82 2.55 0.25 0.35 33
SiO2(aq) 0.84 0.92 1.87 0.19 0.32 59

Physical Weathering Clarity 0.76 0.88 1.67 0.15 0.23 48

DOC: dissolved organic carbon

As expected, performance at the regional subset-scale was significantly bet-
ter than at the national-scale for all tracers (Table 3 and 4). The process-
attribute gradients defined and retained, and their relative sensitivities, are
presented for each regional subset in Supporting Information 4. At a high-
level, macroscale precipitation source (O18), precipitation volume and recharge
domain were retained as the most sensitive predictors of the conservative hydro-
logical tracers Cl and Br; soil reduction potential, soil drainage class equivalents
and geological reduction potential were retained as the most sensitive predictors
of the redox tracers FeII and DOC, and; soil and geological acid neutralisation
capacity were retained as the most sensitive predictors of total alkalinity, Ca
and dissolved reactive silica (SiO2(aq)). As we hypothesised, the atmospheric
and hydrological process-attribute gradients were retained alongside redox and
chemical weathering tracers as sensitive predictors of observed spatial variation.
The retention of atmospheric and hydrological process-attribute gradients re-
flects the important role of water source, precipitation volume and macroscale
routing of water over spatial variation in redox and weathering process signals.
Although machine-defined functions for each dominant process responded as hy-
pothesised, significant variation in the process-attribute gradients retained and
their relative sensitivities were observed between regional subsets (see S4).
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Table 4. Model performance for hydrochemical tracers of dominant processes
across regional subsets.

Tracer Regional Subset R2 Correlation Coefficient Maximum Error Mean Squared Error Mean Absolute Error Complexity
Cl Northland - Auckland 0.82 0.91 0.77 0.04 0.13 45

Waikato - Bay of Plenty 0.71 0.85 1.74 0.14 0.24 41
Manawatu 0.84 0.92 0.87 0.06 0.18 47
Canterbury 0.79 0.89 1.87 0.18 0.26 53
Southland 0.95 0.98 0.74 0.05 0.16 22

Br Northland - Auckland 0.74 0.87 0.94 0.16 0.31 66
Waikato - Bay of Plenty . . . . . .
Manawatu 0.78 0.88 1.93 0.11 0.19 38
Canterbury 0.71 0.85 1.92 0.25 0.34 74
Southland 0.87 0.93 1.65 0.13 0.19 37

K Northland - Auckland 0.79 0.89 0.82 0.06 0.17 30
Waikato - Bay of Plenty 0.84 0.92 1.82 0.17 0.26 36
Manawatu 0.77 0.88 1.61 0.12 0.19 42
Canterbury 0.86 0.86 0.86 0.86 0.86 50
Southland 0.80 0.90 1.17 0.05 0.14 34

FeII Northland - Auckland 0.71 0.85 3.37 0.39 0.33 58
Waikato - Bay of Plenty 0.95 0.97 0.48 0.03 0.13 57
Manawatu 0.79 0.90 0.20 0.01 0.05 53
Canterbury 0.56 0.80 2.35 0.17 0.19 44
Southland 0.87 0.93 1.65 0.11 0.23 37

DOC Northland - Auckland 0.74 0.87 1.72 0.10 0.17 57
Waikato - Bay of Plenty . . . . . .
Manawatu 0.82 0.91 1.12 0.07 0.16 40
Canterbury 0.54 0.74 2.09 0.18 0.25 42
Southland 0.96 0.98 0.98 0.06 0.16 38

Total Alkalinity Northland - Auckland 0.66 0.82 1.41 0.23 0.34 45
Waikato - Bay of Plenty 0.81 0.90 1.09 0.09 0.22 51
Manawatu 0.75 0.87 2.55 0.33 0.36 48
Canterbury 0.78 0.88 1.45 0.18 0.32 27
Southland 0.92 0.96 0.80 0.06 0.17 47

Ca Northland - Auckland 0.71 0.86 1.64 0.15 0.25 44
Waikato - Bay of Plenty 0.75 0.87 1.58 0.13 0.24 34
Manawatu 0.88 0.94 1.05 0.11 0.23 47
Canterbury 0.75 0.87 2.76 0.30 0.36 72
Southland 0.93 0.96 0.91 0.06 0.16 38

SiO2(aq) Northland - Auckland 0.62 0.79 1.07 0.11 0.22 38
Waikato - Bay of Plenty 0.86 0.96 0.84 0.09 0.20 38
Manawatu 0.80 0.90 0.86 0.08 0.18 43
Canterbury 0.78 0.89 1.06 0.07 0.17 42
Southland 0.78 0.89 0.84 0.05 0.16 37

Clarity Northland - Auckland 0.93 0.96 0.11 0.00 0.03 31
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Tracer Regional Subset R2 Correlation Coefficient Maximum Error Mean Squared Error Mean Absolute Error Complexity
Waikato - Bay of Plenty 0.67 0.82 0.48 0.02 0.11 27
Manawatu 0.72 0.86 0.41 0.02 0.10 78
Canterbury 0.52 0.72 0.63 0.05 0.16 48
Southland 0.82 0.91 0.59 0.01 0.08 31

5.3 Performance of process-attribute gradients to predict water quality

The observed sensitivities and associated magnitude of response of process-
attribute gradients supported the high-level hypotheses, so land-use gradients
(Fig. 3b) were incorporated, and water quality models were developed for
each regional subset. Median cross-validated performance measures were cal-
culated from regional subsets and are summarized in Table 5. Median perfor-
mance measures include a cross-validated R2 of 0.78 for total nitrogen, 0.79 for
nitrate-nitrite nitrogen, 0.73 for total phosphorus, 0.73 for dissolved reactive
phosphorus, 0.69 for turbidity (Nephelometric turbidity units), 0.62 for clarity
(black disk), and 0.74 for E. coli. The regional subset performance measures are
presented in Table 6 and retained process-attribute gradients and sensitivities
provided in Supporting Information 5.

Table 5. Median cross-validated performance measures for 811 water quality
sites nationally.

TN NNN TP DRP Turb. Clarity E. coli
R2 0.78 0.79 0.73 0.73 0.69 0.62 0.74
Correlation coefficient 0.89 0.89 0.85 0.86 0.83 0.79 0.87
Maximum error 0.59 0.85 0.65 0.58 0.74 0.55 0.90
Mean squared error 0.03 0.10 0.03 0.04 0.05 0.02 0.07
Mean absolute error 0.13 0.21 0.11 0.12 0.15 0.11 0.19
Complexity 33 42 38 38 42 35 35

DRP: Dissolved Reactive Phosphorus; E. Coli: bacterial indicator; NNN:
Nitrate-Nitrite Nitrogen; TN: Total Nitrogen; TP: Total Phosphorus; Turb.:
Turbidity in Nephelometric Units.

In terms of sensitivity, the gradients retained for each water quality measure and
each regional subset were, overall, consistent with expert knowledge. For exam-
ple, artificial drainage and soil reduction potential process-attribute gradients
were amongst the most sensitive predictors of nitrate-nitrite nitrogen (nega-
tive magnitude), total phosphorus, and dissolved reactive phosphorus (positive
magnitude) across regional subsets; regolith cohesion status process-attribute
gradients were amongst the most sensitive predictors of total phosphorus, dis-
solved reactive phosphorus (positive magnitudes), clarity (negative magnitude)
and, to a lesser degree, turbidity (positive magnitude). Artificial drainage and
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natural bypass (cracking soils) were amongst the most sensitive predictors of E.
coli (positive magnitudes). Normalized by the area of developed land, overland
flow exhibited a positive magnitude for most water quality measures. Overall,
land-use intensity process-attribute gradients were retained as the most sensi-
tive predictors of total nitrogen and nitrate-nitrite nitrogen and E. coli (positive
magnitudes) but were less commonly retained and of lower sensitivity for total
phosphorus, dissolved reactive phosphorus, turbidity (NTU), and clarity. How-
ever, regional subsets showed significant variation in performance measures and
process-attribute gradients retained by the statistical model.

Table 6. The cross-validated performance measures for 811 water quality sites
by regional subset.

Analyte Regional Subset R2 Correlation Coefficient Maximum Error Mean Squared Error Mean Absolute Error Complexity
TN Northland - Auckland 0.90 0.95 0.38 0.01 0.06 33

Waikato - Bay of Plenty 0.81 0.90 0.79 0.03 0.12 39
Wellington-Manawatu-Taranaki 0.78 0.89 0.57 0.03 0.13 19
Hawkes Bay - Gisborne 0.74 0.87 0.73 0.04 0.13 23
West Coast-Tasman-Nelson 0.75 0.87 0.59 0.04 0.14 86
Marlborough-Canterbury 0.71 0.85 0.71 0.10 0.24 17
Southland - Otago 0.86 0.93 0.54 0.03 0.12 41

NNN Northland - Auckland 0.83 0.92 0.78 0.06 0.15 23
Waikato - Bay of Plenty 0.82 0.91 0.67 0.05 0.16 43
Wellington-Manawatu-Taranaki 0.81 0.90 0.83 0.05 0.17 25
Hawkes Bay - Gisborne 0.73 0.86 0.99 0.10 0.21 29
West Coast-Tasman-Nelson 0.79 0.89 1.02 0.10 0.21 44
Marlborough-Canterbury 0.71 0.84 1.75 0.21 0.31 42
Southland - Otago 0.79 0.89 0.85 0.11 0.25 42

TP Northland - Auckland 0.83 0.92 0.38 0.02 0.08 30
Waikato - Bay of Plenty 0.72 0.85 0.74 0.04 0.14 45
Wellington-Manawatu-Taranaki 0.69 0.84 0.53 0.02 0.11 34
Hawkes Bay - Gisborne 0.79 0.89 0.68 0.03 0.11 37
West Coast-Tasman-Nelson 0.73 0.85 0.41 0.03 0.12 43
Marlborough-Canterbury 0.63 0.80 0.65 0.05 0.16 29
Southland - Otago 0.85 0.92 0.65 0.03 0.11 40

DRP Northland - Auckland 0.66 0.85 0.58 0.04 0.11 16
Waikato - Bay of Plenty 0.68 0.82 0.73 0.06 0.19 38
Wellington-Manawatu-Taranaki 0.57 0.77 0.01 0.00 0.00 49
Hawkes Bay - Gisborne 0.75 0.87 0.85 0.04 0.14 35
West Coast-Tasman-Nelson 0.73 0.86 0.50 0.03 0.12 41
Marlborough-Canterbury 0.74 0.86 0.60 0.06 0.19 35
Southland - Otago 0.76 0.88 0.51 0.03 0.12 45

Turbidity (NTU) Northland - Auckland 0.92 0.96 0.20 0.01 0.05 33
Waikato - Bay of Plenty 0.69 0.83 0.85 0.05 0.15 58
Wellington-Manawatu-Taranaki 0.66 0.81 0.76 0.05 0.15 26
Hawkes Bay - Gisborne 0.59 0.78 0.45 0.03 0.11 45
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Analyte Regional Subset R2 Correlation Coefficient Maximum Error Mean Squared Error Mean Absolute Error Complexity
West Coast-Tasman-Nelson 0.74 0.86 0.74 0.06 0.17 66
Marlborough-Canterbury 0.48 0.70 0.90 0.09 0.23 42
Southland - Otago 0.81 0.90 0.54 0.03 0.11 40

Clarity (Black Disk) Northland - Auckland 0.89 0.94 0.18 0.00 0.04 33
Waikato - Bay of Plenty 0.73 0.85 0.49 0.02 0.10 37
Wellington-Manawatu-Taranaki 0.66 0.82 0.47 0.02 0.11 35
Hawkes Bay - Gisborne 0.61 0.78 0.40 0.02 0.09 40
West Coast-Tasman-Nelson 0.62 0.79 0.55 0.04 0.14 29
Marlborough-Canterbury 0.50 0.72 0.64 0.05 0.16 43
Southland - Otago 0.58 0.77 0.66 0.04 0.12 29

E. coli Northland - Auckland 0.74 0.87 0.39 0.02 0.09 42
Waikato - Bay of Plenty 0.75 0.87 0.90 0.07 0.19 29
Wellington-Manawatu-Taranaki 0.73 0.85 0.77 0.06 0.18 25
Hawkes Bay - Gisborne 0.74 0.86 0.82 0.06 0.17 31
West Coast-Tasman-Nelson 0.59 0.78 1.70 0.14 0.24 52
Marlborough-Canterbury 0.74 0.87 1.24 0.11 0.25 39
Southland - Otago 0.74 0.87 0.90 0.07 0.19 35

DRP: Dissolved Reactive Phosphorus; E.coli: bacterial indicator; NNN: Nitrate-
Nitrite Nitrogen; TN: Total Nitrogen; TP: Total Phosphorus; Turb.: Turbidity
in Nephelometric Units.

6 Discussion

6.1 The importance of localized geological and climatic histories over water
composition

Due to New Zealand’s geological diversity, it is unsurprising that the sensitivities
of process-attribute gradients varied between regional subsets. For example, the
geothermal process-attribute gradient was identified as the most sensitive predic-
tor of SiO2(aq) across the Taupo Volcanic Zone which includes large areas of the
Waikato and Bay of Plenty Regions (see S4). The geothermal process-attribute
was also retained as a sensitive predictor of total carbonate alkalinity. The im-
portance of the geothermal process-attribute gradient over SiO2(aq) and total
alkalinity is consistent with the high partial pressures of CO2 and dissolved silica
within the hydrothermal fluids of the Taupo Volcanic Zone (Giggenbach, 1995).
These fluids ascend and mix with the shallow meteoric aquifers and discharge
via the surface water network. Outside the areas of high enthalpy geothermal
activity, the majority of New Zealand soil and geological acid neutralizing ca-
pacity and regolith cohesion process-attribute gradients were retained as the
most sensitive predictors of total alkalinity and dissolved reactive silica.

For water quality, annualized loads of total nitrogen and total phosphorus from
the surface water network to 12 Bay of Plenty region lakes had geothermal
contributions up to 29.5 and 68%, respectively (Donovan and Donovan, 2003).
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This reflects high concentrations of ammonium and phosphorus in hydrothermal
fluids (Hamill, 2018; Giggenbach, 1995). As this assessment did not evaluate
direct inputs of geothermal fluids from the lakebed, these estimates are likely
conservative (see Hamill, 2018). Therefore, it is perhaps unsurprising that the
geothermal process-attribute layer was retained as the most sensitive predic-
tor of total nitrogen and dissolved reactive phosphorus (positive magnitudes)
across both geothermally active regions within the Taupo Volcanic Zone (see
S5). However, land use intensity was retained as the most sensitive predic-
tor of nitrate-nitrite-nitrogen, probably because of the low redox potential of
geothermal fluids, favoring ammoniacal nitrogen.

In another example, Northland and Auckland were the only regions for which
the regolith cohesion status was retained as the most sensitive predictor of sur-
face water turbidity (NTU) and clarity (see S5). Here, the regolith cohesion
process-attribute gradient is ranked from low to high, with a negative magni-
tude of response recorded for turbidity and a positive magnitude of response for
clarity, i.e., turbidity decreases, and clarity increases, as the cohesion status of
the regolith increases. These regions are characterised as the oldest and most
weathered in New Zealand, with no evidence of glaciation, widespread ash fall de-
posits or significant Quaternary tectonic activity (Richardson et al., 2013, 2014;
Hayward, 2017). The antiquity of the landscape, an abundance of relatively un-
consolidated sedimentary rocks relative to elsewhere in New Zealand, and North-
land’s subtropical climate have resulted in high rates of mass wasting and erosion
in response to anthropogenic activity (Richardson et al., 2013, 2014; Swales et
al., 2015; McDonald et al., 2020). Outside of Northland and Auckland, across
the much larger area of geomorphically young landforms, macroscale precipita-
tion source and volume, recharge domain and hydrological routing, mesoscale
hydrological pathway (also of developed land), and both soil and geological acid
neutralization capacity process-attribute gradients are more common predictors
of turbidity and clarity (see S5). The retention of acid neutralization process-
attribute gradients as sensitive predictors of turbidity and clarity is thought
to reflect the association between weak calcareous mudstones and evidence in
satellite imagery for higher mass-wasting rates (Rissmann et al., 2020a).

In one final example, Northland-Auckland and Southland-Otago regions contain
the greatest proportion of imperfectly to poorly drained soils (for land < 12°
slope) and the highest concentration of artificially drained (mole-pipe and ditch
drainage) agricultural land nationally. Where artificial drainage is associated
with reducing soil profile forms (e.g., gleysols or organic carbon dominated),
redox conditions may enhance phosphorus mobility and associated export to
surface waters (Scalenghe et al., 2010). An abundance of fine-textured and
poorly permeable soils and shallow water tables also favors overland flow. Par-
simoniously then, the artificial drainage density process-attribute gradient was
retained as the most sensitive predictor of total and dissolved reactive phospho-
rus (positive magnitudes) across these two regional subsets (see S5). Those
regional subsets with a smaller proportion of artificially drained soils retained
water table, soil, and geological reduction potential as sensitive predictors of
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phosphorus loss.

In summary, differences in the geological and climatic evolution of a region
can result in critical, regional-scale variability in water quality drivers. This
variability may be lost when aggregating data for national models. For example,
aggregating the hydrochemistry dataset from all regions into one model run, the
key regional drivers of variation in the process signatures noted above were lost,
and predictive uncertainty increased (Table 3 versus Table 4).

6.2 PoAM performance

Multivariate evaluation shows that process-attribute gradients effectively repli-
cated the dominant process gradients responsible for the generation, storage,
attenuation, and transport of water quality contaminants in the environment.
The observation that spatial variation in water composition can be reliably es-
timated as a function of landscape attributes is consistent with New Zealand
and international studies (Johnson et al., 1997; Hale et al., 2004; Snelder and
Biggs, 2002; Snelder et al., 2005; King et al., 2005; Dow et al., 2006; Becker et
al., 2014; Rissmann et al., 2019).

Nonetheless, the identification of regional variations in process-attributes, and
their relative sensitivities, are significant and represent regional-scale variabil-
ity in geological and climatic histories. We consider it logical that regions with
unique geological attributes or climatic histories (e.g., high-temperature geother-
mal activity, deeply weathered regolith, or a greater abundance of imperfectly to
poorly drained soils) will respond differently to land-use pressures and/or have
distinct endogenous sources of water quality contaminants. Our interpretation
is consistent with observed regional variation in the type and severity of water
quality issues across New Zealand (Ministry for the Environment & Stats NZ,
2020).

Overall, the validity and observed performance of the PoAM approach is sup-
ported by the dominant process concept proposed by Grayson and Blöschl
(2001), namely:

1. that the response of environmental systems is commonly well explained
by the representation of a small number of dominant processes.

2. that a logical way to identify the dominant processes governing a system
is by evaluating the sensitivity of the system to each of the individual pro-
cesses (believed to have influence) through a (high-order) multi-variable
sensitivity analysis and selecting those variables that are found to have a
’noticeably’ significant influence (Sivakumar, 2004; 2008).

6.3 Limitations to Process-Attribute Mapping (PoAM)

Based on expert knowledge and machine defined relationships, process-attribute
gradients provide a reasonable approximation of the macroscale process gradi-
ents that govern the generation, storage, attenuation, and transport of water
quality contaminants. However, as with any complex system, the ability to
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isolate and depict first-order drivers of process response is challenging. Accord-
ingly, as with any model each process-attribute layer can only be considered an
approximation of the ‘real’ macroscale process-attribute gradient.

In addition to the challenges of isolating first-order drivers of process response,
spatial correlation between landscape attributes may interfere with the machine-
driven isolation of primary drivers (Rissmann et al., 2019). This is especially
true of process-attribute gradients that share similar landscape attributes. For
example, both artificial drainage and soil redox potential include soil drainage
class as one of the controlling landscape attributes. As a result, these two
process-attribute gradients are spatially correlated (R = 0.36) despite repre-
senting different dominant processes, i.e., hydrological versus redox. In some
settings, this may result in the artificial drainage layer being retained as an
important predictor of redox sensitive species such as FeII and DOC. Although
dissolved iron and DOC are commonly elevated in mole-pipe drainage from
poorly drained soils (Rissmann and Beyer, 2016), it is incorrect to say that arti-
ficial drainage is a driver of low soil redox potential. In these situations, expert
knowledge is an important basis for interpreting machine defined relationships.

Collinearity is also partially addressed during the evaluation of the sensitivity
and magnitude of response of process-attribute gradients over a given hydro-
chemical tracer (Fig. 1, Step 4). Specifically, the HDGP method models each,
possibly coupled, variable separately, intelligently perturbing and destabilising
the system to extract its less observable characteristics and automatically simpli-
fying the equations during modelling (Schmidt and Lipson, 2009, 2015). This
feature of HDGP supports the identification of the most sensitive predictors
or closest approximations of the actual process-attribute gradients governing a
given hydrochemical tracer or water quality measure.

Besides revealing the hidden patterns underlying complex non-linear systems,
our preference for HDGP relates to the important challenge of feature selection
in high-dimensional data sets. For example, we note that Random Forests might
overlook important variables. Specifically, the work of Stijven et al. (2011)
noted that although Random Forests can efficiently find important variables,
it may struggle to do so where many variables are equally important. Poor
discrimination of variables with similar weightings results in the sensitivity of
predictors varying randomly, given that such variables are not recognised as
being truly distinct. Stijven et al. (2011) also noted that variable importance
is influenced by data distribution, which can result in misinterpretation and
concluded that caution is advised when using Random Forests to decide which
variables to retain, even if the dataset is known not to exhibit strong correlations
or unevenly balanced data. This is because data points in leaf nodes are similar
in the nearest neighbour sense, and the variables selected by Random Forests
express proximity. In comparison, HDGP more robustly identifies important
variables if models of sufficient quality are found (Stijven et al., 2011; Icke and
Bongard, 2013; Arnaldo et al., 2014; Schmidt and Lipson, 2009, 2015).

Another important feature of the machine defined sensitivity analysis employed
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here includes the development of a mathematically transparent model (i.e.,
“white box”) of the relationship between process-attribute gradients that min-
imises both model error and complexity (Fig. 1 Step 4). HDGP does this via
randomly combining different mathematical building blocks (i.e., basic arith-
metic operators, trigonometric and exponential functions) and assessing which
combination provides the most accurate and least complex model. If a combi-
nation does not improve the accuracy of an estimate or reduce a model’s com-
plexity, it is discarded (Khu et al., 2001; Schmidt and Lipson, 2009, 2015). The
same evolutionary approach operates on the predictors, whereby any process-
attribute gradients that do not improve the accuracy and reduce the complexity
of a model are discarded. Therefore, instead of offering a single model and
calibrating it to the data, millions of possible models are evaluated and then
calibrated as part of the evolutionary process. Here the ultimate objective is
to converge upon a single solution that ’best’ defines the relationship between
process-attribute gradients and a target variable (i.e., a hydrochemical tracer).
A desire for greater transparency over the relationships between drivers and
system response has resulted in an increasing number of researchers applying
symbolic methods to resolve better the drivers of complex, non-linear natural
systems (Whigham and Crapper, 2001; Jagupilla et al., 2015; Chadalawada et
al., 2017; Aryafar et al., 2019; Rajaee et al., 2020).

Testing bias is associated with the location of surface water monitoring sites for
process-attribute gradient performance. These monitoring sites are associated
with higher order streams (� 3) and larger drainage basin areas for pragmatic
reasons. Specifically, of the 730 surface water capture zones with hydrochemical
data, the median size is 122 km2, with only 38 less than 5 km2 (500 ha). This
is relevant because 44 % of farms across New Zealand are less than 40 ha, with
a further 48 % ranging between 40 and 600 ha (StatsNZ, 2018). The average
farm size globally is even smaller at < 20 ha (Samberg et al., 2016). This
is important given that error within most models tends to increase as drainage
basin size decreases, reflecting increasing sensitivity to the resolution, and hence
accuracy, at which landscape attributes and land use intensity gradients are
depicted (Troy et al., 2008; Mattot et al., 2009; Moriasi et al., 2015). The loss of
accuracy at small scales is particularly relevant given most geospatial layers used
in this study were only as fine as 1:50,000 scale, with finer scales necessary for
assessing controls at property scales. Currently, this work is primarily relevant
to larger scales associated with higher-order streams (� 3).

6.4 Future work for process attribute mapping in New Zealand and globally

Improvements in the spatial resolution of process-attribute gradients by devel-
oping finer-scaled landscape attribute datasets. For example, airborne radio-
metric survey data (typically 50 x 50 m resolution) can be used to provide
enhanced resolution over subsurface carbon stores and soil drainage properties
(Beamish, 2014; Beamish, 2015). These, and other high-resolution data sets,
can be used to provide better proxies of actual landscape gradients than are
currently available (Rissmann et al., 2018c, 2020a, b; Rissmann and Pearson,
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2020). A higher-resolution depiction of process-attribute gradients is critical
for guiding investments to improve water quality outcomes at the small scale
typical of most farms globally.

The process-attribute gradients developed would further benefit from the mea-
surement of hydrochemical tracers in surface and ground water. For example,
in New Zealand this could be done across the eight regions not included in
this study. Such data would support the refinement of process-attribute gradi-
ents and potentially drive improved performance. High-quality classifications
and datasets defining groundwater redox potential could be used to enhance
the representativeness of the geological reduction potential layer (Collins et al.,
2017; Rivas et al., 2017; Burbery, 2018; Martindale et al., 2019; Wilson et al.,
2020). Approximations of unsaturated zone and saturated zone lags could also
be generated to better account for the important control of ’time’ over spatial
variation in water quality (see Wilson et al., 2014).

Future work will focus on developing an integrated classification that groups
areas with the similar process-attribute classes into a single class. Each class is
theorised to respond in a similar fashion at the process level to broadly equivalent
land use pressure, generating predictable water quality outcomes (see Hughes
et al., 2016; Rissmann et al., 2018a).

Globally, similar datasets exist or could be developed to apply PoAM. Exam-
ples include national or regional climatic, geologic, soil and hydrological datasets.
Hydrochemical data can be collected, if not already available, and used to guide
classification. For areas lacking hydrochemical data, controlling landscape at-
tribute hypothesises can be developed using relevant literature and local knowl-
edge from which a top-down process-attribute classification could be built. Such
a classification could then be used to guide an efficient sampling campaign. Data
collected from such a survey could be used to refine existing hypothesis and im-
prove the representation of dominant process gradients.

7 Conclusions

Process-attribute mapping (PoAM) utilises signals within water to map four
dominant processes that, in combination with land use, govern the generation,
storage, attenuation and transport of contaminants in the environment. The
performance of PoAM to estimate wide-ranging hydrochemical and water qual-
ity measures across the diverse landscape of New Zealand highlights the utility
of the method. Recognizing that regions with unique geological attributes and
climatic histories respond differently to land-use pressures and/or have distinct
endogenous sources of contaminants is critical to model, and subsequently im-
prove, water quality. Models or policies that fail to consider landscape variation
will misidentify governing factors and produce outputs or rule frameworks that
may not support improved water quality.

Uncertainties associated with PoAM as tested in New Zealand reflect the spatial
coarseness of the surface water monitoring network used to assess performance
and the resolution of the input datasets that typically were created for purposes
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other than water quality. For this reason, the outputs in this study are primarily
relevant to larger scales associated with higher-order streams (�3) but could be
significantly improved by higher-resolution input datasets. The PoAM approach
is here demonstrated to be useful in modelling water quality in the complex New
Zealand landscape, and could be equally applicable in other countries with or
without similar landscape diversity. Future research seeks to refine and fur-
ther validate the PoAM approach, and to develop an integrated classification
that groups areas with the same process-attribute gradients into distinct phys-
iographic environments. Globally, many countries possess equivalent datasets
that could be used to support the application of PoAM.
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