
P
os
te
d
on

23
N
ov

20
22

—
C
C
-B

Y
-N

C
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
75
28
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

A Calibration-Free Groundwater Module for Improving Predictions

of Low Flows

Arik Tashie1, Tamlin M Pavelsky2, and Mukesh Kumar3

1University of Alabama, Tuscaloosa
2University of North Carolina at Chapel Hill
3University of Alabama

November 23, 2022

Abstract

Groundwater modules are critically important to the simulation of low flows in land surface models (LSMs) and rainfall-runoff

models. Here, we develop a Groundwater for Ungauged Basins (GrUB) module that uses only physically-based properties

for which data are widely available, thus allowing its application without the need for calibration. GrUB is designed to be

computationally simple and readily adaptable to a wide variety of LSMs and rainfall-runoff models. We assess the performance

of GrUB in 84 US watersheds by incorporating it into HBV, a popular rainfall-runoff model. We compare predictions of low

flows by the native (calibrated) HBV groundwater module with those by the (uncalibrated) GrUB module and find that GrUB

generates error metrics that are equivalent to (or superior to) those generated by the native HBV groundwater module. To

assess whether predictions by GrUB are robust to changes in the structure and parameterization of the overlying hydrologic

model, we run tests for two artificial scenarios: Slow Recharge with rates of percolation below 0.1 mm/day, and Fast Recharge

with rates of percolation of up to 1000 mm/day. GrUB proves to be robust to these extreme changes, with mean absolute error

(MAE) of predictions of low flows only increasing by an average of up to 19%, while average MAE increases by up to 157%

when the same tests are performed on HBV without the GrUB module. We suggest GrUB as a potential tool for improving

predictions of low flows in LSMs as well as rainfall-runoff models where calibration data are unavailable.

Hosted file

essoar.10507528.1.docx available at https://authorea.com/users/543712/articles/601365-a-

calibration-free-groundwater-module-for-improving-predictions-of-low-flows

1

https://authorea.com/users/543712/articles/601365-a-calibration-free-groundwater-module-for-improving-predictions-of-low-flows
https://authorea.com/users/543712/articles/601365-a-calibration-free-groundwater-module-for-improving-predictions-of-low-flows


A Calibration-Free Groundwater Module for Improving Predictions
of Low Flows

Arik Tashie1, Tamlin Pavelsky2, and Mukesh Kumar1

1 Department of Civil, Construction, and Environmental Engineering, Univer-
sity of Alabama, AL, USA.
2 Department of Geological Sciences, University of North Carolina at Chapel
Hill, Chapel Hill, NC, USA.

Corresponding author: Arik Tashie (tashi002@ua.edu)

Key Points:

• Develop a calibration-free groundwater / low flow module that is compat-
ible with Land Surface Models (LSMs) and rainfall-runoff models.

• Without calibration, the module’s performance compares favorably with
an existing, fully calibrated alternative.

• Module predictions of low flows are robust to drastic changes in the over-
lying hydrologic model.

Abstract

Groundwater modules are critically important to the simulation of low flows
in land surface models (LSMs) and rainfall-runoff models. Here, we develop
a Groundwater for Ungauged Basins (GrUB) module that uses only physically-
based properties for which data are widely available, thus allowing its application
without the need for calibration. GrUB is designed to be computationally sim-
ple and readily adaptable to a wide variety of LSMs and rainfall-runoff models.
We assess the performance of GrUB in 84 US watersheds by incorporating it
into HBV, a popular rainfall-runoff model. We compare predictions of low flows
by the native (calibrated) HBV groundwater module with those by the (uncal-
ibrated) GrUB module and find that GrUB generates error metrics that are
equivalent to (or superior to) those generated by the native HBV groundwater
module. To assess whether predictions by GrUB are robust to changes in the
structure and parameterization of the overlying hydrologic model, we run tests
for two artificial scenarios: Slow Recharge with rates of percolation below 0.1
mm/day, and Fast Recharge with rates of percolation of up to 1000 mm/day.
GrUB proves to be robust to these extreme changes, with mean absolute error
(MAE) of predictions of low flows only increasing by an average of up to 19%,
while average MAE increases by up to 157% when the same tests are performed
on HBV without the GrUB module. We suggest GrUB as a potential tool for
improving predictions of low flows in LSMs as well as rainfall-runoff models
where calibration data are unavailable.

1. Introduction

(a) Background
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Shallow groundwater supplies a majority of streamflow to most watersheds [Beck
et al. 2013] and is the primary source of streamflow during seasonal low flows
[Smakhtin 2001]. This mobile water resource provides an essential buffer to
changes in temperature, nutrients, and precipitation [Ficklin et al. 2015] and
sustains evapotranspiration (ET) [Yang et al. 2011] during low flow periods.
Even in snow-dominated climates, the hydrologic response to snowmelt is me-
diated by groundwater [Enzminger et al. 2019] with important implications
for the response of these systems to global warming [Tague and Grant [2009].
Because shallow groundwater contributions to low flows are disproportionately
sensitive to changes in near-term (i.e., years and decades) climate signals [Hare
et al. 2021], it is essential that our hydrologic models are able to predict ground-
water contributions to low flows accurately. Unfortunately, accurate simulation
of low flows and groundwater contributions to them has proven to be notoriously
difficult in land surface models (LSMs) [Clark et al. 2015, Holtzman 2020] and
conceptual rainfall-runoff models [Fowler et al. 2019].

Early LSMs described low flows as dependent on one-dimensional drainage below
a soil column [Clark et al. 2015]. This “free” drainage led to well-documented
inaccuracies: too-fast drainage during wet periods, underestimates of seasonal
storage, and the cessation of ET during short dry periods [Baker et al. 2008,
Brunke et al. 2016, Fan et al. 2017, Kuppel et al. 2017, Milly and Shmakin
2002, Miguez-Macho and Fan 2012a, Miguez-Macho and Fan 2012b, Pokhrel
et al. 2013]. Though LSM researchers have introduced several mechanisms
for constraining low flows, this additional model complexity [NOAA 2016] has
failed to generate consistent improvements in model predictions [Yang et al.
2011, Gan et al. 2019]. Indeed, it is often necessary to incorporate a calibrated
groundwater module in LSMs [Fang et al. 2019, Holtzman et al. 2020] when
using LSM projections in a predictive context. The requirement of calibration
both increases the complexity of applying LSMs and (importantly) limits their
utility in ungauged basins.

The failure to clearly improve low flows in LSMs has been partially attributed
to three issues. First, the simple (linear) groundwater reservoirs [e.g., Liang
et al. 2003 or Niu et al. 2007] and quasi-TOPMODEL modules [e.g. Niu et
al. 2005 or Oleson et al. 2010] may lack the complexity to characterize het-
erogeneous watershed features that drive highly nonlinear streamflow processes
during periods of recession [Clark et al. 2009, Clark et al. 2015, Fan et al. 2019,
Rahman et al. 2019, Tashie et al. 2019]. Second, the data used to parameterize
these low flow modules are highly uncertain. For example, the hydraulic prop-
erties of the deep subsurface are typically estimated according to the texture of
the shallow overlying soil using a pedotransfer function [Gedney and Cox 2003].
Even where it is appropriate to assume a strong correlation between hydraulic
properties of shallow soils and those of the deeper soils, regolith, and bedrock,
this approach ignores macropores [Zecharias and Brutsaert 1988, Mendoza et
al. 2004] and is biased in non-temperate climates [Hengl et al. 2017, Huscroft
et al. 2018]. Finally, the overreliance on only one or two datasets (i.e., areal
average hydraulic conductivity and/or topographic wetness index) to character-
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ize a complex process heightens the likelihood that the biases and uncertainties
that are inherent in all large datasets express themselves in model predictions
[Hariri et al. 2019].

These issues are not limited to LSMs, but are also increasingly being recognized
as an area of needed improvement in conceptual rainfall-runoff models [Fowler
et al. 2019, Seibert and van Meerveld 2016]. Computationally simple rainfall-
runoff models are commonly applied in climate change impact studies to inform
policy and decision-making in a wide variety of arenas [Flörke et al., 2018; Iqbal
et al., 2018, Mahmoud & Gan, 2018, Cui et al., 2018, Balkovič et al., 2018,
de Jong et al., 2018, Emanuel, 2018]. However, rainfall-runoff models tend to
become increasingly inaccurate during periods of hydroclimatic variability [Saft
et al. 2016, Seibert and van Meerveld 2016], which inhibits their utility in
predicting watershed response to climate. Further, most rainfall-runoff models
require calibration of several parameters on a single objective function, which
raises the issue of equifinality [Beven 2006] and limits their utility in ungauged
and poorly gauged basins [Boughton 2006].

1. Objectives

We propose to improve predictions of low flows in LSMs and conceptual rainfall-
runoff models by developing a portable, data-driven module called Groundwater
for Ungauged Basins (GrUB). To facilitate easy and broad adoption of this mod-
ule by the modeling community, we are guided by four key practical principles:

1. No calibration required: the module must be usable directly “out of the
box” and easily applied in ungauged basins.

2. Simple data requirements: the module must depend only on widely avail-
able (continental- or global-scale) data that requires minimal processing
on the part of the model user.

3. Modular: to be adaptable to a variety of LSMs and rainfall-runoff mod-
els, the module must be driven by a single flux that is common in most
LSMs and rainfall-runoff models (i.e., deep recharge), and it must oper-
ate independently of the rest of the model structure (i.e., no feedback
mechanisms).

4. Computational simplicity: the module must not substantially increase the
run time of LSMs (which are already computationally complex) or rainfall-
runoff models (for which short run times are a major source of appeal).

Following the module development (detailed below), we incorporate GrUB into
a common rainfall-runoff model (HBV) and assess its performance by posing
the following questions:

1. Does incorporating the uncalibrated GrUB module into the otherwise cal-
ibrated HBV model negatively affect its overall performance?

2. Does GrUB reduce error and bias in predictions of low flows, especially
during historically long dry periods?
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3. Are GrUB predictions of low flows robust to changes in the parameteriza-
tion and performance of the overlying hydrologic model?

Finally, we discuss the limitations of GrUB and identify potential avenues for
improvement.

1. Model Development

(a) Conceptual Model

In individual watersheds (or hillslopes), actual groundwater flow patterns are
exceedingly complex, varying in time, place, and with antecedent conditions
[Aulenbach et al. 2021, Tashie et al. 2019, Zimmer and McGlynn 2017a, Zim-
mer and McGlynn 2017b]. Which mechanisms are dominant (and when) varies
according to the specific geophysical properties and climatic fluxes of a water-
shed [Tashie et al. 2020b]. Unfortunately, the practical realities of a large-scale
hydrologic and land surface modeling demand that low flow calculations must
be generic (i.e., the same for all watersheds) and computationally efficient.

In this research, we apply a bottom-up, data driven approach to module de-
velopment. Broadly, we propose that models that leverage a wide variety of
empirical data are more likely to be transferrable among watersheds without
the need for calibration. We begin by identifying a class of conceptual models
that incorporates a wide variety of physically-based properties and mechanisms
for which extensive empirical data is readily available. Then, we build a module
that is simple and generic, so that it is applicable across a range of watersheds
using only these widely available data.

Representation of groundwater contributions to low flows in LSMs is usually
based on one of four classes of conceptual models [Clark et al. 2015]: 1) free
or restricted drainage; 2) conceptual buckets; 3) TOPMODEL; and 4) hillslope
flow based on Darcy’s Law. Free drainage and conceptual buckets generate
subsurface runoff (Qsb) as a function of storage (S) and saturated hydraulic
conductivity (Ksat):

𝑄sb = 𝑓(𝑆, 𝐾) Eq. 1

where S is a function of modeled inputs to and outputs from the lower boundary
and K is usually derived from the properties of lowest layer of the soil column.
Free and restricted drainage modules were the most common approaches in early
LSMs and remain popular (e.g., CABLE, TESSEL, Noah, and ORCHIDEE)
[Kowalczyk et al. 2013 , van den Hurk et al. 2000, Niu et al. 2011, and Krinner
et al. 2005].

To address the poor performance of free and restricted drainage models,
many LSMs have incorporated TOPMODEL concepts (e.g., Catchment, CLM,
JULES, MATSIRO, and Noah-MP), where Qsb is again a function of S and K,
but also depends on catchment-average topographic slope and curvature, i.e.,
the topographic wetness index (TWI):

𝑄sb = 𝑓(𝑆, 𝐾, 𝑇 𝑊𝐼) Eq. 2
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In TOPMODEL approaches, S is again a function of modeled inputs to and
outputs from the lower boundary, while TWI and K are largely derived from
empirical data. TWI is calculated directly from digital elevation models (DEMs)
and K varies with S, such that maximum K is derived from the properties of the
lowest layer of the soil column and decays exponentially with declining values
of S [e.g., Niu et al. 2005].

Finally, flow from a representative hillslope based on Darcy’s Law has been
explicitly identified as a potential mechanism for improving representation of
groundwater and low flows [Clark et al. 2015, Fan et al. 2019], though only
one version of this mechanism has been included in any LSM to date (i.e., LM3
[Subin et al. 2014]). Broadly, a representative hillslope flow model describes
Qsb as a function of S, K, and several topographic and geomorphic variables:

𝑄sb = 𝑓(𝑆, 𝐾, 𝑖, 𝐵, 𝐿, 𝑇 ℎ) Eq. 3

where i is aquifer slope, B is characteristic aquifer breadth, L is stream network
length, and Th is aquifer thickness. Once again, S is a function of modeled
inputs to and outputs from the lower boundary. K, i, B, L, and Th represent
physical properties of the watershed for which empirical data is widely available.
These empirical data represent an opportunity to uniquely parameterize water-
sheds without calibration, and without overreliance on any single dataset or set
of simplifying assumptions that may be prone to bias. Therefore, we proceed to
develop the GrUB module according to this approach.

1. Model Equations

We begin with a continuity equation and add complexity where hydrological
realism demands further refinement:

𝑆 = 𝑁 − 𝑄sb Eq. 4

where N is recharge, i.e. modeled drainage from the unsaturated zone (Figure
1). 𝑄sb [L3] is a product of linear discharge from the hillslope (𝑞sb), the thickness
of the saturated aquifer at the stream interface (H0), and the total length of
stream network (L):

𝑄sb = 𝑞sb𝐻0𝐿 = 𝐾 dh
dx 𝐻0𝐿 Eq. 5

where dh
dx is the hydraulic gradient. Watershed-scale estimates of L can be

derived from topography, remote sensing, and modeling experiments, and these
are data widely available in public databases like the National Hydrography
Dataset (NHD) [USGS 2004]. Because the 1:100,000-scale stream networks in
the NHD tend to underestimate actual L by a factor of at least 2 [Godsey and
Kirchner 2014, Jensen et al 2015], we rescale L by a factor of 2 for all watersheds.
This leaves K, dh

dx , and 𝐻0 to be solved for.
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Figure 1: A representative hillslope aquifer atop a sloping impermeable layer.

As noted above, K in LSMs is typically estimated according to the soil tex-
ture at the bottom of the soil column according to a pedotransfer function and
modeled to decay exponentially with depth to water table [Niu et al. 2005].
However, pedotransfer functions are known to be highly uncertain [Freeze and
Cherry 1979, Zhang and Schaap 2019] and to systematically underestimate K
by ignoring macropores [Zecharias and Brutsaert 1988, Mendoza et al. 2004].
Further, the exponential decay of K is a purely empirical relationship that is
often calibrated in hydrologic models [e.g., Tague and Band 2004]. To address
these pitfalls, Tashie et al. [2021] developed maps of a quantity we term effec-
tive K for the coterminous US that: 1) accounts for the effects of macropores
on watershed-average values of effective K; and 2) explicitly represents values
of K as a function of shallow groundwater storage (S). Using these data, we can
solve K as a function of (static) watershed properties and (time-varying) S:

log10(𝐾) = log10 (𝐾0) + 𝑆𝑚 Eq.7

Here, K0 is the value of K during extremely dry conditions (S0) and m is an
empirically derived constant unique to each watershed (calculated according to
Tashie et al. [2021]). This dataset also has the benefit of providing an estimate
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of maximum saturated aquifer thickness (Th) which is useful for approximating
the two remaining terms to be solved: dh

dx and 𝐻0.

Extensive literature exists deriving analytical solutions to dh
dx and 𝐻0 as func-

tions of Th, S, N, and drawdown time, with each set of solutions applying its own
set of assumptions and approximations that nonetheless broadly agree in describ-
ing the dynamic response of the hillslope aquifer to recharge and drainage [see
Troch et al. 2013]. The water table elevation profile (h(x)) of a fully recharged
hillslope aquifer is “flat” (𝐻0 ≅ 𝑇 ℎ ≅ 𝐻𝐵). During drainage, it drains more
quickly nearer the stream (𝑋 → 0) generating a curvilinear h(x) profile that
decays exponentially from 𝑋 = 𝐵 to 𝑋 = 0. The effective hydraulic gradient
of a hillslope aquifer on a non-sloped (i = 0) impermeable layer may be ap-
proximated as the maximum hydraulic head within the hillslope (𝐻𝐵) at the
minimum distance from the stream where h(X) ∼ 𝐻𝐵 (𝑖.𝑒., 𝑋ℎ∼𝐵). This is il-
lustrated in Figure 2, where 𝑋ℎ∼𝐵 is delineated as the location (X) before which
there is a sharp decrease in hydraulic head (h). The total hydraulic gradient of
a hillslope aquifer on a sloped (i > 0) impermeable layer may be approximated
as:
dh
dx ≅ 𝐻𝐵+𝑋ℎ∼𝐻𝐵 sin 𝑖

𝑋ℎ∼𝐻𝐵
Eq.8

Though there is no universal method for calculating 𝑋ℎ∼𝐻𝐵
following ex-

tended periods of drawdown, it may be approximated as some fraction of the
distance 𝑋 = 𝐵 according to the ratio of maximum aquifer storage (𝑆max = Th

𝑓 )
and the current aquifer storage deficit (𝑆max − 𝑆) to instantaneous storage (S):

𝑋ℎ∼𝐻𝐵
≅ 𝐵 ( 𝑆max−𝑆

𝑆max
)𝑤

Eq.9

where 𝑆max and w are empirically derived constants, and f is drainable porosity.
Calculations of 𝑆max are available for all watersheds in the coterminous US
[Tashie et al. 2021], though w must be estimated. We make a universal estimate
of w=3 for all watersheds based on the following practical guidelines: 1) in actual
hillslopes, an aquifer that is “nearly saturated” (>90%) is likely to approach a
unit gradient; 2) median B for the coterminous US is >1000m, as estimated
using stream density data from the NHD [USGS 2004]; 3) median Th for the
coterminous US is 3m [Tashie et al. 2021]; and 4) for a “nearly saturated”
watershed, dh

dx ≅ 𝐻𝐵
𝑋ℎ∼𝐻𝐵

≅ 𝐻𝐵
𝐵( 𝑆max−𝑆

𝑆max
)

𝑤 ≅ (3∗0.9)
1000(.1)𝑤 . w=3 is the whole number

which most closely approximates dh
dx =1. We provide sensitivity analysis for

values of w in section 4.4.

We take a similarly practical approach to approximating 𝐻0. 𝐻0 increases
linearly with N immediately following a pulse of recharge, such that initial
conditions of a dry aquifer (S = 0) following a pulse of recharge (N) are 𝐻0 ≅
𝑁 ≅ 𝐻𝐵, after which the effect of N on 𝐻0 decays exponentially. Therefore, at
any time t:

𝐻0 ≅ ∑−∞
𝑡=0

𝑁𝑡
𝑓 𝑣−𝑡 Eq.10
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where Nt is total recharge during the previous time step t (e.g., t days ago) and
v is an empirically derived constant. Because LSMs and rainfall-runoff models
are solved iteratively, Eq.10 can be simplified for computational efficiency as:

𝐻0 = 𝑁0
𝑓 + 𝐻0𝑡=−1

𝑣 Eq.11

where 𝐻0𝑡=−1
is equal to 𝐻0 during the previous time step. To account for well-

documented seasonal hysteresis in low flow recession signatures [Shaw and Riha
2012, Bart and Hope 2014], we selected a value of v such that N from more
than three months previous (t < -90) has a negligible effect on H0 (v90 < 0.01).
Therefore, we set v = 0.95 for all watersheds, and provide sensitivity analysis for
this variable in section 4.4. However, H0 does not reach 0 during periods without
recharge, but instead asymptotically approaches some minimum value relative
to HB. We estimated a minimum value of H0 relative to HB according to the
following criteria: 1) 𝐻0 linearly covaries with 𝐻𝐵, such that 𝐻minimum = 𝐻𝐵

𝑝
where p is an empirical constant; 2) in actual hillslopes, a reasonable minimum
thickness of the stream-aquifer interface is likely to be on the scale of (tens of)
centimeters; 3) the median Th for the coterminous US is 3m [Tashie et al. 2021];
and 4) therefore p=100 provides a realistic minimum constraint on Hminimum
relative to HB. Thus:

𝐻0 = 𝑁0
𝑓 + 𝐻0𝑡=−1

𝑣 + 𝐻𝐵
𝑝 Eq.12

Solving Eq. 5 with Eq. 7, Eq. 8, Eq. 9, and Eq. 12 gives:

𝑄sb = (𝐾0 + 10Sm) ( ( 𝑆
𝑓 )

𝐵( 𝑆max−𝑆
𝑆max

)
𝑤 + sin 𝑖) ( 𝑁0

𝑓 + 𝐻0𝑡=−1
𝑣 + ( 𝑆

𝑓 )
𝑝 ) L 𝐸𝑞.13

This computationally efficient model structure contains 7 parameters that are
watershed-scale empirical values (K0, m, Smax, B, f, L, and i), 3 parameters
that are universal estimates (w, p and v), 1 variable that is supplied by the
overlying LSM or rainfall-runoff model (𝑁0), and 2 variables that are solved
iteratively by the GrUB low flow module (S and 𝐻0𝑡=−1

). As noted above, we
provide sensitivity analysis for p, v, and w in section 4.4 because their values
are neither analytically derived nor empirically estimated.

1. Model Testing

(a) Description of HBV

An initial assessment of the potential uncertainties and biases of the GrUB
module necessitates analysis of a variety of flow conditions (i.e., long time pe-
riods) across a variety of physioclimates (i.e., a large number of basins). We
chose to incorporate GrUB within the HBV model [Bergström 1976, Bergström
and Lindström 2015] because of its modular structure that is parsimonious yet
adaptable to a wide range of physical and climatic settings [Bergstrom 1992].
Specifically, we adapted HBV.IANIGLA [Toum 2021] which interfaces with R
software [“R Core Team” 2019]. Apart from its appeal as being computationally
simple and broadly applicable, we chose to implement HBV.IANIGLA because
the subroutines it uses to generate streamflow are conceptually similar to those
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used in Noah-MP and other common LSMs (Figure 2). Here, we give a brief
outline of HBV model structure, though for a detailed description we direct
readers to Bergström [1976], Bergström [1992], and Bergström and Lindström
[2015].

Figure 2: Conceptual model of HBV.

HBV operates as a sequence of subroutines with parameters within each subrou-
tine requiring calibration [Sælthun 1996] (Figure 2). HBV.IANIGLA requires
two time series of climate data (mean temperature (Tmean) and precipitation
(PPT)) to drive the model, and a single time series (generally streamflow (Q))
for calibration. The first routine (“Precipitation-Snow Routine”) calculates rain-
fall, snowfall, snowmelt, and potential evapotranspiration (PET) from Tmean
and PPT. The second routine (“Soil Moisture Routine”) calculates actual evap-
otranspiration (AET) and infiltration according to inputs from the first routine.
The third and final routine (“Runoff Response Routine”) calculates direct runoff
(Qdr), interflow (Qif), and baseflow (Qbf) according to inputs from the first two
routines. The three runoff components are each independently calculated ac-
cording to linear discharge from each of three conceptual buckets, with total
streamflow (Qchannel) calculated as their sum. The parameters requiring cali-
bration for each subroutine are listed in Table 1.
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Table 1: parameters used to calibrate HBV

Parameter name Parameter description Routine Minimum value Maximum value Median calibrated value: HBV Median calibrated value: GrUB-co
SFCF snowfall correction factor [-] Precipitation-Snow Routine .2 3 0.98 1.1
TR solid-liquid PPT threshold temperature [C] Precipitation-Snow Routine -6 6 -2.4 -1.6
TT melt temperature [C] Precipitation-Snow Routine -6 6 0.76 0.98
FM snowmelt factor [mm/C] Precipitation-Snow Routine .2 8 1.6 1.4
FI icemelt factor [mm/C] Precipitation-Snow Routine .2 10 1.3 1.6
FIC debris-covered icemelt factor [mm/C] Precipitation-Snow Routine 2 10 6.0 6.3
FC soil field capacity [mm] Soil Moisture Routine 25 1200 140 140
LP AET correction factor [-] Soil Moisture Routine .2 1 0.55 0.54
Beta soil storage-runoff exponential [-] Soil Moisture Routine 1 3 2.2 2.3
K0 top bucket (STZ) storage constant [1/t] Runoff Response Routine .05 1 0.46 0.46
K1 intermediate bucket (SUZ) storage constant [1/t] Runoff Response Routine .005 .5 0.22 0.24
K2 lower bucket (SLZ) storage constant [1/t] Runoff Response Routine .0001 .1 0.021 NA
UZL max flux rate between STZ and SUZ [mm/t] Runoff Response Routine .2 40 12 11
Perc max flux rate between SUZ and SLZ [mm/t] Runoff Response Routine .1 20 0.29 0.34

A benefit of the minimal data requirements of HBV is that a large number of
watersheds are available for model calibration and assessment. We chose to
use data from the Model Parameter Estimation Experiment (MOPEX) data set
[Schaake et al. 2006] due to their strict data standards. Of the 438 MOPEX
basins for which hydrometeorological data are available, we selected 84 based
on: 1) being designated as minimally impacted by human interference in the
GAGES-II dataset [Falcone et al. 2010]; and 2) having a minimum of 20 years
of unflagged streamflow data. These watersheds are illustrated in Figure 3.

For each watershed, we calibrated the 14 parameters from Table 1 using the
R-software package hydroGOF [Zambrano-Bigiarini 2020]. We used a Monte-
Carlo approach, generating 5000 random samples from a uniform distribution of
parameter values as listed in Table 1. We removed the first 3 years of data from
each watershed before calculating the Kling-Gupta efficiency (KGE) [Gupta et
al. 2009] scores, to allow the groundwater stores to equilibrate. Model param-
eterization was chosen based optimal KGE calibration; because model perfor-
mance was not assessed with KGE but instead with low flow metrics (see below)
no data were reserved for validation using KGE.
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Figure 3: Map of MOPEX watersheds used in this study. Water-
sheds are highlighted according to their baseflow index (BFI [-])
as calculated using an automated hydrograph separation program
[Wahl 1995] and reported by Wolock [2003].

1. Implementing GrUB in HBV

We implemented the GrUB module in HBV directly, by replacing the lower
bucket (SLZ, see Table 1) and the lower bucket storage constant (K2) with Eq.
13. Specifically:

• N0 from Eq. 13 was calculated according to the recharge term (Perc) from
the intermediate bucket (SUZ) to the SLZ in HBV.IANIGLA

• Qsb from Eq. 13 replaced Qbf in HBV.IANIGLA

• S from Eq. 13 replaced SLZ in HBV.IANIGLA and was calculated accord-
ing to N0 and Qsb

The GrUB module was never calibrated in any watershed. To assess the effects
of the overlying model parameterization on the performance of GrUB, we did,
however, implement GrUB into two differently calibrated versions of HBV (Fig-
ure 4). First, we calibrated HBV using all 14 parameters from Table 1 then
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replaced the HBV groundwater module with GrUB. We refer to this implemen-
tation of HBV with the GrUB module as “GrUB-ind” as HBV was calibrated
independently of GrUB. We consider GrUB-ind to be directly comparable to the
type of implementation that may be used in LSMs. Second, we calibrated HBV
around the GrUB module by replacing K2 and SLZ with GrUB before beginning
the calibration routine. We refer to this implementation of HBV with the GrUB
module as “GrUB-co” because HBV was calibrated in coordination with GrUB.
We consider GrUB-co to be comparable to the type of implementation that may
be used in rainfall-runoff models where stream gage data are available. Results
from each of these implementations are shown alongside native HBV results in
all subsequent figures.

Figure 4: Example of model results for a single water year in three
watershed: 1) USGS 03164000 New River near Galax, VA; 2) USGS
07067000 Current River at Van Buren, MO.; and 3) USGS 11532500
Smith River near Crescent City, CA. Gaged discharge is illustrated
in black, HBV results in red, GrUB-ind in purple, and GrUB-co in
blue. Plots on the right are in log space to highlight low flows.
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1. Model Evaluation

HBV, GrUB-ind, and GrUB-co were evaluated using data from the entire sim-
ulation period according to their ability to accurately represent low flows. We
identified periods of “low flow” according to two different methods. First, we
applied the Tennant method [Tennant 1976], which is the most widely used
method for defining minimum environmental instream flow in the US [Jowett
1997]. Minimum environmental instream flows are calculated as 30% of the
mean annual flow for the period of record. Second, we applied a quantile thresh-
old approach [Praskievicz et al. 2018]. Historical Q was ranked from largest to
smallest, and streamflow records were selected based on an exceedance thresh-
old of 96% (Q96), which is often also referred to as the lower 4th percentile of
flow. The performance of each model during each of these subsets of low flows
was then evaluated according to the mean absolute error (MAE), mean square
error (MSE), and absolute bias.

1. Model Results

(a) General model performance

The general evaluation results for all three models were similar (median KGE
> 0.74) (Figure 5). HBV and GrUB-co generated nearly identical KGE results
(1st Q = 0.70, median= 0.75, 3rd Q = 0.80, mean = 0.72). GrUB-ind marginally
underperformed the other two models in most watersheds (1st Q = 0.69, me-
dian= 0.74, 3rd Q = 0.78, mean = 0.68). Distributions generated by GrUB-co
and GrUB-ind were not statistically different from HBV (p<0.05) according to
the two-sample Kolmogorov-Smirnov test [Smirnov 1948].

Overall performance of the three models was also similar according to mean
absolute error (MAE), mean square error (MSE), absolute bias (Bias), and Nash-
Sutcliffe efficiency (NSE) (Figure 5). GrUB-co generated the best results for all
four metrics not used in the calibration routine (median MAE = 0.60 mm/day;
median MSE = 2.02 mm/day; median Bias = 0.0003 mm/day; median NSE
= 0.54). However, these represent statistically insignificant improvements over
HBV values (median MAE = 0.61; median MSE = 2.03; median Bias = 0.006;
and median NSE = 0.53). GrUB-ind generated the poorest results for three of
the four performance metrics, though again these differences are not statistically
significant (median MAE = 0.60; median MSE = 2.02; median Bias = 0.005;
median NSE = 0.52).
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Figure 5: Violin plots of model evaluation results with KGE on left
and MAE, MSE, Bias, and NSE on the right. Black dots repre-
sent mean values and black bars represent one standard deviation
around the mean. Blue illustrates results from GrUB-co, purple from
GrUB-ind, and red from HBV with the native calibrated groundwa-
ter module. Model performance results in the inset are (clockwise
from top left) mean absolute error (MAE), mean square error (MSE),
Nash-Sutcliffe efficiency (NSE), and absolute bias (Bias).

1. Low flows

All three models predicted low flows with similar accuracy, with GrUB-co and
GrUB-ind generating slightly better results (Figure 6). For low flows identified
according to Q96, GrUB-co generated the lowest median values of MAE (0.10)
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and MSE (0.022), while GrUB-ind generated the smallest median values of Bias
(0.054). HBV generated the highest median values for each of these metrics,
though only by a small margin (MAE = 0.11, MSE = 0.027, Bias = 0.066).
All models tended to overpredict Q96 flows (67% of watersheds in GrUB-ind,
73% in GrUB=cal, and 69% in HBV). For low flows identified according to
the Tennant method, GrUB-ind generated the lowest values of MAE (median
= 0.17) and Bias (median = 0.09) while GrUB-co generated the lowest MSE
(median = 0.12). HBV generated slightly higher values in all three categories
(median MAE = 0.18, median MSE = 0.13, median Bias = 0.10). Distributions
generated by GrUB-co and GrUB-ind were not statistically different from HBV
(p<0.05) according to the two-sample Kolmogorov-Smirnov test.
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Figure 6: Violin plots of model predictions of low flows as defined
as 96% exceedance (Q96) flows (top row) and the Tennant method
(bottom row). Blue illustrates results from GrUB-co, purple from
GrUB-ind, and red from HBV with the native calibrated ground-
water module. Model performance results are mean absolute error
(MAE – left), mean square error (MSE - middle), and absolute bias
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(Bias - right).

1. Sensitivity to Rate of Recharge

As our primary goal is to develop a groundwater module that is generally adapt-
able to a variety of LSMs and rainfall-runoff models, it is essential that we “stress
test” our module to uncertainty in the structure of the overlying hydrologic
model. Because recharge (N) is the only component of the overlying hydrologic
model that interacts directly with GrUB, we chose to focus on components of
the HBV model structure that constrain rates and magnitude of N. Specifically,
we recalculated the rate at which infiltrated water percolates through the sub-
surface according to two end-member scenarios:

• Slow Recharge: UZL and Perc (see Table 1) set to maximum rates of 0.1
mm/day

• Fast Recharge: UZL and Perc set to minimum rates of 1000 mm/day

Recall (Table 1 and Figure 2) that UZL constrains the maximum rate of move-
ment from soil storage to the upper storage zone (UZ) and Perc similarly con-
strains the maximum rate of movement from the UZ to the lower storage zone
(LZ). Therefore, in the Slow Recharge scenario N is constrained to a small,
nearly constant rate of 0.1 mm/day at maximum. Meanwhile, the Fast Recharge
scenario effectively represents all water reaching the water table immediately fol-
lowing percolation below the shallow soils store. For all three models, we altered
the values of UZL and Perc but otherwise kept all parameter values the same
(i.e., the values listed in Table 1).

1. Alternative Scenario: Slow Recharge

As expected, all three models generated lower KGE and higher error metrics
under the Slow Recharge scenario (Figure 7) than they did under the optimized
scenario (Figure 5). GrUB-ind and HBV generated nearly identical overall error
metrics (median values of KGE = 0.60; MSE = 3.6; NSE = 0.23), though
HBV had higher median Bias (0.008 vs 0.004). GrUB-co generated superior or
equivalent results in every category (median values of KGE = 0.63; MSE = 3.6;
NSE = 0.30, Bias = 0.001). However, distributions generated by GrUB-co and
GrUB-ind were not significantly different from HBV (p<0.05) according to the
two-sample Kolmogorov-Smirnov test [Smirnov 1948].

This general pattern repeated itself when models were assessed during periods
of low flow (Figure 8). GrUB-ind and HBV again generated nearly identical
performance metrics under Q5 (median values of MAE = 0.11; MSE = 0.07;
Bias = 0.021 and 0.022) while GrUB-co moderately outperformed each (median
MAE = 0.10; MSE = 0.06; Bias = 0.021).
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Figure 7: Violin plots of model performance under the alternative
scenario of Slow Recharge. Black dots represent mean values and
black bars represent one standard deviation around the mean. Blue
illustrates results from GrUB-co, purple from GrUB-ind, and red
from HBV with the native calibrated groundwater module. KGE
results are on the left. Model performance results in the inset are
(clockwise from top left) mean absolute error (MAE), mean square er-
ror (MSE), Nash-Sutcliffe efficiency (NSE), and absolute bias (Bias).
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Figure 8: Violin plots of model predictions of low flows under the
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alternative scenario of Slow Recharge. Low flows are defined as
96% exceedance (Q96) flows (top row) and according to the Tennant
method (bottom row). Blue illustrates results from GrUB-co, pur-
ple from GrUB-ind, and red from HBV with the native calibrated
groundwater module. Model performance results are mean absolute
error (MAE – left), mean square error (MSE - middle), and absolute
bias (Bias - right).

1. Alternative Scenario: Fast Recharge

As expected, overall performance of all three models declined under the scenario
of Fast Recharge. For the two metrics that preferentially weigh high flows (NSE
and MSE), HBV outperformed both GrUB-co and GrUB-ind (median NSE =
0.1 vs -0.03; MSE = 3.5 vs 4.1) with statistical significance (p<0.05) according
to the two-sample Kolmogorov-Smirnov test. However, GrUB-co and GrUB-
ind each outperformed HBV by an equally wide margin on the other three
metrics (median KGE = .08 vs 0.28; MAE = 0.85 vs 0.77; Bias = 0.009 vs
0.000), although only KGE distributions improved with statistical significance
(p<0.05).

During periods of low flow, however, both GrUB-ind and GrUB-co generated
nearly identical results that outperformed HBV by as much as an order of
magnitude in every category. This held true for low flows identified by Q96
(median values of MAE = 0.26 vs 0.12; MSE = 0.10 vs 0.02; Bias = 0.26 vs 0.00)
as well as low flows identified by the Tennant method (median values of MAE
= 0.44 vs 0.20; MSE = 0.30 vs 0.10; Bias = 0.42 vs 0.17). All distributions
generated by GrUB-co and GrUB-ind were significantly different from HBV
(p<0.05) according to the two-sample Kolmogorov-Smirnov test [Smirnov 1948].
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Figure 9: Violin plots of model performance under the alternative
scenario of Fast Recharge. Black dots represent mean values and
black bars represent one standard deviation around the mean. Blue
illustrates results from GrUB-co, purple from GrUB-ind, and red
from HBV with the native calibrated groundwater module. KGE
results are on the left. Model performance results in the inset are
(clockwise from top left) mean absolute error (MAE), mean square er-
ror (MSE), Nash-Sutcliffe efficiency (NSE), and absolute bias (Bias).
Distributions that are significantly different from those of the basic
HBV model are highlighted in red.
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Figure 10: Violin plots of model predictions of low flows under the
alternative scenario of Fast Recharge. Low flows are defined as
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96% exceedance (Q96) flows (top row) and according to the Ten-
nant method (bottom row). Blue illustrates results from GrUB-co,
purple from GrUB-ind, and red from HBV with the native calibrated
groundwater module. Model performance results are mean absolute
error (MAE – left), mean square error (MSE - middle), and absolute
bias (Bias - right). Distributions that are significantly different from
those of the basic HBV model are highlighted in red.

1. Sensitivity to Model Parameterization

GrUB relies on three parameters (p, v, and w) that are not derived from empir-
ical data, but instead estimated as universal constants. We tested sensitivity to
these parameters by re-running GrUB-ind for all watersheds with a wide range
of parameter values. The range of parameter values was chosen to extend to (or
beyond) values that are physically realistic.

For p, which represents the ratio of HB to Hminimum, we selected values of 2, 10,
100, 200, and 1000. Because Th is the maximum value of HB and median Th
for the coterminous US is estimated at 3m [Tashie et al. 2021], a value of p = 2
represents a typical Hminimum of 1.5 meters and a value of p = 1000 represents
a typical Hminimum of 3 mm. For v, which constrains the length of time that
recharge (N) has a non-negligible effect on H0 (v-t > 0.01), we chose values of
0.1, 0.52, 0.95, 0.963, and 0.9875. These represent time periods of 2 days, 1
week, 1 season, 2 seasons, and 1 year. For w, which represents the exponential
decay of 𝑋ℎ∼𝐻𝐵

as a function of S, we chose values of 1, 2, 3, 5, and 10. With
w=1 the hillslope aquifer approaches a unit gradient when the aquifer is 99.7%
saturated (S = .997 Smax), and with w=10 it approaches a unit gradient when
the aquifer is 48.0% saturated (S = 0.480 Smax).

Parameter values did have noticeable effects on the hydrographs of individual
watersheds, though these differences did not express themselves as significant
changes in the overall performance of GrUB across all watersheds (Figure 11).
We assessed the significance (p<0.05) of their effects on KGE (for the entire
period of record) and MAE (during periods of low flow) using the Wilcoxon
rank sum test [Wilcoxon 1945] and the two-sample Kolmogorov-Smirnov test
[Smirnov 1948]. None were significant, with the lowest p values (p = 0.35)
registering for changes in the variable p.
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Figure 11: Boxplots of GrUB sensitivity to parameter selection. The
top row illustrates KGE for the entire period of record. The bottom
row illustrates mean absolute error (MAE) during low flows as de-
fined by the Tennant method. The parameterization used in the pri-
mary analysis is illustrated with blue diamonds, with each diamond
representing the value for a single watershed. Alternative parameter
values are illustrated in purple circles, squares, and triangles.

1. Model Performance

We assess the overall performance of the GrUB module not in terms of its ab-
solute performance in maximizing objective function (i.e., KGE) as this feat
is largely achieved by the overlying hydrologic model (i.e., HBV). Instead, we
assess its capacity to achieve the four key objectives (a-d) and three key per-
formance metrics (i-iii) outlined in the introduction. The GrUB module does
largely achieve its four key objectives:

1. No calibration required: the wholly uncalibrated GrUB module (GrUB-
ind) is fully compatible with the otherwise calibrated HBV model.
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2. Simple data requirements: parameterization of GrUB only requires data
from several freely available continental- and global-scale datasets and re-
quires minimal processing on the part of the model user. Unfortunately,
three of the required parameters (K0, m, and Smax) are, to our knowledge,
currently only available for the coterminous US. Until these data are de-
veloped globally, the practical application of GrUB may be limited to this
region.

3. Modularity: GrUB requires input from only a single, common flux term
from the driving hydrologic model (i.e., deep recharge) and otherwise op-
erates independently from the rest of the model structure.

4. Computational simplicity: though GrUB (Eq. 13) is more complex than
the simple storage-discharge used in HBV, this added complexity is negli-
gible in terms of the added computation time.

GrUB also largely achieves the three performance metric objectives, with some
minor exceptions as outlined below.

1. Overall model performance is largely unaffected by incorporating either
GrUB-ind or GrUB-co into HBV.

2. GrUB-co moderately improves predictions of low flows while GrUB-ind
has a negligible effect.

3. Both GrUB-ind and GrUB-co are far more robust to changes in the overly-
ing hydrologic model parameterization than is the standard HBV storage-
discharge module.

For the potential incorporation of GrUB into LSMs, these results are gener-
ally promising, though with some important caveats (see Section 6). That the
wholly uncalibrated GrUB-ind predicts low flows as well as a (simple) calibrated
reservoir may prove beneficial to LSMs, which are broadly seen as describing
low flows poorly without post-hoc calibration [Fan et al. 2019, Holtzman et al.
2020]. More important than the general performance, however, is the consis-
tency with which a groundwater module predicts low flows when that module
is forced by uncertain inputs from the overlying model structure. This “robust-
ness” to changes in inputs from the overlying model is essential as different
LSMs are structured and parameterized quite differently [Clark et al. 2015].

GrUB-ind is indeed extremely consistent in it prediction of low flows, as illus-
trated in the artificially extreme Slow Recharge and Fast Recharge scenarios
(Section 4.3). Recall that the Slow Recharge scenario represents percolation
rates of about .1 mm/day, compared with up to 1000 mm/day in the Fast
Recharge scenario. Despite these potential rates of recharge spanning four or-
ders of magnitude, error in GrUB-ind predictions of low flows was nearly identi-
cal to errors generated under calibrated conditions (median MAE during Slow,
Fast, and calibrated conditions was 0.11, 0.13, and 0.11) (Figures 6, 8, and 10).
Conversely, HBV error during low flows more than doubled under conditions of
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Fast Recharge (median MAE during Slow, Fast, and calibrated conditions was
0.11, 0.28, and 0.11).

Presented results have mixed implications for the potential incorporation of
GrUB into rainfall-runoff models. The hypothesis that reducing the number of
variables that require calibration may allow for the superior optimization of the
remaining parameters [e.g., Fraikin et al. 2019] is unfounded in this case, as
the performance of GrUB-co is practically equivalent to that of HBV. There-
fore, we do not expect GrUB to enhance the performance of other calibrated
rainfall-runoff models where sufficient data for calibration is available. How-
ever, rainfall-runoff models are commonly applied in data sparse regions with
“regionalization” approaches replacing parameter tuning via calibration (e.g.,
Swain and Patra 2017). Regionalization approaches tend to be subject to high
uncertainty, with no single regionalization method yet accepted as a standard
[Samuel et al. 2011, Oudin et al. 2008]. Because GrUB-ind is robust to changes
in the parameterization of the overlying hydrologic model, it may prove useful in
constraining model characterization of low flows in basins where regionalization
approaches are necessary.

1. Limitations and Future Efforts

GrUB depends on three parameter values that are not currently available glob-
ally (K0, m, and Smax). Though the methods to estimate these variables globally
have been established [Tashie et al. 2021], until those data are available GrUB
may not be applied outside the coterminous US. GrUB also relies on L, esti-
mates of which are known to be extremely uncertain and which is known to
vary with antecedent conditions by a factor of 2 or more [Godsey and Kirchner
2014]. While incorporating improved estimates of average L [Lin et al. 2021]
may improve model performance, no large-scale data sets yet exist for describing
its dynamic response to catchment conditions.

GrUB further relies on three parameters (p, v, and w) that are treated as empir-
ical constants. In many hydrologic models, these parameters might present an
opportunity for fine tuning model behavior. However, fine-tuning and unique
calibrations are antithetical to the purpose of GrUB. Even though GrUB is not
overly sensitive to changes in the value of these parameters (Section 4.4), the fact
that these parameters are estimated according to hydrologic “intuition” rather
than directly calculated represents an unfortunate deviation from the otherwise
empirically-based structure of GrUB.

Though GrUB does incorporate seasonal-scale “watershed memory” by calculat-
ing H0 as a function of recent recharge (Eq. 12), it does not account for potential
multiannual long-term memory of climatic forcings that have been documented
in many watersheds [e.g., Fowler et al. 2019]. Climate change is expected to
induce long-term changes in watershed storage (and related ecohydrological re-
sponses) that are not directly accounted for in current generation LSMs [Argus
et al. 2017, Enzminger et al. 2019]. In its current form, GrUB does not make
significant strides towards addressing this deficiency. Current generation LSMs
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are also known to underestimate evapotranspiration during dry periods. A po-
tential explanation for this is that the representation of watersheds according
to a representative soil column fails to account for the heterogeneity in soil
moisture and depth to water table that is induced in actual watersheds by to-
pography, geology, and soil structure. Though a hillslope hydraulics model of
groundwater has been invoked as a potential tool for better capturing evapo-
transpiration during dry periods [Clark et al. 2015, Fan et al. 2019], we do not
attempt to model such behavior here.

1. Conclusion

We develop a calibration-free, computationally simple module called Groundwa-
ter for Ungauged Basins (GrUB) to predict groundwater flow contribution to
streamflow. GrUB may be readily incorporated into a variety of rainfall-runoff
models and land surface models (LSMs). It requires no calibration, but instead
depends entirely on empirical data that is available for the entire coterminous US
and could potentially be derived globally. We assess the performance of GrUB
in over 80 US watersheds by incorporating it into HBV, a popular rainfall-runoff
model, and comparing overall performance metrics as well as error in predictions
of low flows by the native (calibrated) HBV groundwater module and those by
the GrUB module. The uncalibrated GrUB module generates error metrics that
are equivalent to (or superior to) those generated by the calibrated HBV ground-
water module. To ensure that predictions by GrUB are robust to changes in
the structure and parameterization of the overlying hydrologic model, we run
tests according to two artificial scenarios: Slow Recharge at a rate of up to 0.1
mm/day, and Fast Recharge at a rate of up to 1000 mm/day. GrUB proves to be
very robust to these extreme changes, with mean absolute error (MAE) of pre-
dictions of low flows only increasing by an average of 3% and 19%, respectively,
in the Fast and Slow recharge scenarios. We suggest GrUB as a potential tool
for improving predictions of low flows in LSMs as well as rainfall-runoff models
where calibration data are sparse.
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