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Abstract

We present an automatic classification method of the three near-Earth regions, the magnetosphere, the magnetosheath and

the solar wind from their in-situ data measurement by multiple spacecraft. Based on gradient boosting classifier, this very

simple and very fast method outperforms the detection routines based on manually-set thresholds. The method is used to

identify 15 062 magnetopause crossings and 17 227 bow shock crossings in the data of 11 different spacecraft of the THEMIS,

ARTEMIS, Cluster, MMS and Double Star missions and for a total of 83 cumulated years. These multi-mission catalogs are

easily reproducible, can be automatically enlarged with additional data and their elaboration paves the way for future massive

statistical analysis of near-Earth boundaries.
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Abstract21

We present an automatic classification method of the three near-Earth regions, the mag-22

netosphere, the magnetosheath and the solar wind from their in-situ data measurement by23

multiple spacecraft. Based on gradient boosting classifier, this very simple and very fast24

method outperforms the detection routines based on manually-set thresholds. The method25

is used to identify 15 062 magnetopause crossings and 17 227 bow shock crossings in the26

data of 11 different spacecraft of the THEMIS, ARTEMIS, Cluster, MMS and Double Star27

missions and for a total of 83 cumulated years. These multi-mission catalogs are easily re-28

producible, can be automatically enlarged with additional data and their elaboration paves29

the way for future massive statistical analysis of near-Earth boundaries.30

1 Introduction31

The magnetopause is the boundary where magnetospheric and magnetosheath pres-32

sures balance, and where magnetic fields of terrestrial and solar origin interact. It acts33

like an obstacle for the upcoming supersonic solar wind and is thus located downstream a34

collisionless bow shock (Burgess, 1995) across which the solar wind becomes subsonic. The35

magnetopause and the bow shock are the boundaries of the three main near-Earth regions:36

the magnetosphere, the magnetosheath and the solar wind. By definition, the shape, lo-37

cation and properties of these boundaries depend on the upstream solar wind conditions38

(Fairfield, 1971). The ever-growing quantity of near-Earth in-situ data allowed the reali-39

sation of statistical studies dedicated to the physical properties of the different near-Earth40

regions and to the position, shape and dynamics of both the magnetopause (Paschmann41

et al. (2018); Němeček et al. (2020); Hasegawa (2012) and references therein) and the bow42

shock (Kruparova et al. (2019) and references therein). Such studies also led to the de-43

velopment of numerous magnetopause (Shue et al. (1997); Lin et al. (2010); Wang et al.44

(2013); Liu et al. (2015) and references therein) and bow shock (Jeřáb et al. (2005); Farris45

and Russell (1994) and references therein) surface models.46

The first step of both empirical modelling and statistical studies is always the same:47

establishing a consistent catalog of boundary crossings from the streaming in-situ data pro-48

vided by missions of interest. This, in addition to being time-consuming, is an ambiguous49

task, strongly linked to the interpretation of an external observer and thus poorly repro-50

ducible. As a result, catalogs of events are difficult to make and their size represents, with51

time, an ever decreasing proportion of the total and massive amount of public multi-mission52

data that has been accumulating for decades. This severely hampers the development of a53

statistically relevant and global vision of our near space environment and plasma processes54

therein. Consequently, the elaboration of automatic event detection methods in streaming55

in-situ time series data provided by spacecraft appears as an interesting option to accelerate56

the collection of boundary crossings and improve the reproducibility and robustness of sta-57

tistical studies. Figure 1 shows typical observations from a spacecraft travelling outbound58

through the three regions. From top to bottom are represented the proton density, the mag-59

netic field components, the ion velocity components and the omnidirectional energy flux of60

ions measured by THEMIS B. The last panel will be explained in the following sections.61

The three regions are easily distinguishable by eye and the first method we could think62

about in this classification task would be to use manually set thresholds on wisely chosen63

physical quantities. Using the data provided by the five THEMIS spacecraft coupled with64

the solar wind conditions provided by WIND, Jeĺınek et al. (2012) established a method65

based on thresholds on the magnetic field amplitude B and the proton density Np normal-66

ized by the interplanetary magnetic field (IMF) amplitude and proton density. They used67

this method to identify the three near-Earth regions and eventually build lists of crossings68

from this classification. The principle of the method consists in manually setting the two69

straight lines that best separate the three regions in the (Np, B) plane in a way that is70

similar to what is shown in Figure 10. Nevertheless, this still requires the manual setting of71

thresholds on a reduced number of parameters. There is no guarantee on how well they will72
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do on an unknown set of data and the separability of the two features presented here is not73

guaranteed on the whole magnetopause, especially in the case of nightside, flanks or high74

latitude boundary crossings 1. The method could thus be improved with additional features75

such as the amplitude of the ion bulk velocity or the ion temperature but this would lead76

to the establishment of manual thresholds in a N-dimensional space, which is a tricky task77

if done manually.78

A way to go beyond this solution stands in using supervised machine learning algo-79

rithms that usually have the advantage of rapidly finding the intrinsic differences between80

different labeled points in complex multi-dimensional datasets. The use of these algorithms81

to classify time series into several categories is not new in the field of space physics. They82

have especially proved their effectiveness in classifying the solar wind into several categories83

(Camporeale et al., 2017) or to determine if an interval of data contains a Flux Transfer84

Event (FTE) (Karimabadi et al., 2009). Recently, Olshevsky et al. (2019), Breuillard et al.85

(2020) and Argall et al. (2020) all proposed neural network based methods to classify the86

different near-Earth regions from the MMS data. The high performances reached by the87

three methods confirms the potential and the efficiency of statistical learning algorithms for88

such a classification task. Although providing interesting results, the high level of flexibility89

offered by such deep learning methods is generally balanced by the large amount of labeled90

data samples needed and the very long time they require to converge in their training. It91

thus appears important to establish reliable methods that require shorter convergence time.92

In this paper, we establish such a method by training a gradient boosting algorithm93

to automatically classify the three near-Earth regions from the magnetic field and plasma94

moments of the THEMIS mission. After presenting the data and the associated labels, we95

present the algorithm we use and explain this choice. We then evaluate its performances96

and investigate its adaptability to the various missions that explore the different parts of97

the magnetosphere boundaries: Double Star, MMS, Cluster and ARTEMIS. The outcome is98

then compared to the one obtained by setting thresholds manually for the different missions.99

The gradient boosting prediction is then used to automatically elaborate multi-mission100

catalogs of boundary crossings2.101

In particular, the massive magnetopause crossing catalog obtained in this study is102

the preamble to companion studies, focusing on the statistical analysis of the shape and103

location of the surface and its dependency on solar wind and seasonal parameters (hereafter104

(Nguyen et al., 2020a), the subsequent building of a new analytical and dynamical model of105

the magnetopause surface as a function of relevant upstream and seasonal control parameters106

(hereafter (Nguyen et al., 2020b)), and that re-visits the question of the indentation of the107

magnetopause surface in the near-cusp regions (hereafter (Nguyen et al., 2020c)).108

2 THEMIS dataset109

We used plasma moments and magnetic field data from the five THEMIS spacecraft,110

between April 2007 and January 2010 for THEMIS B and C and until June 2019 for the three111

remaining spacecraft. In particular, we considered the data measured during the dayside,112

dawn and dusk operation phases. The magnetic field data were provided by the Fluxgate113

Magnetometer (FGM, Auster et al. (2008)) with a temporal resolution of 3s. Concerning the114

plasma moments, we used the Fast-Survey mode of the data provided by the electrostatic115

analyzer (ESA, McFadden et al. (2008)) for which the distribution functions are composed116

of 24 energy channels and 50 solid-angle distributions with a temporal resolution of 4s. We117

use the onboard moments to fill in the data gaps in the Slow-Survey mode. The remaining118

holes in the plasma moments are filled with the data measured in the full mode and linearly119

1 Additional, less obvious observational examples of this case are shown in the Appendix C.
2 Catalogs are available online at : https://github.com/gautiernguyen/in-situ Events lists
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Figure 1. In-situ measurement provided by THEMIS B spacecraft on the 12th of May 2008.

From the top to the bottom are represented: the ion density, the magnetic field components, the

velocity components the omnidirectional differential energy fluxes of ions. The last bottom panel

represents the evolution of the label (blue) , intentionally shifted for visual inspection and the

prediction made by our algorithm (black).
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time interpolated in order to obtain streaming time series of the ion density, velocity and120

temperature with a uniform resolution of 4s. The ESA and FGM measurements are then121

synchronized to obtain a unique dataset with a common resolution of 1 minute in order to122

erase the noise due to very punctual partial crossings that will be particularly hard to label123

and detect.124

Due to the important differences existing between the different missions in the speci-125

ficities of the distribution functions and particle energy or pitch angle spectrograms, we126

chose to focus on the plasma moments and magnetic field only. The ion omnidirectional127

differential energy fluxes shown in Figure 1 are then only be used for visual inspection of128

data and to provide visual guidance in our labeling process.129

For each spacecraft, the associated dataset then consists in 8 distinct input fea-130

tures: the ion bulk velocity components, Vx, Vy, Vz, the magnetic field and its components,131

Bx, By, Bz, the ion density Np and the temperature T .132

3 Label133

We start our work by considering the THEMIS B dataset, the remaining sets will be134

used when we will perform the massive detection of boundary crossings in section 7.135

Each datapoint is associated to a given label that indicates the region in which the136

spacecraft is at the measurement time:137

• Points in tenuous regions with almost no ion bulk flow and important magnetic field138

amplitude are identified as magnetosphere points.139

• Points in comparatively dense regions with a fast ion bulk flow and low temperature140

are identified as solar wind points.141

• Points that are not identified as solar wind or magnetosphere are identified as magne-142

tosheath. Those points correspond to the denser regions with an intermediate plasma143

velocity with a wide range energy flux. With this definition, any region downstream144

of the bow shock that is not the magnetosphere is considered as the magnetosheath.145

This will thus concern pristine magnetosheath points but also the regions composed146

of mixed plasmas such as the reconnection outflows, the cusp dense and hot plasma147

or the different magnetosphere and magnetosheath boundary layers.148

While only considering the above three classes is enough for the purpose of the statisti-149

cal analysis performed in the companion papers of this study (Nguyen et al., 2020a, 2020b,150

2020c), the classification could be extended to additional classes. Having a single model151

classifying many different regions (e.g. solar wind, foreshock, cusps, boundary layers, lobes,152

plasma sheet etc.) may appear appealing at first glance. However it is worth mention-153

ing that statistical studies rarely need that many classes, and moreover that multiplying154

classes often needlessly complicates the classification. Indeed, not only this may require155

more evolved algorithms thereby increasing the training time, it also introduces errors that156

basic knowledge of the Earth environment would prevent. For instance classifying automat-157

ically the ion foreshock from pristine solar wind can much more easily be done on a dataset158

where all but solar wind data (in a sense of our classification above) has been removed by a159

first pass of our classification than on a whole-orbit dataset. By construction, this prevents160

any non-physical errors an observer would never make in confusing unrelated regions, but161

also provides a better chance to fine tune the algorithm to a well defined task, and reduce162

training time.163

We make those labels by inspecting the data visually and deciding, by selecting inter-164

vals, to which class their points belong to.165
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Figure 2. Spatial coverage of our labeled THEMIS dataset projected in the (X-Y) GSM plane,

the solid black line represent a stand-off position the bow shock following (Jeřáb et al., 2005) model

while the dotted black line represent the magnetopause model of (Lin et al., 2010). Labels are

spatially represented in a log-scale 2D histogram. Magnetosphere bins in blue vary between 1 and

901, Magnetosheath bins in red vary between 1 and 1 421, solar wind bins in green vary between 1

and 788

The typical labeling of the three regions for a 1 minute resampled data interval is166

shown on the last panel of Figure 1 where the theoretical label, shown in blue has been167

slightly shifted vertically for visualization purposes. With modern visualization and data168

science tools (Wes McKinney, 2010; Génot et al., 2010), the interval selection and labeling169

of all the points enclosed is an easy and fast task, in particular because the regions are170

easily identified visually and without much ambiguity. Following this process, our dataset171

is made of 59 798 magnetosphere points, 48 056 magnetosheath points and 150 415 solar172

wind points.173

We selected data measured during the dawn, dayside and dusk operation phases of174

THEMIS and thus expect a good Magnetic Local Time (MLT) coverage of both magne-175

topause and shock surfaces. This is confirmed by the spatial coverage of our labeled dataset176

shown in Figure 2. With such coverage, we expect the method to be robust enough regarding177

the variability of the data through the three different THEMIS operation phases.178

In the following, we will designate the subset that has been used to fit our algorithm179

by training set. We will designate by test set the remaining subset of data that is used180

to evaluate the performance of our model. For each of the configurations we have been181

testing our algorithm with, the training set represents 70% of the dataset while the test set182

represents the remaining 30% of the dataset.To ensure there is no bias in our evaluation of183
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the performance, the train and test sets are chosen in distinct time intervals o the THEMIS184

B mission.185

4 Algorithm186

The recently developed automatic near-Earth classification routines were all based187

on the application of a neural network algorithms (Breuillard et al., 2020; Argall et al.,188

2020; Olshevsky et al., 2019). These deep learning methods typically offer a great flexibility189

leading to good results on complex problems, at the cost of requiring lots of training data190

points and long convergence times. In this study, we choose to train a Gradient Boosting191

algorithm(Friedman, 2001). Such a method may not offer as much flexibility as deep learn-192

ing methods, but has been recognized to perform well on complex, eventually imbalanced193

classification problems (Brown & Mues, 2012) while typically needing much less labeled194

data and being much lighter to train. The Gradient Boosting is based on the iterative fit195

of the residuals obtained by the successive training and predictions made by weak learner196

algorithms, here a decision tree. The final prediction results from the convergence of the197

ensemble of decision trees on the smallness of the residuals or when the maximum number198

of trees is reached, and corresponds to the class with the highest probability.199

Since our massive prediction relies on this probabilistic output, and since the Gradient200

Boosting is known to result in possibly not-well calibrated probabilities (Niculescu-Mizil201

& Caruana, 2005), we calibrate it before performing the massive prediction. We show in202

Appendix B that our model is well-calibrated and that its probabilistic output can then be203

used as is.204

We computed the method using its Python implementation provided by Scikit-Learn205

(Pedregosa et al., 2011) with the default hyperparameters3. With the actual size of our206

dataset, it took two minutes for our algorithms to train on an AMD ryzen TMthreadripper207

TM2990wx processor.208

5 Results209

5.1 Performances210

After fitting our Gradient Boosting model to our training set, we evaluate its perfor-211

mance by comparing its prediction on the test set with the corresponding labels. The value212

of the prediction for a given time interval can be shown in the last subplot of Figure 1. From213

then on, a prediction made by our model can be split into four categories for each class:214

• A true positive (TP) is a point of a class that has been predicted correctly as such,215

• A true negative (TN) is a point not belonging to the concerned class that has been216

predicted correctly (e.g a magnetosheath point that has not been predicted as a217

magnetosphere point when considering the magnetospheric case)218

• A false negative (FN) is a point of a class that has not been correctly predicted as219

such (e.g a Magnetosphere point that has been predicted as a Magnetosheath point)220

• A false positive (FP) is a point not belonging to the concerned class that has been221

predicted as belonging to the class (e.g a Magnetosheath point that has been predicted222

as a Magnetosphere point when considering the magnetospheric case)223

3 described here: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble

.GradientBoostingClassifier.html
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Figure 3. ROC curve of our model trained and predicting on THEMIS B data in the case of

a temporal split between the training set and the test set. From left to right are represented the

ROC curve concerning the magnetosphere, the magnetosheath and the solar wind.

With these four categories, we can define the true positive rate TPR as the ratio224

between the number of TPs over the total number of expected positives points:225

TPR =
NTPs

NTPs + NFNs
(1)

The false positive rate FPR is defined as the ratio between the number of FNs over the total226

number of expected negative points:227

FPR =
NFPs

NFPs + NTNs
(2)

An ideal model would be a model without any FN or FP. In this case, we would then228

expect the TPR to be equal to 1 and the FPR to be equal to 0 for the three classes. These229

two values are obtained for a given decision threshold based on the predicted probability as230

explained in the previous subsection. Logically, low decision thresholds would imply more231

points predicted as belonging to a certain class and then raise both FPR and TPR. By232

contrast, higher decision thresholds would decrease the number of positive points and thus233

decrease the FPR and the TPR.234

The evolution of the TPR as a function of the FPR for continuously varying decision235

threshold can be represented as the Receiving Operator Curve (ROC) shown in the Figure236

3 for the three classes. As expected, we notice an increasing TPR with an increasing FPR.237

The main interest in this curve stands in the inflexion point that correspond to the best238

compromise we can find between low FPR and high TPR. We want this point to be as close239

to the top left of each curve as possible as this would imply a FPR close to 0 and a TPR240

close to 1. A random classifier would, for each decision threshold, increase the TPR and241

FPR by the same amount and the associated ROC curve would then be a straight line of242

slope 1 as shown with the black dashed lines of Figure 3.243

The quality of the ROC can be quantified by computing the area under curve (AUC)244

of each of the ROCs and we then expect this AUC to be as close to 1 as possible. To ensure245

the independence of the result from the split we made between training and test set, we246

trained and predicted our model 10 times for 10 different splits and computed the AUC. The247

average AUC we obtained for each class is shown on the first row of Table 1. At first, the248

high AUC obtained for the three classes indicate how well our model perform in classifying249

the three regions. Moreover, the standard deviation we obtain is lower than 1e − 3. This250

shows that our method is independent from the split we make between our two sets.251
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Mission AUCMagnetosphere AUC Magnetosheath AUC Solar Wind

THEMIS 0.999 0.997 0.999

Cluster 1 (without retraining) 0.988 0.983 0.996

Cluster 1 (with retraining) 0.999 0.998 0.999

Double Star TC1 (without re-
training)

0.996 0.992 0.996

Double Star TC1 (with re-
training)

0.999 0.998 0.999

MMS (without retraining) 0.997 0.994 0.995

ARTEMIS 0.999 0.999 0.999

Table 1. Comparison of the AUC of the ROC of our detection algorithms for different missions.

Compared with the short required training time, this legitimates our initial choice of252

fitting a gradient boosting classifier.253

In addition to this metrics, we can define the Heidke Skill Score HSS that compares254

the performance of our algorithm to what would come from a random classifier:255

HSS =
NTPs+NTNs

N − (NTPs+NFNs)∗(NTPs+NFPs)+(NFN+NTNs)∗(NFP+NTN )
N2

1 − (NTPs+NFNs)∗(NTPs+NFPs)+(NFN+NTNs)∗(NFP+NTN )
N2

(3)

where N denotes the total number of points on which the prediction was lead. A neg-256

ative HSS indicates randomness performs better than the classifier while a perfect forecast257

would be associated to a HSS of 1. The Evolution of the HSS for varying probabilistic de-258

cision threshold is shown in Figure 4. The high value reached by the HSS for each class for259

a wide range of decision thresholds confirms the efficiency of our model. Finding decreasing260

HSS for high decision threshold is not surprising as the number of FN will slightly increase261

in this case. The main interest in this curve then stands in the value of the HSS we do find262

for the decision threshold we set for our prediction, that is to say 0.5. The value of the HSS263

we have in this case is shown in Table 3 and finding it pretty close to 1 indicates how well264

our model performs in the classification of the three regions.265

5.2 Influence of the manual labeling266

The manual labeling process can be an important source of prediction errors. Thus,267

the label can eventually contain errors that could affect the quality of our prediction and268

high AUC would then not indicate the classification ability of our model but its ability to269

learn from an erroneous label. To figure this out, we perform trainings and evaluations of270

the algorithm by voluntarily mislabeling an ever-growing percentage of the dataset. If our271

model completely follows the indicated label in the training set, we expect a high AUC272

whatever this percentage might be. The mislabeling process is done as follows:273

• We select a fraction of random points in the dataset274

• The magnetosphere and the solar wind points are labeled as magnetosheath points275

• Magnetosheath points are randomly mislabeled between the two other classes276
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Figure 4. Evolution of the Heidke Skill Score as a function of the decision threshold for our

model trained on THEMIS data for a temporal split. . From left to right are represented the HSS

curve concerning the magnetosphere, the magnetosheath and the solar wind.

The main reason that justifies this process stands in the fact that a human observer277

will never confuse magnetosphere and solar wind and and the fact there is of course some278

ambiguity in the labeling for classes concerned with a physical interface, where data points279

do not strictly belong to either one or the other but rather represent the finite transition280

region, omitted in our model. We repeat the process for an ever growing percentage of281

the dataset until the proportion of the mislabeled points reaches 50% of the dataset. The282

random mislabeling and associated training and AUC computation are repeated 10 times at283

each step. The evolution of the AUC with the mislabeling proportion is shown in Figure 5284

for the three classes of the THEMIS dataset. The grey dashed lines represent the standard285

deviation we have between the different iterations of a given percentage of mislabeling.286

Having a more significant drop in the performances for the magnetosheath is not sur-287

prising as this is the class that will be most affected by our mislabeling process. Noticing288

that drop for the three different classes proves the model does not simply follow the in-289

dications provided from the labels but tries to find an intrinsic difference in the physical290

parameters of the three classes.291

This shows the real capacity of our algorithm to classify the three near-Earth regions292

as well as the reliability of our label.293

5.3 Comparison with other algorithms294

As we just saw in the previous subsections, gradient boosting performs well after a295

very short required training time. This indicates that more complex algorithms such as296

neural networks (Argall et al., 2020; Breuillard et al., 2020; Olshevsky et al., 2019) are297

not necessary for this classification task. However, one legitimate question could be to298

ask whether even lighter machine learning algorithm would perform as well. Therefore, in299

addition to the gradient boosting classifier, we train and evaluate the performances of two300

simpler classification algorithms: a Logistic Regression (Berkson, 1944) and a Classification301

Tree (Breiman et al., 1984). From the AUC and HSS averaged over three different temporal302

splits that are shown for each class and each algorithm in Table 2, Gradient Boosting appears303

as being the algorithm that performs best on differentiating the three regions. However, it304

should be noted here that even the simplest algorithms result in fair performances already305

after a training phase as long as the one we have for Gradient Boosting.306
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Figure 5. Evolution of the AUC as a function of the mislabeling ratio for the three different

classes: magnetosphere (blue), magnetosheath (red) and solar wind (green). The gray dashed line

represent the standard deviation we have between the different AUC scores of a same mislabeling

percentage.

Logistic Regression Decision Tree Gradient Boosting

AUC magnetosphere 0.998 0.976 0.999

AUC magnetosheath 0.954 0.937 0.997

AUC solar wind 0.937 0.881 0.999

HSS magnetosphere 0.974 0.953 0.987

HSS magnetosheath 0.846 0.878 0.975

HSS solar wind 0.560 0.701 0.992

Table 2. AUC and HSS obtained for different algorithms for several train-test split.
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6 Adaptability307

Having trained an algorithm to detect the three near-Earth regions with high reliability,308

we should not have difficulties to adapt it to the data provided by additional spacecraft that309

go through those regions. Even if a similar work can be adapted on the numerous past310

missions that went through the three near-Earth regions, we focus here on the most recent311

missions that offer the advantage of providing the data with the best quality, which removes312

an additional complexity that would appear with older missions.313

To do so, we label data points of each of the missions we are working on and compare314

this label to the predictions of our model trained with THEMIS data.315

6.1 Double Star316

We use the data of the TC1 spacecraft on the whole mission period (between the 1st317

of January 2004 and the 1st of january 2008) The magnetic field data are provided by the318

Fluxgate Magnetometer (Carr et al., 2005) with a temporal resolution of 2s. The plasma319

moments are provided by the CIS-HIA instrument (Fazakerley et al., 2005) with a temporal320

resolution of 4s. Just like for the THEMIS dataset, we resampled the data to a 1 minute321

resolution.322

A typical representation of the data is shown in Figure 6.323

Here the part of the data we labeled is made of 20671 magnetosphere points, 23091324

magnetosheath points and 4944 solar wind points taken at the beginning of the year 2005.325

The main reason explaining the noticed imbalance in the data stands in the orbit of TC1326

itself that is not supposed to cross the bow shock.327

The spatial distribution of our labeled data is also shown in Appendix A.328

Since Double Star also has an equatorial orbit, we expect the model trained on329

THEMIS to perform well even without having to be retrained and this is the main rea-330

son why our label does not have to provide an entire coverage of the (X-Z) plane. And this331

is confirmed by the high AUC and HSS we have in Tables 1 and the comparison of the HSS332

obtained for the different missions shown in the Table 3.333

Refitting the model would then allow a finer detection that would be specific to the334

quality of the data provided by Double Star in comparison to the THEMIS data but can be335

skipped as it does not bring a significant gain in AUC according to Table 1.336

6.2 MMS337

We used the data of the MMS 1 spacecraft between September 2015 and July 2019. The338

magnetic field data were provided by the Fluxgate Magnetometer (Russell et al., 2016) with339

a temporal resolution of 4.5s. The plasma moments were provided by the Fast-survey mode340

of the Fast Plasma Investigation instrument (FPI, Pollock et al. (2016)) with a temporal341

resolution of 4.5s. Just like THEMIS, the data were resampled to a 1 minute resolution.342

A typical representation of the data is shown in Figure 7.343

Since MMS also has an equatorial orbit, we once again expect the model trained on344

THEMIS to provide a very good classification of the three regions on MMS data as for the345

case of what has been shown for Double Star.346

To figure it out, we label 7 612 magnetosphere points, 19 272 magnetosheath points347

and 3 651 solar wind points during the first year of MMS and these labels the associated348

prediction of the classifier. The spatial coverage of these labeled points is shown in Figure349

A2350
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Figure 6. In-situ measurement provided by Double Star TC1 spacecraft on the 1st of January

2005. The legend is the same than in 1
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Figure 7. In-situ measurement provided by MMS spacecraft on the 31st of December 2015. The

legend is the same than in 1
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The high AUC and HSS shown in the Tables 1 and 3 confirms the adaptability of our351

classifier to equatorial missions without further additional fitting.352

6.3 Cluster353

We use the available data from Cluster 1 spacecraft between the 1st of January 2001354

and the 1st of January 2013 and from Cluster 3 spacecraft between the 1st of January355

2001 and the 1st of December 2009. The magnetic field data are provided by the Fluxgate356

Magnetometer with a temporal resolution of 4s (Balogh et al., 2001). The plasma moments357

are provided by the Hot Ion Analyzer instrument (Rème et al., 2001) when the instrument358

is working under the magnetosphere or the magnetosheath mode. Here again, the data is359

resampled to a 1 minute resolution.360

In comparison with Double Star and MMS, this case might be more challenging because361

of the orbit, here polar, and the regions visited that have different physical properties than362

the one visited by equatorial missions. The data provided THEMIS and Cluster can therefore363

be substantially different and there is no real clue on how an algorithm trained on equatorial364

orbit data would perform on predicting on polar orbit data.365

One minute sampled Cluster data are shown in Figure 8 and we here label 50 277366

points of magnetosphere, 76 468 points of magnetosheath and 22 017 of solar wind between367

the years 2005 and 2006 which spatial distribution is shown in Figure A3. Those two years368

will constitute the time period on which we will test the adaptability of the region classifier.369

One third of these labeled points are used to evaluate the performances of the models while370

we kept the remaining two thirds in the case refitting the algorithm is needed. Applying our371

THEMIS-trained model, we notice a lower AUC for each of the three classes. This indicates372

the difficulties the classifier has to adapt to polar orbit data.373

We then adapt our classifier to the polar case by refitting the model trained on374

THEMIS with the Cluster labels. The increasing AUC we obtained, shown in Table 1375

and the associated high HSS also shown in 3 proves the necessity we had to adapt our algo-376

rithm to the specificity of the Cluster data. It also shows our model can be easily adapted377

to the data of another mission, exploring regions with significant statistical deviations of378

the features, after a small labeling and refitting phase.379

6.4 ARTEMIS380

The mission ARTEMIS actually corresponds to the THEMIS B and C spacecraft when381

they were moved from a terrestrial to a lunar orbit at the end of 2009. The data we used in382

this case are then the one provided by the same THEMIS B instruments than in section 2383

between the 1st of January 2010 and the 1st of June 2019.384

The orbit of the ARTEMIS spacecraft is different from the orbit of the mission we385

have been investigating so far. This difference comes with a lot of change in the nature of386

the data measured by the spacecraft.387

First of all, the spacecraft orbit the moon and are much farther (around 60 Re) from388

the Earth than the spacecraft of the other missions we have used. This implies the spacecraft389

does not explore the dayside regions and crosses the magnetopause and the bow shock in390

the nightside. At these distances, the magnetosheath plasma becomes almost as fast and391

as tenuous as the solar wind and small magnetosheath fluctuation scould easily be confused392

with either a magnetopause or a bow shock crossing.393

Second, the spacecraft spend most of their time in the solar wind, which may make394

statistical properties of their measurements more sensitive to the data variability induced395

by the solar cycle that we neglected for the previous missions.396
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Figure 8. In-situ measurement provided by Cluster 1 spacecraft on the 6th of February 2005.

The legend is the same than in 1
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Figure 9. In-situ measurement provided by the ARTEMIS B spacecraft on the 13rd of August

2016. The legend is the same than in 1

Finally, this specific type of orbit also introduces time intervals during which the data397

does not take values statistically close to any of our regions of interest. Indeed, once per398

orbit, ARTEMIS explores the lunar wake, characterized by an extremely low density and399

fluctuating velocity in many directions. These intervals, for which a typical representation400

of the data is shown in Figure 9, cannot be considered to belong to any of our existing region401

classes.402

For this three reasons, the method we presented in the previous sections and success-403

fully adapted to Double Star, MMS and Cluster cannot be used as is and the entire process404

from the labeling to the choice of the feature has to be designed from scratch.405
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Mission HSS Magnetosphere HSS Magnetosheath HSS Solar Wind

THEMIS B 0.987 0.975 0.993

Cluster 1 0.976 0.972 0.981

Double Star TC1 0.980 0.974 0.983

MMS 0.982 0.973 0.987

Artemis 0.976 0.962 0.974

Table 3. Comparison of the HSS of our detection algorithms for different missions.

To cope with the variability induced by the solar cycle we label a month per year. We406

furthermore add the lunar wake as a fourth explored region (with an associated value of 3).407

The final labeled dataset is made of 26 560 magnetosphere points, 131 656 magnetosheath408

points, 429 283 solar wind points and 15 070 points of lunar wake which spatial distribution409

is shown in Figure A4.410

We cope with the increasing difficulty to distinguish magnetosheath and solar wind by411

adding the spacecraft GSM coordinates as a feature of the dataset which will then consist412

in 11 input variables.413

Having a different dataset and a different number of classes, we here cannot use the414

model trained in the previous section and we will then focus on the specific model we415

trained for this mission. The resulting high AUC shown in Table 1 shows the gradient416

boosting also performs well in a significantly different region and with more classes. This417

especially confirmed with the AUC and the HSS we found for the lunar wake region, that418

we respectively found equal to 0.97 and 0.947.419

7 Comparison with manually-set thresholds420

Having shown the efficiency of gradient boosting on different missions 4, we want to421

compare it to the state of the art non-learning methods such as the one elaborated by Jeĺınek422

et al. (2012) that we described in the introduction.423

Figure 10 represents the 2D histogram of B and Np for THEMIS B, Double Star424

and Cluster 1 on the periods on which we labeled the different associated datasets. We425

divided these parameters by the corresponding solar wind density and the IMF amplitude426

that we obtained from the OMNI data shifted from the actual measurement time using the427

two-step propagation algorithm described in Šafránková et al. (2002). At first sight, one428

can easily distinguish three main regions that are separated with the solid red lines for the429

three missions. Nevertheless, these linear boundaries have been set manually and we cannot430

ensure these could be the best choice for the three missions. To evaluate the quality of the431

classification, we compute the TPR and the FPR for the three missions and for varying432

boundary lines. We then use these values to compute the AUCs that are shown in the Table433

4.434

Once again, we notice a lower AUC in the case of Cluster which is consistent with435

the difference we have between equatorial and polar orbits as explained in the previous436

section. Additionally, even if the boundaries plotted in Figure 10 seem to provide a decent437

separation between the three regions, the AUC is lower than the one we obtained with the438

4 Additional prediction examples can be found in the appendix B.
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Figure 10. 2d histogram of B and Np divided by the corresponding OMNI data for the three

missions: THEMIS B (left), Cluster 1 (middle) and Double Star TC1 (right). The solid red lines

indicate a possible set of linear boundaries we could define to separate the three regions

Mission AUC Magnetosphere AUC Magnetosheath AUC Solar Wind

THEMIS B 0.915 0.908 0.859

Cluster 1 0.897 0.852 0.828

Double Star TC1 0.913 0.894 0.843

Table 4. AUC for the threshold-based method

gradient boosting. This indicates our model performs better in classifying the three regions439

by setting more flexible boundaries on supplementary features while requiring less fitting440

time than the one required to manually set the thresholds used in the Figure 10.441

The same kind of histogram gets messier with a much less obvious transition from the442

magnetosheath to the solar wind and the addition of the moon’s wake as shown with the443

ARTEMIS data in Figure 11. This shows the difficulty manually set thresholds would have444

for far night side oriented missions and the interest of using machine learning in this case.445

8 Massive detection of boundary crossings446

In the previous sections, we have shown the efficiency, the reliability and the adapt-447

ability of our classifiers on data from several missions and spacecraft. From now on, these448

classifiers can be used to elaborate our magnetopause and bow shock crossings catalogs by449

classifying the in-situ data provided by any near-Earth spacecraft and by selecting time in-450

tervals enclosing two predicted regions. To do so, we train our 3 different models, THEMIS,451

Cluster and ARTEMIS on their whole labeled datasets 5. In the following, these models452

will be respectively named the equatorial, high-latitude and lunar models.453

In addition to the performances on the labeled dataset of the different missions in use454

in this paper, shown in the previous sections, we make sure the massive prediction of the455

3 models are consistent with the labeled data by comparing the physical characteristics of456

the classified and the labeled data points of each regions. Figure 12 compares the average457

prediction of the three different models to their associated average training label for each458

bin of the (Np, B) plane.459

5 Those trained models can be found at https://github.com/gautiernguyen/in-situ Events lists
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Figure 11. 2d histogram of B and Np divided by the corresponding OMNI data for ARTEMIS

B

At first, the binned average of the labels, shown in the right column exhibits three main460

zones where there is almost no doubt on the region visited by the spacecraft. The transition461

from a zone to another appears as a zone where the label is transient consistently with what462

is expected for the crossing of one of the near-Earth boundaries. It is worth noting that the463

transitions between the different colored regions are far from being linear and this is even464

more true when we look at the distributions for the polar and lunar models. Following the465

discussion of section 7, this confirms the limits of an automatic detection method based on466

the manual setting of thresholds on the densities and magnetic field amplitudes and give a467

further support in favor of the application of machine learning for such classification task.468

Despite an expected increased noise, the pattern in the left column is similar to the one in469

the right column. This suggests that the massive prediction obtained from the equatorial,470

the polar and the lunar model is consistent with our labeled data. For both the equatorial471

and the polar model, we notice bins at low densities for which the average prediction is rather472

equal to magnetosheath or solar wind than magnetosphere. This indicate the presence of473

low density datapoints that have either been classified as magnetosheath or magnetosphere.474

However, these bins all contain less than 100 datapoints and are actually within the margin475

of erro r of our model.476

8.1 Magnetopause catalog477

We then elaborate a complete magnetopause crossing catalog by running the THEMIS478

classifier on the data provided by THEMIS A, B, C, D and E spacecraft. To gain time in the479

construction of the crossings and because we do not expect any magnetopause crossing in480

the nightside operation phase, we restrict ourselves to the dayside, dawn and dusk operation481

phase. As no crossing is expected far away in the solar wind or close to the Earth dipole,482

we also only the parts of the spacecraft orbit that were less than 5 Re away from the483

magnetopause distance predicted by Lin et al. (2010) for a dynamic pressure of 2 nPa and a484

null IMF Bz. The raw predictions of the classifier are then smoothed by applying a median485

filter with a window size of 3 minutes. We then define a magnetopause crossing as a 1 hour486

interval that contains as many magnetosheath points as magnetosphere points making sure487

every detected events were disjoints.488

The same model is used on the in-situ data provided by Double Star between 2004489

and 2007 and MMS between 2015 and 2020.490

We finally apply the same process on the in-situ data provided by Cluster 1 on the491

2001-2013 period, by Cluster 3 on the 2001-2009 period and on ARTEMIS between 2010 and492
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Figure 12. Binned average of the massive prediction (left column) and the training label (right

column) of the equatorial (first row), the polar (second row) and the lunar (third row) models

projected in the (Np, B) plane
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Mission Magnetopause crossings Bow shock crossings

THEMIS A 2 822 1 590

THEMIS B 376 1 030

THEMIS C 670 1 238

THEMIS D 2 705 1 520

THEMIS E 2 738 1 511

Cluster 1 1 782 3 225

Cluster 3 1 571 2 004

Double Star TC1 891 846

MMS 1 805 1 035

ARTEMIS B 215 1 602

ARTEMIS C 487 1 626

Total 15 062 17 227

Table 5. Number of magnetopause and bow shock crossings we have for different missions

2019 by using the corresponding trained model. The total number of crossings we obtained493

are summarized in the Table 5.6494

Our detection method has been evaluated on regions where the spacecraft is not ex-495

pected to cross a boundary. In these regions, the algorithm is less likely to hesitate on its496

prediction. On the other hand, it is more probable it hesitates on the predictions made497

close to the boundaries. Consequently, we have to ensure the classification is still of decent498

quality there.499

Figure 13 represents the ROC we have on the classification between magnetosphere500

and magnetosheath points for THEMIS B, Cluster 1 and Double Star for the subset of our501

test set that lies in the proximity of a magnetopause or shock crossing. These predictions502

have been obtained with a model that has been trained with the complement part of the503

dataset, i.e. the subset that excludes the proximity of the crossings. The obtained AUC is504

here lower than the one presented in the previous sections. This can be explained by the505

fact, the manual labels made in this region is more ambiguous than the one made in the506

parts of orbit that are far from one of the boundaries, resulting in a more hesitant classifier.507

The AUC value is still high enough to ensure the good quality of the classification when508

a spacecraft arrives close to the magnetopause and thus our capacity of building crossings509

from the prediction made by our model.510

We then computed the mean probability of each crossing by averaging the probabilities511

of belonging to the predicted class of each point present in the crossing.512

Events with high probability would correspond to undoubtful crossings while the events513

with the lowest probability would be less likely to be actual crossings. The probability514

distribution of our 15 062 events is shown in Figure 14. Having a high probability for the515

greatest part of our events then ensures the consistency of our magnetopause list.516

6 All of the magnetopause lists can be found at the same address.
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Figure 13. ROC curves evaluated on the labeled crossings for the three missions THEMIS

B (left), Cluster 1 (middle) and Double Star (right) for the three classes: magnetosphere(top),

magnetosheath(middle) and solar wind (bottom)

Figure 14. Distribution of the probability of the 15 062 magnetopause crossings we built and

summarized in Table 5. The solid dashed line represent the probability threshold we chose for the

Figure 15
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Figure 15. Spatial distribution of the crossings above the threshold in Figure 14 in the XY

(left), XZ (middle), YZ (right) GSM planes. The solid black line indicate the Lin et al. (2010)

magnetopause model with a dynamic pressure of 2 nPa and a null Bz.

Finally, the spatial distributions of the crossings that have a probability higher than517

75% in the GSM XZ, XY and YZ planes is shown in Figure 15. These crossings represent518

98.5% of the crossings built with our models and are then expected to be the most likely519

to be actual magnetopause crossings. The solid black lines represent the position of the520

magnetopause model established by (Lin et al., 2010) and computed for a dynamic pressure521

of 2 nPa, a null Bz and assuming no dipole-tilt. The proximity between this distance and our522

actual crossings ends up proving the capacity our method has to elaborate a magnetopause523

crossings catalog with a decent coverage of the surface at different latitudes and longitudes.524

8.2 Bow shock catalog525

We define a bow shock crossing event as 10 minutes interval that contains as much526

magnetosheath points as solar wind points. We then run the models we trained for the527

different missions detailed in Section 3 on the same dataset we used to elaborate the magne-528

topause crossing catalog. The total number of obtained crossings is once again summarized529

in Table 5 7.530

The spatial distribution of the crossings with a probability higher than 75% in the531

GSM XZ, XY and YZ planes is shown in the Figure 17. The solid black line here represents532

the location of the Jeřáb et al. (2005) bow shock model computed for a dynamic pressure533

of 2 nPa, a null Bz and an Alfven Mach of 8.534

9 Conclusion535

Using a Gradient Boosting Classifier, we established an automatic detection method536

of the different near-Earth regions as observed by the THEMIS spacecraft during the dawn,537

dusk and dayside mission phases. This method was successfully adapted on other equatorial538

dayside missions (Double Star and MMS) and, after a small retraining phase necessary539

to consider the orbital differences between different missions, was also successful on non-540

equatorial dayside missions such as Cluster. The adaptability of the method has even been541

tested on missions with a substantially different orbit such as ARTEMIS for which we542

provided a successful region classification after a small redesign of the observed features,543

implying the addition of the spacecraft GSM position, and the way the label was made, by544

considering an additional region with the lunar wake. Having proved this adaptability, we545

7 And the bow shock lists can once again be found at https://github.com/gautiernguyen/in-situ

Events lists.
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Figure 16. Distribution of the probability of the 17227 bow shock crossings we built and sum-

marized in Table 5. The solid dashed line represent the probability threshold we chose for the

Figure 17

Figure 17. Spatial distribution of the crossings above the threshold in Figure 16 in the XY

(left), XZ (middle), YZ (right) GSM planes. The solid black line indicate the Jeřáb et al. (2005)

bow shock model with a dynamic pressure of 2 nPa, a null Bz and an Alfven Mach of 8.
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may also think of using the data of additional near-Earth missions, such as WIND, Geotail,546

Hawkeye, Polar or Interball, provided enough information about the plasma moments with547

a sufficient resolution is provided.548

For every mission we considered, our method outperformed the quality of the detection549

provided by manually-set thresholds and reached similar AUC values as the one achieved by550

neural networks based methods (Breuillard et al., 2020; Olshevsky et al., 2019; Argall et al.,551

2020), with the advantage of being much faster to train. Using the plasma moments paved552

the way to an easy adaptability from a specific type of mission to another and the production553

of light-weight algorithms that could eventually be taken onboard of upcoming missions to554

automatically select the data of interest and thus automatically decide the data that should555

be stored (and at which resolution) for further analysis. This wouldallow a significant556

gain in time regarding the data selection process that are either threshold triggered or557

human monitored like the Scientist In The Loop process in charge of the manual selection558

of MMS data. Moreover, the method does not use the specificity of being in the near-Earth559

environment and could also be adapted to other planetary missions in the solar system.560

For simplification, we only considered 3 classes and defined as magnetosheath any561

region where plasma differed from pristine solar wind and magnetospheric ones. The clas-562

sification could be enhanced by the consideration of additional regions depending on the563

scientific objectives.564

We used this method to elaborate one of the most exhaustive public magnetopause and565

bow shock crossing catalogs to our knowledge. A bonus to our method is that these catalogs566

can be readily and automatically grown as new data is made available. Having a large list567

of events also gives the opportunity to study these two near-Earth boundaries and physical568

processes occurring in their vicinity, from a statistical point of view . One could especially569

think of exploiting the magnetopause crossings to provide an automatic detection method of570

the typical in-situ signature of accelerated plasma flow induced by magnetic reconnection,571

which will be the topic of a forthcoming study.572

Last but not least, the fast and reproducible of one of the most exhaustive existing573

boundary crossings catalogs is the preamble for the massive statistical analysis of the position574

of the position of both the magnetopause and the bow shock for various solar wind and575

seasonal conditions. In the specific case of the magnetopause, this is the purpose to the576

three companion papers of this study (Nguyen et al., 2020a, 2020b, 2020c).577

Appendix A Spatial distribution of the different labeled datasets578

In this section, we represent the spatial distribution of the labeled dataset of Double579

Star (Figure A1), MMS (Figure A2), Cluster (Figure A3) and ARTEMIS (Figure A4).580

Appendix B Probability calibration of the model581

A well calibrated classifier is a classifier for which the probabilistic output gives a cor-582

rect representation of the data seen by the algorithm. For instance, we expect 50% of the583

points predicted with a probability of 50% to be actual positives (either TP or FN). This584

verification is necessary as soon as the probabilistic output of a model is at stake. Never-585

theless, boosted algorithms such as gradient boosting are known to have calibration issues586

(Niculescu-Mizil & Caruana, 2005). We then have to ensure our model is well-calibrated587

before using its probabilistic output in the way we did it in Section 5. To do so, we plot the588

Calibration curve shown in Figure B1that represents the evolution of the fraction of actual589

positive in our test set for each probability bin. For a perfectly-calibrated classifier, the590

calibration curves should be linear and stick to the black dashed line for the three classes.591

Having a linear calibration curve close enough to the perfect calibration curve for the three592

regions, we consider the probabilistic output of our model to be decently well-calibrated.593
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Figure A1. Spatial coverage of the Double Star labeled dataset. The legend is the same than

in Figure 2

Figure A2. Spatial coverage of the MMS labeled dataset. The legend is the same than in Figure

2
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Figure A3. Spatial coverage of the Cluster labeled dataset. The legend is the same than in

Figure 2

Figure A4. Spatial coverage of the ARTMIS labeled dataset. The legend is the same than in

Figure 2 with the addition of the Moon’s wake bins in purple which vary between 1 and 157
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Figure B1. Calibration curve of our model trained on THEMIS data for the three regions. The

black dashed line represent the calibration a perfectly-calibrated classifier would have.

Appendix C Additional detection examples594

In this section, we show additional detection examples of the region classifier on the595

data of THEMIS B (Figure C1), Double Star (Figure C2), MMS (Figure C3), Cluster (Figure596

C4) and ARTEMIS (Figure C5).597
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Figure C1. In-situ measurement provided by THEMIS B spacecraft on the 10th of November

2008. The legend is the same than in 1.

–30–



manuscript submitted to Space Physics

Figure C2. In-situ measurement provided by Double Star TC 1 spacecraft on the 15th of January

2005. The legend is the same than in 1.
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Figure C3. In-situ measurement provided by MMS 1 spacecraft on the 2nd of December 2015.

The legend is the same than in 1.
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Figure C4. In-situ measurement provided by Cluster 3 spacecraft on the 23rd of June 2003.

The legend is the same than in 1.
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Figure C5. In-situ measurement provided by ARTEMIS B spacecraft on the 24th of April 2013.

The legend is the same than in 1.
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THEMIS data are accessible via the NASA Coordinated Data Analysis web (https://598

cdaweb.sci.gsfc.nasa.gov/index.html/). Cluster and Double Star data are accessible599

via the Cluster and Double Star Science archive (http://csa.esac.esa.int/). All of600

our trained algorithms can be found here https://github.com/gautiernguyen/in-situ601

Events lists.602
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