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Abstract

Although some plasma waves exhibit the largest growth rate and amplitude at 90deg wave normal angle (WNA), particle

scattering by these waves in a quasilinear (QL) sense has not been examined previously. Using test-particle calculation and

QL theory, the present study investigates the proton scattering by equatorial fast magnetosonic waves (MSWs; a.k.a equatorial

noise) with varying WNAs including 90deg. Comparison with the diffusion coefficients in momentum space obtained from the

test-particle approach indicates that the QL diffusion coefficients given by, e.g., Kennel and Engelmann (1966) are valid up

to 90deg WNA, provided that MSWs described conform to the usual QL theory assumptions. The test-particle dynamics due

to MSWs at 90deg WNA are examined in detail. Although in the QL picture, protons are only supposed to resonate with

MSWs of integer harmonic frequencies at perpendicular propagation, the presence of slightly off-integer harmonic modes as part

of a narrowband discrete spectrum of incoherent MSWs plays an important role in making the proton scattering stochastic.

Considering the recent test-particle result of bounce-averaged resonance of energetic protons, non-zero wave power at the WNAs

>˜ 89.5deg typically excluded in QL diffusion can be important for ring current proton dynamics.
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Abstract16

Although some plasma waves exhibit the largest growth rate and amplitude at 90◦17

wave normal angle (WNA), particle scattering by these waves in a quasilinear (QL) sense18

has not been examined previously. Using test-particle calculation and QL theory, the present19

study investigates the proton scattering by equatorial fast magnetosonic waves (MSWs;20

a.k.a equatorial noise) with varying WNAs including 90◦. Comparison with the diffu-21

sion coefficients in momentum space obtained from the test-particle approach indicates22

that the QL diffusion coefficients given by, e.g., Kennel and Engelmann (1966) are valid23

up to 90◦ WNA, provided that MSWs described conform to the usual QL theory assump-24

tions. The test-particle dynamics due to MSWs at 90◦ WNA are examined in detail. Al-25

though in the QL picture, protons are only supposed to resonate with MSWs of integer26

harmonic frequencies at perpendicular propagation, the presence of slightly off-integer27

harmonic modes as part of a narrowband discrete spectrum of incoherent MSWs plays28

an important role in making the proton scattering stochastic. Considering the recent test-29

particle result of bounce-averaged resonance of energetic protons, non-zero wave power30

at the WNAs & 89.5◦ typically excluded in QL diffusion can be important for ring cur-31

rent proton dynamics.32

1 Introduction33

Plasma waves in the inner magnetosphere play an important role in the dynam-34

ics of the radiation belts and ring current (e.g., Thorne, 2010). Gyro-resonant wave-particle35

interactions in the inner magnetosphere (and space plasmas in general) are typically de-36

scribed in terms of quasilinear (QL) theory (Kennel & Engelmann, 1966). According to37

this theory, the dynamics of particles are described by a Fokker-Planck-type diffusion38

equation (Schulz & Lanzerotti, 1974). The diffusion coefficients in this equation encap-39

sulate the physics of wave-particle interactions in the QL limit. As diffusion simulations40

are the only practical way to model the long-term behavior of the radiation belts and41

ring current at present, calculation of the diffusion coefficients appropriate for the inner42

magnetosphere has been the focus of numerous studies (e.g., Lyons, 1974; Glauert & Horne,43

2005; Summers, 2005; Albert, 2005, 2007; Mourenas et al., 2013).44

The diffusion coefficients in QL theory depend on wave spectra and plasma prop-45

erties. A standard—though not necessary—way to describe the wave spectra is to use46

truncated Gaussian distributions both in frequency and wave normal angle spaces (Lyons,47

1974). Particularly, for wave spectra in wave normal angle space, the usual choice is gω(ψ) ∝48

exp[−(tanψ − tanψm)
2
/ tan2 ∆ψ], where ψ is the wave normal angle, and tanψm and49

tan ∆ψ determine the extent of the wave distribution. The effect of using tanψ in the50

Gaussian model is to reduce the power ascribed to large values of ψ (Albert, 2007). That51

is, as ψ approaches 90◦, gω(ψ) tends to zero regardless of the values of ψm and ∆ψ cho-52

sen. Furthermore, by virtue of the truncated Gaussian, gω is zero unless ψ lies between53

ψmin and ψmax, where it is customary to assume ψmax < 90◦. Diffusion simulations with54

the diffusion coefficients calculated as such for the major plasma waves in the inner mag-55

netosphere have been widely used to understand the acceleration and loss processes of56

relativistic electrons in the radiation belts (e.g., Thorne et al., 2013; Ma et al., 2015; Droz-57

dov et al., 2020).58

While the above Gaussian model in wave normal angle may be appropriate to rep-59

resent the spectra of waves at quasi-parallel and moderately oblique propagation (such60

as whistler-mode waves and electromagnetic ion cyclotron waves in the inner magneto-61

sphere), it may not be an ideal choice to describe the waves whose maximum growth rate62

occurs at ψ close to or exactly at 90◦. In the inner magnetosphere, the latter category63

includes equatorial fast magnetosonic waves (a.k.a equatorial noise; MSWs hereafter) which64

are driven by a proton ring distribution with the maximum growth rate occurring at ψ =65

90◦ (e.g., Horne et al., 2000) and at frequencies multiples of the proton cyclotron frequency.66
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Nevertheless, many previous studies adopted the truncated Gaussian distribution for the67

wave normal angle distribution of MSWs (e.g., Horne et al., 2007; Xiao et al., 2014, 2015;68

Ma et al., 2019). The typically used parameters are those from Horne et al. (2007), where69

ψm = 89◦ and ∆ψ = 86◦ (or some variants thereof), which result in negligible wave70

energy above ψ = 89.5◦. Other studies used a constant value less than 90◦ for the wave71

normal angle, say, ψ = 89◦ (e.g., Ni et al., 2017). Neglecting MSWs at ψ & 89.5◦ is72

perhaps well justified for studying the scattering of radiation belt electrons because these73

electrons are primarily affected by Landau resonance (Horne et al., 2000, 2007) and the74

parallel component of the fluctuating electric field tends to zero at exact perpendicular75

propagation. For example, Lei et al. (2017) showed that MSWs with ψ . 87◦ causes76

the most efficient electron scattering. In contrast, excluding the contribution from MSWs77

at quasi-perpendicular propagation (where both simulations and observations indicate78

the maximum power occurs (Boardsen et al., 2018; Min et al., 2020)) can potentially lead79

to an underestimation of the scattering of energetic ring current protons to which high-80

order cyclotron resonances play a dominant role (e.g., Fu et al., 2016; Fu & Ge, 2021).81

Particularly, Fu and Ge (2021) showed that, in their test-particle results, the proton heat-82

ing induced by MSWs becomes relatively stable for ψ & 88◦. (They considered wave83

normal angles up to 89.9◦.) This raises an important question of whether neglecting the84

contribution from MSWs at quasi-perpendicular propagation is well justified for the pro-85

ton scattering.86

In the present study, we investigate the transition of the scattering of protons in-87

teracting with low-amplitude, broadband, incoherent MSWs as ψ approaches 90◦ in a88

uniform background magnetic field. Such a scenario has been examined previously by89

Curtis (1985) who suggested that the perpendicular ion heating in the equatorial plas-90

masphere is the result of MSWs at quasi-perpendicular propagation. To calculate the91

perpendicular momentum diffusion coefficient, Curtis (1985) made several simplifying92

assumptions appropriate for the equatorial plasmasphere. In the present study, we re-93

lax some of their assumptions and additionally use the test-particle (TP) approach to94

verify and complement the results of QL diffusion theory. By comparing with the TP95

computation, we first show that the QL diffusion coefficients of Kennel and Engelmann96

(1966) remain valid at ψ = 90◦. For simplicity of analysis, we assume broadband MSWs97

in wavenumber (or equivalently in frequency) with a fixed ψ at a time. We then inves-98

tigate in detail the test particle dynamics due to MSWs at ψ = 90◦, which are mainly99

governed by the electrostatic fluctuations.100

The organization of the paper is as follows. In Section 2, we present QL and TP101

theoretical constructs and in Section 3 we use them to calculate the diffusion coefficients.102

Section 4 concludes the paper.103

2 Theory104

We consider a homogeneous, magnetized plasma in a uniform background magnetic105

field. We choose a coordinate system where the background magnetic field is along the106

z direction and the wave vector is contained in the x−z plane. The formulation below107

assumes the use of the gauss unit system.108

2.1 Diffusion Coefficients109

According to Kennel and Engelmann (1966), the diffusion equation for some pro-110

ton distribution, f , can be written as111

∂f

∂t
=

1

v⊥

∂

∂v⊥

[
v⊥

(
D⊥⊥

∂

∂v⊥
+D⊥‖

∂

∂v‖

)]
f +

1

v⊥

∂

∂v‖

[
v⊥

(
D‖⊥

∂

∂v⊥
+D‖‖

∂

∂v‖

)]
f,

(1)112
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where Dµν are the diffusion coefficients in velocity space. The directional subscripts are,113

as usual, with respect to the background magnetic field, B0. Note that the dimension114

of Dµν is velocity squared per time.115

In this subsection, we simplify the diffusion coefficients given by Kennel and En-116

gelmann (1966) appropriate for the problem we are considering here. We make several117

assumptions which are well justified for MSWs under consideration. First, we ignore the118

parallel component of the fluctuating electric field, Ew‖ . Unlike electrons which are mag-119

netized and primarily affected by Landau resonance, protons are much heavier and slower,120

and thus less susceptible to Landau resonance. Furthermore, according to cold plasma121

dispersion theory, the ratio of |Ew‖ | to the amplitude of the fluctuating electric field (Ew)122

remains |Ew‖ |/|E
w| . 0.02 for ψ ≥ 80◦ and frequencies ω . 40Ωp, where Ωp is the123

proton (angular) cyclotron frequency. Throughout the paper, we assume MSWs with ω .124

20Ωp and ψ ≥ 80◦, in which case |Ew‖ |/|E
w| < 0.01. Second, we consider broadband125

MSWs propagating in a single direction so that all constituent waves have the same wave126

normal angle, ψ. This is a commonly used approach in investigations involving TP com-127

putation (e.g., Fu et al., 2016) and simplifies the wave description in TP computation.128

Last, we assume that the growth rate (i.e., the imaginary part of the complex wave fre-129

quency) is negligible so that the integrable singularities in Dµν can be replaced with the130

delta function.131

After considering these conditions, we may reduce the diffusion coefficients in Kennel132

and Engelmann (1966) to133

Dµν = πΩpc
2
∞∑

n=−∞

∑
j

|En|2

B2
0

∆∗µ∆ν

|∂ζn/∂k|
, (2)134

where the summation index n is the cyclotron resonance order and k is the wavenum-135

ber along the selected propagation direction (i.e., selected ψ). The definitions of ζn(k),136

En(k), ∆‖(k), and ∆⊥(k) are as follows:137

ζn(k) =
k‖v‖ − (ωk − nΩp)

Ωp
; (3)138

139

En(k) =
ẼrkJn+1(ξ) + ẼlkJn−1(ξ)√

2
; (4)140

141

∆⊥(k) = 1−
k‖v‖

ωk
; and ∆‖(k) =

k‖v⊥

ωk
. (5)142

Here, Jn is the Bessel function of the first kind with an argument, ξ = k⊥v⊥/Ωp. The143

summation over j in Eq. (2) should consider all resonant kj ’s which are the solutions144

to the resonance condition, ζn(k) = 0, for given ψ.145

In general, ζn is also a function of v‖. However, if k‖ = 0 (i.e., ψ = 90◦), ζn be-146

comes independent of v‖ and so does the resonance condition, ωk = nΩp. (Chen (2015)147

characterized this situation as being non-resonant.) As one can see, for ϕ ≡ ψ−π/2 ∼148

0, it follows ∆⊥ ∼ O(1) and ∆‖ ∼ O(ϕ), and thus D‖‖/D⊥⊥ ∼ O(ϕ2). Therefore,149

the proton diffusion by MSWs dominates in the velocity direction perpendicular to B0.150

Information about the wave power spectral distribution is contained in Ẽrk ≡ (Ẽxk−151

iẼyk)/
√

2 and Ẽlk ≡ (Ẽxk + iẼyk)/
√

2 which represent the right-hand and left-hand po-152

larized electric field fluctuations, respectively. The relationship among the electric and153

magnetic field wave components is readily available from cold plasma dispersion theory,154

e.g., J. Li et al. (2015, Eqs. (3a)–(3f)).155
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v⊥⊥

θ

θ Ex
w

x

y

Figure 1. The relationship between the test particle’s velocity vector direction, e⊥, and the x

component of the fluctuating electric field, Ewx . The angle θ denotes the gyro-phase angle of the

particle. The unit vectors e⊥ and eθ orthogonal to each other are a function of θ.

2.2 Test-particle Tracing156

Equations of motion of individual (non-relativistic) test protons are given by157

dv

dt
=

e

mp

(
Ew +

v

c
×B

)
, (6)158

where e is the elementary charge, mp is the proton mass, and v is the particle velocity.159

Unless otherwise specified, all TP calculations shown here are done by solving this equa-160

tion using the Boris method (Birdsall & Langdon, 2004), with all three components of161

the MSW electric and magnetic fields retained.162

In order to interpret the dynamics of protons interacting with MSWs at ψ = 90◦163

in detail, in what follows we take the standard procedure typically used to simplify Eq.164

(6) further (e.g., J. Li et al., 2015; Fu et al., 2016). We start by defining a coordinate165

system shown in Figure 1, where B0 = B0ẑ and k = kxx̂ (note that ψ = 90◦). In166

this coordinate system, the angle between the proton velocity vector and the x direction167

is defined as the gyro-phase angle, θ, of a gyrating proton. The velocity vector can be168

written as v = v‖ẑ + v⊥e⊥, where e⊥ = cos θx̂ + sin θŷ. Since for MSWs at quasi-169

perpendicular propagation the longitudinal component (i.e., Ewx ) of Ew is much larger170

(by several orders of magnitude, e.g., Gary et al. (2010)) than the transverse component,171

we only keep Ewx in the subsequent derivation. In addition, the total magnetic field is172

B = (B0 + Bwz )ẑ ≈ B0ẑ, since |Bwz | � B0. Assuming a sinusoidal wave of the form173

Ewx = Ẽx cos Φ (with the phase Φ to be defined later), the equations of motion in Eq.174

(6) may read175

v̇‖ = 0; v̇⊥ = Ωpc
Ẽx
B0

cos Φ cos θ; and v̇θ = −Ωp

(
v⊥ + c

Ẽx
B0

cos Φ sin θ

)
, (7)176

where the time derivatives are indicated by the over-dot notation. Equation for the gyro-177

phase is given by θ̇ = v̇θ/v⊥. For all intents and purposes, θ̇ ≈ −Ωp unless v⊥ is re-178

ally small and/or Ẽx is really large.179

The wave phase is given by180

Φ = ωt−
∫

k · dr = ωt−
∫
kxv⊥ cos θdt. (8)181

If Φ̇ = 0, then a test particle will see a constant phase for a longer-than-usual period182

of time. Therefore, the general condition for resonance may be expressed as183

cos θ =
ω

kxv⊥
. (9)184
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Since v⊥ > 0, the solution to the above resonance condition is bracketed by |θ| ≤ π/2,185

if ω/kx > 0 (i.e., forward propagating waves). If v⊥ = ω/kx, for example, a test par-186

ticle sees a nearly constant wave phase near θ = 0 and experiences a net acceleration.187

If, on the other hand, v⊥ < |ω/kx|, then the above condition will never be satisfied for188

any real value of θ. Nevertheless, these particles can still experience a net acceleration189

near θ = 0 at which Φ̇ becomes minimum and thus the particle slows down in the wave190

reference frame.191

The standard practice to proceed further is to recast the term involving v⊥ in Φ192

using the Bessel function identity (e.g., J. Li et al., 2015). Assuming that dθ ≈ −Ωpdt193

and v⊥ is a slowly varying function of time, the wave phase can be written as194

Φ ≈ ωt+ Φ0 + ξ sin θ, (10)195

where ξ = kxv⊥/Ωp. Following a procedure similar to J. Li et al. (2015) yields the ap-196

proximate equations of motion197

v̇⊥ ≈ Ωpc
Ẽx
B0

∞∑
n=−∞

n

ξ
Jn(ξ) cos ηn (11)198

and199

v̇θ ≈ −Ωp

(
v⊥ + c

Ẽx
B0

∞∑
n=−∞

J ′n(ξ) sin ηn

)
, (12)200

where ηn = ωt + Φ0 + nθ. In this form, a wave that satisfies the usual cyclotron res-201

onance condition dηn/dt = 0 and thus ω = nΩp contributes most to the net accelera-202

tion over multiple gyrations. Meanwhile, the Bessel function term in the v̇⊥ expression203

determines the efficiency of the acceleration. However, as will be shown, the assumption204

that v⊥ is nearly constant in time has some important consequence under certain sit-205

uations. We will discuss those in the next section.206

It is straightforward to derive D⊥⊥ from Eq. (11) by following the approach in, e.g.,207

X. Li et al. (2015) and Bortnik et al. (2015). First, we consider a superposition of mul-208

tiple monochromatic waves of the form209

Ewx (t) =

∞∑
j=1

Ẽx,j cos Φj , (13)210

where Φj = ωjt−
∫
kx,jdx and we are assuming ωj/kx,j > 0. According to Parseval’s211

theorem, the time average of the squared amplitude of Ewx is given by212

〈
(Ewx )2

〉
=

1

2

∞∑
j=1

Ẽ2
x,j =

∞∑
j=1

∆ω

∂ωj/∂k
|Exk|2j , (14)213

where |Exk|2 is the power spectral density of Ewx , 〈· · · 〉 = τ−1
∫ τ
0

(· · · )dt, and τ = 2π/∆ω214

is sufficiently large and multiples of 2π/Ωp. With the expression for the wave superpo-215

sition, Eq. (11) can be generalized to216

v̇⊥ = Ωpc

∞∑
j=1

Ẽx,j
B0

∞∑
n=−∞

n

ξj
Jn(ξj) cos ηn,j , (15)217

where ηn,j = ωjt+Φ0,j+nθ and ξj = v⊥kx,j/Ωp. The change of v⊥ over the period is218

obtained from ∆v⊥ =
∫ τ
0
v̇⊥dt. Since we are integrating it along the unperturbed or-219

bit, the only time-dependent term is cos ηn,j . Substituting its time integral,
∫ τ
0

cos ηn,jdt =220

τ cos Φ0,jδ(ωj − nΩp), into ∆v⊥ yields221

∆v⊥ = τΩpc

∞∑
n=1

Ẽx,n
B0

n

ξn
Jn(ξn) cos Φ0,n. (16)222
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Finally, from the definition of the diffusion coefficient D⊥⊥ = 〈(∆v⊥)
2〉/(2τ) (where223

〈· · · 〉 denotes average over Φ0,n) and using the Parseval’s theorem, we get224

D⊥⊥ = πΩ2
pc

2
∞∑
n=1

|Ẽxk|2

B2
0

1

∂ωn/∂k

n2

ξ2
J2
n, (17)225

where the term inside the summation is evaluated at k such that ω(k) = nΩp. This ex-226

pression is the same as the one from Eq. (2) with the assumptions that the electric field227

fluctuations are longitudinal, ψ = 90◦, and the wave spectrum is one-sided.228

3 Results229

In this section, we use the formulations in the previous section to verify the QL dif-230

fusion due to MSWs of ψ approaching 90◦ and investigate in detail the test proton dy-231

namics driven by MSWs at ψ = 90◦. The background plasma parameters assumed through-232

out the paper are from Horne et al. (2000) where the background magnetic field mag-233

nitude is B0 = 256 nT (or 2.56 × 10−3 gauss) and the total electron density is n0 =234

18.97 cm−3. These parameters yield the ratio of the light to Alfvén speed c/vA = 234.6,235

where the Alfvén speed is vA = B0/
√

4πmpn0. Note that this ratio is equal to the ra-236

tio of the proton plasma frequency to the proton cyclotron frequency, ωp/Ωp, where ωp =237 √
4πn0e2/mp.238

3.1 Quasilinear Diffusion Coefficient239

In this subsection, we show the transition of D⊥⊥ (the dominant diffusion coeffi-240

cient for the parameters assumed here) as ψ approaches 90◦ and test whether D⊥⊥ from241

QL theory is valid up to ψ = 90◦ by comparing with the result from the TP method.242

As a broadband, incoherent wave spectrum needed as an input to Eq. (2), we adopt a243

Gaussian distribution for the magnetic field wave spectrum in wavenumber as follows:244

WB(k) =
εB√
2πδk

exp

(
− (k − k0)

2

2δk2

)
, (18)245

where k0 is the wavenumber of the Gaussian peak, δk is the standard deviation, and εB246

is the total magnetic field wave energy density, εB = limV→∞
∫
V
|Bw|2/V d3x, where247

V is the volume. Since MSWs are composed of multiple harmonic modes, we choose a248

small value for δk = 0.1λ−1p to represent a single harmonic mode of a narrow spectral249

width in wavenumber (see, e.g., Boardsen et al., 2018, Figure 2). (Here, λp = c/ωp is250

the proton inertial length.) Correspondingly, the frequency span of the MSW spectral251

density is less than or about 0.5Ωp. Since the wave frequency normalized to Ωp is more252

intuitive to visualize MSWs, we also define ω0 ≡ ω(k0) and use it interchangeably with253

k0. We only consider ωk > 0, which corresponds to forward propagating waves (pro-254

vided k > 0). (Since the wave spectrum is symmetric, the case of ωk < 0 is a mirror255

reflection of the result of the ωk > 0 case with n replaced by −n.) The combined ef-256

fect from multiple harmonic modes is a simple matter of adding up the individual con-257

tributions.258

For TP computation, MSWs are described by superposition of Nw = 101 monochro-259

matic waves with randomly chosen initial phases. The wavenumber of the ith monochro-260

matic wave is determined by ki = k0 + 2i∆k/(Nw− 1), where i = 0, ±1, . . . , ±(Nw−261

1)/2 and ∆kλp = 0.5. The wave frequency and the root-mean-square amplitude of the262

magnetic field are determined from the cold plasma dispersion relation and from Eq. (18)263

according to Liu et al. (2012), respectively. For each batch of TP calculation, we trace264

a total of 1,000 test particles each of which is assigned randomly chosen initial location265

and randomly chosen initial gyro-phase. The diffusion coefficient, D⊥⊥, is then obtained266

from the mean-square variation of the perpendicular velocity component, 〈(∆v⊥)
2〉, fol-267

lowing the method described by Liu et al. (2010, 2011).268

–7–
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(Cb) v⊥=1.2vA
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Figure 2. Comparison between D⊥⊥’s from QL theory and TP computation for ω0 = 5.1Ωp

and εB = 10−6B2
0 . From top to bottom the results correspond to ψ = 84, 89, 89.8, 90◦, respec-

tively. The panels in the left column display D⊥⊥ from Eq. (2) as a function of v‖ and v⊥. The

vertical dashed lines in the first two panels denote the resonant v‖’s for the cyclotron resonance

orders, n = 4, 5, and 6 with ω = ω0. The horizontal dashed lines indicate the peak of D⊥⊥ in

v⊥ for n = 5. The panels in the right column compare D⊥⊥’s from QL theory (blue curves) and

TP computation (red open circles). For each case of ψ, v⊥ is fixed to a value indicated by the

horizontal dashed line in the left column (also labeled in each panel).
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In Figure 2, we fix ω0 = 5.1Ωp and vary the wave normal angle: ψ = 84, 89, 89.8,269

and 90◦. Then, the corresponding values of k0 are 4.62, 5.12, 5.14, and 5.14, respectively.270

The panels in the left column (Column “a”) display D⊥⊥ obtained from Eq. (2). For271

ψ = 84◦ (Figures 2Aa), there are three bright blobs of enhanced diffusion separated in272

v‖, followed by smaller blobs with decreasing intensity at larger v⊥. The resonant v‖ of273

protons interacting with the dominant MSW is given by v‖ = (ω0 − nΩp)/(k0 cosψ).274

Therefore, for ψ = 84◦, the cyclotron resonance orders that yield v‖ within the hori-275

zontal plot range are n = 4, 5, and 6; these are denoted in the figure with the vertical276

dashed lines. The subsequent, much weaker patches of diffusion in v⊥ are due to the os-277

cillating Bessel function present in Eq. (2). Since the argument, ξ = k⊥v⊥/Ωp, corre-278

sponding to the first peak of the Bessel function increases with an increasing Bessel func-279

tion order (which is ∼ n), there is almost a linear relation between n and v⊥ at which280

the first peak of D⊥⊥ occurs. When ψ increases to 89◦ (Figure 2Ba), the horizontal sep-281

aration between the adjacent patches of enhanced diffusion increases and now all but the282

n = 5 contribution are beyond the horizontal plot scale. At the same time, the hori-283

zontal extent of the diffusion region associated with n = 5 also increases due to the Gaus-284

sian MSW spectrum about k = k0, leading to an elongated patch. With ψ = 89.8◦285

(Figure 2Ca), the center of the n = 5 resonance lies outside the horizontal scale. There-286

fore, the diffusion shown in the figure is driven by the MSWs at the outskirts of the Gaus-287

sian distribution. Note that the dependence of D⊥⊥ on v‖ becomes weaker and weaker288

with an increasing ψ, to the point that D⊥⊥ is independent of v‖ at ψ = 90◦ (Figure 2Da).289

At this point, the only resonant MSW is that of ω = 5Ωp.290

Since the TP method is computationally much more demanding, we only consider291

a one-dimensional slice of D⊥⊥ at fixed v⊥ for comparison. For the four wave normal292

angles considered, we choose initial v⊥ = 1.35, 1.2, 1.2, and 1.2vA, respectively, that cor-293

respond to the location of maximum D⊥⊥ for the cyclotron resonance order n = 5 in294

the left column. (These are indicated with the horizontal dashed lines.) The panels in295

the right column of Figure 2 compare D⊥⊥’s obtained from the two methods. Although296

there are some fluctuations of the points from the TP method at ψ ≈ 90◦, the agree-297

ment is generally very good. Particularly, as theory suggests, protons’ v‖ becomes irrel-298

evant at ψ = 90◦. This confirms that Eq. (2) is valid up to ψ = 90◦.299

In Figure 3, we carry out the same experiment with ω0 = 5.5Ωp. For better vi-300

sualization of the main result, we accordingly select ψ = 88, 89, 89.5, and 89.8◦. All other301

parameters are kept the same. In this case, since the dominant MSW has the half-integer302

harmonic frequency and the width of the wave spectrum is . 0.5Ωp in frequency space,303

the diffusion rate at v‖ = 0 is minimum. At ψ = 88◦, the n = 5 and 6 cyclotron res-304

onance orders are still within the plot range. The QL diffusion coefficient agrees well with305

the one from the TP method. With an increasing ψ, those two resonance orders get fur-306

ther apart and the overall diffusion rates within the plot range decrease accordingly. At307

ψ = 89.8◦, the QL diffusion rate is on the order of 10−10v2AΩp near v‖ = 0, whereas308

the TP method gives the rate on the order of 10−8v2AΩp. This discrepancy can be most309

likely attributed to the statistical noise of the TP method, but may also indicate some310

physics missing in QL theory, such as nonlinear resonance broadening (Cai et al., 2020).311

In Figure 4, we carry out a similar experiment with the 10th harmonic mode, ω0 =312

10Ωp. All other parameters are kept the same, including εB = 10−6B0. The overall be-313

havior of two-dimensional D⊥⊥ is very similar to that shown in Figure 2, so it will not314

be shown. However, the comparison between QL theory and the TP method indicates315

that QL theory consistently overestimates the diffusion rate when the rate becomes larger316

than approximately 6×10−5v2AΩp. Since the maximum diffusion rate increases with in-317

creasing ψ (compare the global maximum of the blue curves), the discrepancy between318

the two methods gets larger as well. This is clearly the regime where the weak-wave as-319

sumption of QL theory starts to break down. Note that D⊥⊥ in Eq. (2) is expressed in320

terms of (Ew)
2
. So, even though εB is the same as the previous two cases, the ratio Ew/Bw321
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(Bb) v⊥=1.3vA
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(Cb) v⊥=1.25vA
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(Db) v⊥=1.2vA

Figure 3. Same as Figure 2 except that ω0 = 5.5Ωp and ψ = 88, 89, 89.5, and 89.8◦. Also,

D⊥⊥ in the left column is shown in a logarithmic scale.
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(a) ψ=87.0°; v⊥=1.25vA
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(b) ψ=89.7°; v⊥=1.1vA
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(c) ψ=89.9°; v⊥=1.1vA
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(c) ψ=90.0°; v⊥=1.1vA

Figure 4. Comparison of D⊥⊥ from QL theory (blue solid curves) with the one from the TP

method (red open circles) for ω0 = 10Ωp and ψ = 87, 89.5, 89.9, and 90◦. The corresponding v⊥

values are 1.25, 1.1, 1.1, and 1.1vA, respectively.
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is an increasing function of ω. According to Boardsen et al. (2016, Figure 1), this ratio322

at ω = 10Ωp becomes twice as large as the ratio at ω = 5Ωp, which means that D⊥⊥323

should increase roughly fourfold. In addition, the partial derivative, |∂ζn/∂k| ≈ |∂ω/∂k|,324

in the denominator of Eq. (2) also decreases with increasing ψ, further contributing to325

the increase of D⊥⊥ at ψ ≈ 90◦. As expected, lowering εB by one order of magnitude326

brings D⊥⊥ to agreement with the one from the TP method (not shown).327

3.2 Proton Dynamics with MSWs at ψ = 90◦
328

Having proven that the diffusion coefficients of Eq. (2) are valid for MSWs of ψ329

up to 90◦, we now turn our attention to understanding the proton dynamics in the pres-330

ence of MSWs at ψ = 90◦ and the ensuing scattering process. The premise of gyro-resonant331

interaction and the ensuing normal diffusion behavior is that a particle trajectory in mo-332

mentum space exhibits a random walk-like behavior as a result of interactions with mul-333

tiple incoherent waves described by a broadband spectrum. Every time a particle changes334

its momentum as a result of an interaction with one wave, its resonance condition also335

changes. This in turn enables the particle to resonate with other waves that meet the336

new resonance condition and this cycle repeats. The collective behavior of an ensemble337

of particles then amounts to a diffusive process. This line of thinking seems to break down338

once the wave normal angle of MSWs becomes 90◦. Since according to QL theory the339

resonance condition is ω = nΩp, the same particle can resonate with the same wave re-340

gardless of its energy gain or loss after each interaction. Consequently, one may expect341

that the fate of each particle should be deterministic, rather than stochastic. To our knowl-342

edge such a situation has never been discussed before (at least in the magnetospheric con-343

text). Another matter we can shed some light on is whether the interaction of protons344

with MSWs at perpendicular propagation is resonant or non-resonant. Chen (2015) ar-345

gued that the interaction in this context should be non-resonant because v‖ becomes ir-346

relevant and the parallel Doppler shift term disappears from the normal cyclotron res-347

onance condition (thus leading to a simple frequency matching condition, ω = nΩp).348

We first check how well the approximate formulations of Eqs. (7) and (11) do against349

the full Lorentz equation of Eq. (6). (The approximate equations are integrated along350

the unperturbed particle trajectory.) For this test, we launch test protons into a single351

MSW with magnetic field amplitude B̃z = 0.003B0 (a value sufficiently large to cause352

a large variation of v⊥ in a relatively short time scale). All test protons initially have353

v⊥ = 1.1vA and θ = 0. (Note that as we have shown earlier, v‖ becomes irrelevant354

when ψ = 90◦.) In Figures 5a–5b, we fix ω = 10Ωp (full integer harmonic mode) and355

choose the initial wave phases, Φ0 = 0 and π, respectively. Depending on the initial wave356

phase, the proton can gain or lose (perpendicular) energy. (The tracing time is normal-357

ized to the proton gyro-period, Tp ≡ 2π/Ωp.) Overall, both the electrostatic approxi-358

mation of Eq. (7) and the Bessel sum approximation of Eq. (11) do a good job. Nev-359

ertheless, a noticeable deviation of behavior is clearly seen after t ≈ 30Tp in the solu-360

tion of the Bessel sum approximation in Figure 5a, where the proton is supposed to de-361

celerate. A similar behavior is also seen in Figure 5c for the case of Φ0 = π/2, where362

the Bessel sum approximation remains constant. It is worth noting that the n = 10 term363

in Eq. (11) sets the overall behavior (dashed magenta) and the other terms add minor364

corrections, such as the step-like increase and decrease of energy (blue curve). Since η10(t) =365

Φ0 is constant, the n = 10 term contributes most to the net acceleration in Eq. (11) (see366

J. Li et al., 2015). Therefore, when Φ0 = π/2, the term cos η10 vanishes in Eq. (11) and367

the net acceleration becomes negligible. The vanishing acceleration in Figure 5a is for368

a different reason: v⊥ ≈ 1.4vA is where the term Jn(ξ)/ξ in Eq. (11) vanishes. In that369

sense, Jn(ξ)/ξ acts as a weighting factor which determines the efficiency of acceleration.370

(Note that Jn is an oscillating function and can be negative.)371

In Figures 5d–5f, we set Φ0 = 0, π, and π/2, respectively, with a fixed value of372

ω = 10.1Ωp (an off-integer harmonic mode). In this case, the overall peak-to-peak change373
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Figure 5. Comparison of test particle dynamics obtained from the full Lorentz equation of

Eq. (6) (black), the electrostatic approximation of Eq. (7) (green), and the Bessel function ap-

proximation of Eq. (11). For the Bessel function approximation, the blue curves represent the

calculation involving the sum over n = 8, . . . , 12 in Eq. (11), whereas the dashed magenta curves

represent the calculation involving only the n = 10 term. From top to bottom, the assumed pa-

rameters are as follows: (a) ω = 10Ωp and Φ0 = 0, (b) ω = 10Ωp and Φ0 = π, (c) ω = 10Ωp and

Φ0 = π/2, (d) ω = 10.1Ωp and Φ0 = 0, (e) ω = 10.1Ωp and Φ0 = π, and (f) ω = 10.1Ωp and

Φ0 = π/2. Other parameters common for all cases are: B̃z = 0.003B0, v⊥ = 1.1vA, and θ = 0.

The tracing time is normalized to the proton gyro-period, Tp.
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from left denote ω/kx, the first local maximum, the first zero crossing, and the first local mini-

mum, respectively.

in v⊥ is greatly reduced. Interestingly, the proton still exhibits a step-like variation in374

v⊥ at every gyro-period. Both the electrostatic approximation of Eq. (7) and Bessel sum375

approximation of Eq. (11) do a good job tracking the oscillating v⊥ variation for all three376

cases of Φ0, although the phase of the latter approximation is apparently lagging behind.377

As before, the n = 10 term in Eq. (11) is sufficient to describe the overall behavior (com-378

pare the magenta and blue curves). Since η10(t) = Φ0 + 0.1tΩp in this case, the peri-379

odicity of the energy variation is 10Tp in the Bessel sum approximation. (It is slightly380

smaller in the exact solution.)381

The comparison in Figure 5 shows that the dynamics given by the Bessel sum ap-382

proximation can deviate substantially from the full Lorentz solution for some combina-383

tions of initial parameters (such as the case in Figure 5c) and/or for long-term tracing.384

Recall that in simplifying the wave phase in Eq. (10) we have assumed that v⊥ is con-385

stant over time. Although the time scale of the variation of v⊥ is large compared with386

the gyro-period, its effect can accumulate in Eq. (8) to cause the deviations of the Bessel387

sum approximation shown in Figure 5. However, it can be also said that the Bessel sum388

approximation (a typically used technique in the gyro-averaging formulation) is reason-389

ably good in capturing the overall behavior of the proton dynamics, particularly in the390

early phase. This is the reason why the QL theory formulation is applicable for waves391

at ψ = 90◦. In addition, the formulation in the Bessel sum approximation can be use-392

ful to interpret full dynamic evolution of test protons obtained by solving the full Lorentz393

equation. As will be discussed below, one useful term is the weighting factor, (n/ξ)Jn(ξ),394

which is plotted in Figure 6 versus v⊥ with n = 10 and ω = nΩp.395

One prominent feature in Figure 5 is the step-like change in v⊥ which repeats at396

every gyro-period. To better understand how a proton interacts with a MSW at ψ =397

90◦, Figure 7 displays the time evolution of several parameters of a test proton. The ini-398

tial parameters are ω = 10Ωp, B̃z = 0.003B0, and Φ0 = 0 for the assumed MSW, and399

v⊥ = 0.93vA and θ = 0 for the test proton. These parameters allow the test proton400

to see the maximum electric field at θ = 0. Obviously, whenever there is a net increase401

in v⊥, the proton sees a very slowly varying wave phase (Figure 7b), and thus the nearly402

constant Ewx (Figure 7d). Quantitatively, the time derivative dΦ/dt becomes zero when-403

ever Eq. (9) is satisfied, which can be solved for the gyro-phase, θ. If v⊥ = ω/kx, dΦ/dt404

becomes zero at θ = 0 (green vertical dashed line). If v⊥ < ω/kx, there is no real so-405
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Figure 7. Evolution of a single proton parameters interacting with a MSW of ω = 10Ωp. The

initial parameters are B̃z = 0.003B0 and Φ0 = 0 for the MSW and v⊥ = 0.93vA and θ = 0 for

the test proton. From the top panel are (a) v⊥, (b) Φ from Eq. (8), (c) dΦ/dt, (d) cos Φ (pro-

portional to Ewx seen by the particle), and (e) cos Φ cos θ (proportional to v̇⊥ in Eq. (7)) as a

function of time normalized to the proton gyro-period, Tp. The horizontal dashed lines in panel

(a) are drawn at v⊥ = ω/kx (green) and 1.1vA (blue), respectively. The vertical magenta and

brown dashed lines indicate the ±28◦ and ±38.4◦ gyro-phase offsets respectively about t/Tp = 4

and 7.
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lution for θ (see the time t = 0) and if v⊥ > ω/kx, then there are two solutions for θ.406

For example, at v⊥ ≈ 1.1vA the two solutions of Eq. (9) are θ ≈ ±28◦ (indicated by407

the vertical magenta lines). Since in Eq. (7) the term, cos Φ cos θ, represents the accel-408

eration, the area under the curve in Figure 7e indicates the net change in v⊥ over that409

time period. As a result, the test proton experiences a net change in v⊥ for a brief mo-410

ment whenever its gyro-phase passes through zero, whereas the net change in v⊥ aver-411

ages to zero for other regions of the gyro-phase. This net change becomes largest at v⊥412

where the first peak of Jn(ξ)/ξ occurs. For ω = 10Ωp, this value is about 1.1vA, indi-413

cated with the blue dashed lines both in Figures 6 and 7. If v⊥ increases beyond this limit,414

the gyro-phases satisfying Eq. (9) deviate further from zero, where the electric field seen415

by the proton is further reduced and so is the net acceleration; see for example the ver-416

tical brown dashed lines in Figure 7. It is at v⊥ ≈ 1.41vA (equivalently ξ ≈ 14.5) at417

which J10(ξ)/ξ = 0 and the net acceleration becomes approximately zero. On the other418

hand, if v⊥ < ω/kx, dΦ/dt is always positive and there is no real solution for θ that419

satisfies Eq. (9). Nevertheless, the particle slows down when it passes through θ = 0420

and depending on Φ0 it can still experience a net change in v⊥. Since Jn(ξ)/ξ approaches421

zero (see Figure 6), however, the efficiency of acceleration rapidly diminishes with de-422

creasing v⊥.423

Figure 8 schematically depicts the wave-particle interaction for the case of v⊥ >424

ω/kx and Φ0 = θ = 0. The particle sees the maximum value of Ex at locations 1, 3,425

and 5. On the other hand, the condition of Eq. (9) is satisfied at locations 2 and 4. Since426

the x component of the proton’s velocity is vx = v⊥ cos θ, the wave phase velocity, ω/kx,427

becomes the same as vx at locations, 2 and 4. Therefore, up to point 2, the wave catches428

up the proton because vx < ω/kx and its location happens to be behind the crest of429

Ex for this test setup, as shown in Figure 8c. Between points 2 and 4, the proton moves430

faster in the x direction than the wave does because vx > ω/kx during this interval.431

As a result, the proton moves to the other side of the crest, as shown in Figure 8c. Past432

this point, vx < ω/kx again and the proton is passed by the wave for multiple wave-433

lengths until the gyro-phase returns to point 1 in Figure 8b at which the cycle repeats.434

The dynamics of two sample protons interacting with off-integer harmonic MSWs435

of the frequency ω/Ωp = 10.1 and 10.5, respectively, are shown in Figure 9. For both436

cases, the initial parameters are tuned so that at t = 0 the test protons see the maxi-437

mum electric field. Interestingly, the protons experience a step-like increase/decrease in438

energy as well, even though they are supposed to be non-resonant with the off-integer439

harmonic waves, according to the usual cyclotron resonance condition. Recall that for440

the integer harmonic case, the proton sees more or less the same wave phase every time441

its gyro-phase passes through zero (Figure 7d). However, if the wave frequency has a frac-442

tional part (as are the test cases here), the wave phase that the proton sees at θ = 0443

drifts over time and gets out of sync with the gyro-phase. Because of that, the proton444

does not gain or lose energy consecutively as it does when it interacts with an integer445

harmonic MSW (see Figure 5). The de-tuning between the wave phase and the gyro-phase446

is responsible for the longer scale periodicity in the energy variation discussed in Fig-447

ures 5d–5f. An extreme case is when the fractional part becomes half the proton cyclotron448

frequency, as shown in Figures 9c and 9d. In this case, the proton sees an alternating449

wave phase.450

Before concluding this subsection, we examine the effect of wave superposition on451

the proton dynamics. In this test, five monochromatic MSWs of the identical amplitude452

are used with randomly chosen initial phases. (In comparison, Nw = 101 monochromatic453

MSWs have been used to obtain D⊥⊥ previously.) The total root-mean-square ampli-454

tude is 0.001B0. In Figure 10a, the frequencies of the monochromatic waves are ω/Ωp455

= 9.9, 9.95, 10, 10.05, 10.1, respectively, representing a narrowband spectrum centered456

at the 10th harmonic. Eight test protons are traced in this wave field, with the same ini-457

tial v⊥ = 1.1vA but randomly chosen gyro-phase and initial location. Some particles458
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Figure 8. Schematic illustration of the wave-particle interaction occurring at the gyro-phase

where an acceleration occurs in the case of v⊥ > ω/kx and Φ0 = 0. (a) The electric field, Ex,

seen by the test proton. The interval marked by the circled numbers, 1–5, is where the net ac-

celeration becomes positive. The bottom tick labels denote the time normalized to the proton

gyro-period and the top tick labels denote the gyro-phase angle, θ. (b) Proton locations relative

to the guiding center and the velocity vectors of the test proton at the times indicated by the

circled numbers in panel (a). The magnitude of the x component of the velocity, vx = v⊥ cos θ,

relative to the wave phase speed, ω/kx, is denoted in each interval. The background magnetic

field, B0, is coming out of the plane. (c) Proton trajectory in the wave reference frame during

the time period, 1–5, in panel (a). The gray dotted arrows indicate the directions of particle

movement during the intermediate intervals, along with vx to ω/kx.
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Figure 9. Dynamic evolutions of (a and c) v⊥ and (b and d) cos Φ of two test protons in-

teracting with off-integer harmonic MSWs. The initial parameters common to both cases are:

v⊥ = 1.1vA, θ = 0, Φ0 = 0, and B̃z = 0.003B0. (a–b) Result for ω = 10.1Ωp. (c–d) Result for

ω = 10.5Ωp.
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Figure 10. Effect of wave superposition on the test proton scattering. Five monochromatic

MSWs of the identical amplitude are used with randomly chosen initial phases. The total root-

mean-square amplitude is 0.001B0. In panels a and b, the wave frequencies are ω/Ωp = 9.9, 9.95,

10, 10.05, 10.1, respectively, representing a narrowband spectrum centered at the 10th harmonic.

In panels c and d, the wave frequencies are ω/Ωp = 10.1, 10.15, 10.2, 10.25, 10.3, respectively,

representing an off-integer harmonic, narrowband spectrum. Panels a and c display the v⊥ evo-

lutions of eight test protons whose initial gyro-phase and location are chosen randomly. Panels

b and d each display the electric field for the first ten gyro-periods seen by one test proton in-

dicated by a thick black curve in the v⊥ plot. Time is normalized by the proton gyro-period,

Tp.
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get energized while others lose energy, but the main difference from the monochromatic459

case in Figure 5 is that the v⊥ variation exhibits a random walk-like behavior, similar460

to cyclotron resonance shown in Tao et al. (2011) and Liu et al. (2012). In contrast, a461

narrowband spectrum centered at an off-integer harmonic frequency is assumed in Fig-462

ure 10c, where the frequencies are ω/Ωp = 10.1, 10.15, 10.2, 10.25, 10.3, respectively. Even463

with the slightly off-centered spectrum, the maximum deviation in v⊥ is only a fraction464

of that for the integer harmonic case. Figures 10b and 10d display the electric field seen465

by one proton selected from each test group. In both cases, the direction of the electric466

field seen by the proton at θ ≈ 0 changes more quickly as a result of superposition, com-467

pared with the monochromatic case (cf. Figure 7d). Furthermore, in Figure 10d, the change468

in the electric field direction is more frequent in that the direction of Ex that the par-469

ticle sees at θ ≈ 0 flips roughly at every other gyro-period. As a result, only minor de-470

viation in v⊥ ensues when there is no integer harmonic mode in the spectrum. This sim-471

ple test suggests that although low in amplitude, the presence of off-integer harmonic472

MSWs in the vicinity of the integer harmonic mode (see, e.g., Boardsen et al., 2018, Fig-473

ure 2) is important to make the scattering behavior stochastic.474

4 Summary and Discussion475

Calculation of the QL diffusion coefficients typically avoids waves of ψ ≈ 90◦ by476

using a truncated Gaussian model with tanψ as its independent variable, even though477

there is no restriction on the wave normal angle range in the QL formulation of, e.g., Ken-478

nel and Engelmann (1966). Many cases in the inner magnetosphere may be well within479

this constraint because major plasma waves typically have a distribution in wave nor-480

mal angle far away from 90◦. There are, however, wave modes such as MSWs, that can481

exhibit the largest growth rate and amplitude at ψ ≈ 90◦ and thus lie outside the do-482

main of the presumed model. Particularly, the effect of MSWs at quasi-perpendicular483

propagation can be substantial for ring current proton scattering because the high-order484

cyclotron resonances play a dominant role.485

In the present study, we have confirmed the validity of the QL diffusion coefficients486

driven by MSWs of ψ up to 90◦ in two different ways: comparison with the diffusion co-487

efficients from the test-particle method with varying ψ and the direct derivation of the488

diffusion coefficient from the test-particle dynamic equations at ψ = 90◦ assuming an489

electrostatic approximation. In addition, we have investigated in detail the dynamics of490

protons interacting with MSWs at ψ = 90◦. Although in QL theory the resonance con-491

dition is ω = nΩp for a harmonic order n, the presence of off-integer harmonic MSWs492

in the vicinity of the integer harmonic mode (see, e.g., Boardsen et al., 2018, Figure 2)493

is important to make the proton scattering process stochastic.494

One natural question to ask is how important it is to include MSWs with ψ & 89.5◦495

on the proton dynamics in the inner magnetosphere, such as suprathermal proton heat-496

ing (Teng et al., 2019). We cannot answer this question in its fullest extent in the present497

study, but if previous studies are any indication, the importance of MSWs at quasi-perpendicular498

propagation may have be shown in Fu and Ge (2021). Fu and Ge (2021) investigated the499

ring current proton scattering by MSWs having a broadband spectrum confined near the500

magnetic equator in a dipole magnetic field using the test-particle approach. Figure 5501

therein clearly indicates that the energy diffusion rate at ψ = 89.9◦ is maintained as502

strong (if not stronger) as the rate at ψ = 89◦. Therefore, since both the observation (Boardsen503

et al., 2018) and the simulation (Min et al., 2020) suggested substantial wave power at504

quasi-perpendicular propagation, the QL diffusion using the truncated Gaussian model505

will underestimate the ring current proton scattering in a non-negligible way.506

As a final point, some studies attribute very low-energy proton heating frequently507

observed in the inner magnetosphere to the proton scattering by MSWs that sometimes508

accompany the heating. As far as the QL diffusion is concerned, Eq. (17) together with509
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Figure 6 indicates that D⊥⊥ tends to zero rapidly as v⊥ decreases below approximately510

the perpendicular wave phase speed. Although not shown here, we have confirmed from511

the test-particle calculation that the proton scattering becomes negligible at such low512

energy. The inefficiency of MSW-driven proton scattering at low energy has also been513

suggested in previous studies (Curtis, 1985; Horne et al., 2000). Nevertheless, kinetic sim-514

ulations suggested that the low-energy protons experience heating in the perpendicular515

direction with respect to the background magnetic field. So, if the heating is related to516

MSWs, it should be some kind of non-resonant process beyond the QL regime that op-517

erates most effectively on low-energy protons (e.g., Artemyev et al., 2017). Revealing such518

a process is highly relevant to the role of MSWs on thermal protons in the inner mag-519

netosphere and thus deserves further investigation.520
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