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Abstract

In most data assimilation and numerical weather prediction systems, the Gaussian assumption is prevalent for the behaviour

of the random variables/errors that are involved. At the Cooperative Institute for Research in the Atmosphere (CIRA) theory

has been developed for different forms of variational data assimilation schemes that enables the Gaussian assumption to be

relaxed. For certain variable types, a lognormally distributed random variable can be combined in a mixed Gaussian-lognormal

distribution to better capture the interactions of the errors of different distributions. However, assuming that a distribution can

change in time, then developing techniques to know when to switch between different versions of the data assimilation schemes

becomes very important. Given this ability to change the formulation of the data assimilation system enable us to select the

more optimal scheme for the different distributed situations.

In this paper, we present results with a machine learning technique (the support vector machine) to switch between data

assimilation methods based on the detection of a change in the Lorenz 1963 model’s $z$ component’s probability distribution.

Given the machine learning technique’s detection/prediction of a change in the distribution, then either a Gaussian or a mixed

Gaussian-lognormal 3DVar based cost function is used to minimise the errors in this period of time. It is shown that switching

from a Gaussian 3DVar to a lognormal 3DVar at lognormally-distributed parts of the attractor improves the data assimilation

analysis error compared to using one distribution type for the entire attractor.

1



manuscript submitted to JGR: Atmospheres

Non-Gaussian Detection using Machine Learning with1

Data Assimilation Applications2

Michael R. Goodliff1,2, Steven J. Fletcher3, Anton J. Kliewer3, Andrew S.3

Jones3, John M. Forsythe3
4

1Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado5

Boulder6
2National Oceanic and Atmospheric Administration (NOAA) Physical Sciences Laboratory (PSL)7

3Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, USA8

Key Points:9

• Data Assimilation10

• Machine Learning11

• Gaussianity12

Corresponding author: Michael Goodliff, michael.goodliff@noaa.gov

–1–



manuscript submitted to JGR: Atmospheres

Abstract13

In most data assimilation and numerical weather prediction systems, the Gaussian14

assumption is prevalent for the behaviour of the random variables/errors that are in-15

volved. At the Cooperative Institute for Research in the Atmosphere (CIRA) theory16

has been developed for different forms of variational data assimilation schemes that en-17

ables the Gaussian assumption to be relaxed. For certain variable types, a lognormally18

distributed random variable can be combined in a mixed Gaussian-lognormal distribu-19

tion to better capture the interactions of the errors of different distributions. However,20

assuming that a distribution can change in time, then developing techniques to know21

when to switch between different versions of the data assimilation schemes becomes22

very important. Given this ability to change the formulation of the data assimila-23

tion system enable us to select the more optimal scheme for the different distributed24

situations.25

In this paper, we present results with a machine learning technique (the support26

vector machine) to switch between data assimilation methods based on the detection27

of a change in the Lorenz 1963 model’s z component’s probability distribution. Given28

the machine learning technique’s detection/prediction of a change in the distribution,29

then either a Gaussian or a mixed Gaussian-lognormal 3DVar based cost function is30

used to minimise the errors in this period of time. It is shown that switching from a31

Gaussian 3DVar to a lognormal 3DVar at lognormally-distributed parts of the attractor32

improves the data assimilation analysis error compared to using one distribution type33

for the entire attractor.34

1 Introduction35

The assumption that variables, and their errors, are Gaussian distributed is com-36

monplace in areas such as numerical weather prediction and modelling. Research such37

as that undertaken by Perron and Sura in Perron & Sura (2013) has shown that this38

assumption is generally false for atmospheric variables, and that Gaussian variables39

in the atmosphere are rare. The aforementioned statement was based on a sixty two40

year long project from daily data taken from the National Centers for Environmental41

Prediction and the National Center for Atmospheric Research (NCEP-NCAR), using42

the Reanalysis I Project data set. Given this evidence, the need to be able to relax43

the Gaussian assumption for the errors involved in the data assimilation schemes be-44

comes quite important if the analysis error is to be minimised, and thus a possible45

improvement in the subsequent forecast.46

Most of the current formulations of data assimilation, for example variational47

methods such as 3DVar and 4DVar (which are based upon Bayes theorem Fletcher48

(2017)), and ensemble methods such as the Ensemble Kalman Filter (ENKF) Evensen49

& Van Leeuwen (1996), the (local) Ensemble Transform Kalman Filter ((L)ETKF) Ott50

et al. (2004); Wang & Bishop (2003), which are based upon a control theory/weighted51

least squares approach using ensemble members to approximate the analysis mean and52

covariances, and the Maximum Likelihood Ensemble Kalman Filter (MLEF), Zupanski53

(2005), which uses the Kalman filter equations combined with the 3DVar cost function,54

all assume that the errors involved are Gaussian distributed. Other papers who look55

into non-Gaussian data assimilation methods are local particle filters, van Leeuwen et56

al. (2019), and Amezcua & Leeuwen (2014) who looked into Gaussian anamorphosis57

on the EnKF.58

However, at the Cooperative Institute for Research in the Atmosphere (CIRA) at59

Colorado State University (CSU), there has been theory that has been developed, and60

tested, that allows for the Gaussian assumption for the distribution of the errors to be61

relaxed to a lognormal distribution. In Fletcher & Zupanski (2006a) the theory is pre-62

sented for the case where there are lognormal observational errors in 3D. In Fletcher63
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& Zupanski (2006b) a mixed Gaussian-lognormal distribution is presented, and an as-64

sociated cost function that allows for the simultaneous minimisation of Gaussian and65

lognormal errors is presented. The mixed approach was extended to the background66

term in Fletcher & Zupanski (2007), and then tested with the Lorenz 1963 model67

(Lorenz, 1963), Lorenz 63 hereafter, where it is shown here that the z component of68

this model is not Gaussian distributed. The mixed distribution theory was extended to69

a 4DVar type system in Fletcher (2010), and eventually shown for incremental 3DVar70

and 4DVar in Fletcher & Jones (2014). In these papers it is shown that the lognormal71

variant of 3DVar and 4DVar showed improvements in analysis accuracy over the tra-72

ditional Gaussian, and logarithmic transforms method for the z component, but that73

there was also improvement in the analysis error for the x and y components, where74

the errors associated with these components were assumed to be Gaussian distributed.75

However, as shown in the first part of Goodliff et al. (2020), the trajectory of the76

z component of the Lorenz 63 model changes distributions on different parts of the77

underlying attractor, and as such if the data assimilation is to be optimised then these78

changes need to be used to switch from the Gaussian to the mixed distribution-based79

cost functions. In the second part of Goodliff et al. (2020) a support vector machine80

and a neural network machine learning techniques were tested with the Lorenz 6381

model to detect non-Gaussian behaviour. It was shown that these techniques were82

very capable of detecting skewness, and differences in descriptive statistics, in order83

to estimate, and predict, non-Gaussianity.84

Recently, machine learning methods have become very popular in atmospheric85

sciences, especially in areas such as numerical weather prediction and modelling (Scher86

& Messori, 2018) to help find biases and correlations in data, and also to help reduce87

analysis and forecast errors. Pasini and Pelino ((Pasini & Pelino, 2005) and Pasini88

(2008)) used two Lorenz 63 attractors to analyse predictability. There have been many89

other studies using machine learning methods to try and improve weather forecasting90

and climate modelling and the reader is referred to Dueben & Bauer (2018); Rasp &91

Lerch (2018); Scher (2018); Scher & Messori (2019); Weyn et al. (2019) for some of92

these extra examples.93

Given the progress made with machine learning techniques, and the need identi-94

fied above to be able to inform a data assimilation scheme to switch between different95

versions of the cost function, this paper investigates a support vector machine, which96

is a supervised machine learning algorithm, to detect non-Gaussian probability den-97

sity functions in the Lorenz 63 model. This approach is applied to the z component98

of the Lorenz attractor, where the skewness of said z variable is the target data, and99

the x and y components of the attractor are our training data. We use this to then100

apply a ”switch” to our data assimilation method to change between a Gaussian fits101

all cost function to a mixed Gaussian-lognormal based cost function, where the x and102

y components are assumed to have Gaussian error throughout the experiment, and103

that the z component is switching between a Gaussian and a lognormal distribution.104

This switch changes the data assimilation methodology from the traditional Gaussian105

3DVar to a mixed Gaussian-lognormal variant of 3DVar Fletcher & Zupanski (2007)106

based on the distribution estimation given by the support vector machine.107

The remainder of the paper is organised as follows: Section 2 will start with an108

overview of the Bayesian model for the variational data assimilation theories and the109

methods used. We will also discuss the machine learning methodology and how we use110

it with the data assimilation. Section 3 describes the Lorenz 63 model, and section 4111

shows the experimentation using the mixed DA/ML scheme on the Lorenz 63 model112

to improve forecasts. The paper is concluded in section 5.113
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2 Methodology114

In this section we shall present the different data assimilation and machine learn-115

ing techniques that are used in the results presented later.116

2.1 Traditional 3DVar (3DVar-G)117

Variational data assimilation methods estimate the most probable state of the
system, which is the mode of the posterior probability distribution function. In tra-
ditional 3DVar, this comes from Gaussian statistics and is a combination of the back-
ground and the likelihood, with the background term written as:

p (x) =
1

|Bc|
1
2 (2π)

N
2

exp

(
−1

2

(
x− xb

)>
B−1c

(
x− xb

))
, (1)

where the background state, and initial state that is sought, are given by xb and x,
respectively, Bc ∈ RN×N is the background error covariance matrix, and N is the
total number of background variables. The likelihood for Gaussian errors is defined as

p (y|x) =
1

|R|
1
2 (2π)

No
2

exp

(
−1

2
(y − h (x))

>
R−1 (y − h (x))

)
, (2)

where y is the observation, h (x) is the (non)-linear observation operator, R ∈ RNo×No

is the observational error covariance matrix, andNo is the total number of observations.
The next step is to substitute (1) and (2) into Bayes’ theorem

p (x|y) ∝ p (y|x) p (x) , (3)

and seek the state that maximises the probability in (3). However, it is quite often118

easier to work with the equivalent problem that seeks the state that minimises the neg-119

ative log-likelihood of (3), which for the Gaussian definitions presented above results120

in the following cost function,121

J (x) =
1

2

(
x− xb

)>
B−1c

(
x− xb

)
+

1

2
(y − h (x))

>
R−1 (y − h (x)) , (4)

that has to be minimised.122

2.2 Mixed Gaussian-Lognormal 3DVar (3DVar-Mix)123

The mixed Gaussian-lognormal 3DVar data assimilation scheme was first pre-
sented in Fletcher & Zupanski (2007) for both the background and likelihood com-
ponents. This version of 3DVar uses a multivariate lognormal distribution based cost
function for lognormal random variables that is derived through using a similar ap-
proach for Bayes theorem as presented above. Thus, for the lognormal approach the
a priori probability density function is given by

p (x) =

(
N∏
i=1

1

xi

)
1

|BL|
1
2 (2π)

N
2

exp

(
−1

2

(
ln x− ln xb

)>
B−1L

(
ln x− ln xb

))
,

(5)

where BL is the lognormal based background error covariance matrix, which is defined
in terms of expectations of ln x and not x. The equivalent likelihood distribution for
lognormal errors is given by

p (y|x) =

(
No∏
i=1

(h (x))i
yi

)
1

|R|
1
2 (2π)

No
2

exp

(
−1

2
(ln y − ln h (x))

>
R−1L (ln y − ln h (x))

)
.

(6)

–4–



manuscript submitted to JGR: Atmospheres

This then results in the lognormal 3DVar cost function given by

J (x) =
1

2

(
ln x− ln xb

)>
B−1L

(
ln x− ln xb

)
+
(

ln x− ln xb
)>

1N

+
1

2
(ln y − ln h (x))

>
R−1L (ln y − ln h (x)) + (ln y − ln h (x))

>
1No .

(7)

Minimising this cost function gives us the solution to the lognormal 3DVar. For in124

depth information about lognormal 3DVar, refer to Fletcher & Zupanski (2007) and125

Fletcher (2010).126

However, in the results that will be presented later in this paper, the mixed
Gaussian-lognormal approach is utilised which comes from the mixed Gaussian-lognormal
probability density function derived in Fletcher & Zupanski (2006b) where the multi-
variate distribution that is used for the a priori distribution is given by

p (x) =

 N∏
i=p+1

1

xi

 1

|Bmx|
1
2 (2π)

N
2

× exp

(
−1

2

(
xp − xbp

ln xq − ln xbq

)>
B−1mx

(
xp − xbp

ln xq − ln xbq

))
,

(8)

where p is the number of Gaussian random variables, q is the number of lognormal
random variables, such that N = p+q. The mixed distribution error covariance matrix
here is defined as

Bmx ≡


(
εGbp
) (

εGbp
)T (

εGbp

)> (
εLbq

)>
(
εLbq

)(
εGbp

)> (
εLbq

)(
εLbq

)>
 .

where

εGbp ≡ xp − xbp, εLbq ≡ ln xq − ln xbq, (9)

and the superscripts G and L denote the Gaussian and lognormal components. The
mixed Gaussian-lognormal distribution that would be used for the likelihood of Gaus-
sian and lognormal errors is given by

p (y|x) ≡

 N∏
i=p+1

hi (x)

yi

 1

|Rmx|
1
2 (2π)

No
2

× exp

(
−1

2

(
yp − hp (x)

ln yq − ln hq (x)

)>
R−1mx

(
yp − hp (x)

ln yq − ln hq (x)

))
,

(10)

where the observation covariance matrix is assumed to be diagonal and the associ-
ated variances in these entries are calculated as per their distribution that they are
associated with. Thus the associated mixed Gaussian-lognormal cost function is given
by

J (x) =
1

2

(
xp − xbp

ln xq − ln xbq

)>
B−1mx

(
xp − xbp

ln xq − ln xbq

)
+

(
xp − xbp

ln xq − ln xbq

)>(
0p

1q

)
+

1

2

(
yp − hp (x)

ln yq − ln hq (x)

)>
R−1mx

(
yp − hp (x)

ln yq − ln hq (x)

)
+

(
yp − hp (x)

ln yq − ln hq (x)

)>(
0p

1q

)
.

(11)
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It should be noted that it could well be the case that the number of state variables that127

are Gaussian or lognormal may not be the same as those of the observational errors.128

Another important feature to note here is that the mode of the mixed distribution is129

a function of the error covariance matrices, and it is shown in Fletcher (2017) that130

the Gaussian components become a function of the covariances with the lognormal131

components, which then enables a relationship between the Gaussian and lognormal132

components, which is not present in the mode of a Gaussian fits all approach.133

2.3 Mixing Machine Learning into Data Assimilation (3DVar-ML)134

The machine learning method used in this study to classify our data is the Sup-135

port Vector Machine (Nello & Shawe-Taylor, 2000). This method separates classified136

training data with a hyperplane. The support vector machine is a method of super-137

vised learning where we supply a training set and a target set to train our model. In138

this experiment, we use the radial basic function (RBF) kernel, and train the machine139

learning algorithm for 50, 000 time steps of the Lorenz 63 model.140

In this experiment, we predict the probability density function of the z component
of the Lorenz 63 model based on the values of x and y components of the model. Using
x and y as the training data and the z-score of the target data, we have shown (Goodliff
et al., 2020) that we can be highly precise in our predictions of the distribution of z.
The z-score (skewness statistic

√
β1) is calculated and estimated by methods shown

in D’agostino et al. (1990) from the standardised skewness:

√
β1 =

E(X − µ)3

σ3
(12)

where µ and σ are the mean and standard distribution, respectively. Here, a negative141

z-score represents a left (negative) skewed distribution, a positive z-score represents142

a right (positive) skewed distribution, and a z-score of zero refers to a symmetric143

distribution.144

The window length in this study refers to the data around the observation point145

(example, a window length of 11 will be the data 5 points either side of the observation146

+ the observation point). The z-score affects observation generation (see below) and147

which version of 3DVar the machine learning algorithm will choose at each observation148

point.149

Through using the support vector machine to detect the probability of the tra-
jectory, this enables us to utilise this as a switch to decide which data assimilation
method is best at the current point in time. The optimal data assimilation method is
used with the machine learning prediction as:

Method =

{
3DVar-G, if z-score < 1,

3DVar-Mix, otherwise.
(13)

3 Lorenz 63150

As mentioned in the introduction, for the study that we shall present in the next151

section, we will be using the Lorenz 1963 model (Lorenz, 1963). This model is a good152

choice due to it’s simplicity for a dynamic model which also exhibits chaotic behaviour.153

The model is very sensitive to the initial conditions from which it starts, and as such154

can give very different answers even by being out by a few decimal places from the155
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true state, Fletcher (2017). These model equations are as given by156

dx

dt
= −σ (x− y) , (14)

dy

dt
= ρx− y − zx, (15)

dz

dt
= xy − βz, (16)

where x = x (t), y = y (t), z = z (t) are the state variables (where t is time) and157

σ = 10, ρ = 28 and β = 8/3 are parameters. We start the machine learning training,158

the true run, and the data assimilation from different initial states on the attractor.159

4 Experimentation160

The experimentation starts with running the support vector machine algorithm161

on the Lorenz 63 model. We train the support vector machine on variables x and162

y, and the skewness of z as the output (target) data. The training of the machine163

learning method is performed over 50, 000 time steps to obtain a somewhat robust fit164

for the system. This approach is based on the method in Goodliff et al. (2020).165

To generate the observations, we use the machine learning fit to determine the166

probability function at observation time. If the observation is on a positively skewed167

area of the attractor, that is to say that the z-score≥ 1, the observation is generated168

using a lognormal distribution function, else, our observations are generated from a169

Gaussian distribution. Thus the observations for the three components of the Lorenz170

63 model are of the form:171

obsx = xt +Gx (0, σxx) , (17)

obsy = xt +Gy (0, σyy) , (18)

obsz = xt ∗ exp (Gz (0, σzz)) , (19)

where obsx,y,z are the observations, xt is the truth, and Gx,y,z (0, σxx,yy,zz) is a Gaus-172

sian based random number generated with a standard deviation σ. The square of173

these standard deviations, the variance, will form the diagonal entries of the obser-174

vational error covariance matrices, where we are assuming that the observations are175

uncorrelated, and as such the R matrices will only be diagonal. In this study, R = 1176

We then run our three data assimilation schemes: 3DVar-G, 3DVar-Mix, and177

3DVar-ML. Each method is run over 5000 time steps, with 50 runs. Running the178

system for this long negates any biases generated by randomness (Goodliff et al., 2015).179

This is done over a mixture of observation periods to test different linearities, here we180

use (4, 8, 12, 16, 20, 24, 28), and with different window lengths (9, 13, 17, 21, 25, 29) for181

the machine learning skewness detection (Goodliff et al., 2020). The background error182

covariance matrices, B, is fully flow dependent.183

Throughout the development of the mixed distribution approach it became ap-184

parent that there was a sensitivity to the definition of the background error covariance185

matrix that impacted the ability for the mixed based approach to minimize. The rea-186

son for this problem is due to the property that the mode of the mixed distribution187

is a function (sum) of the covariances. To over come this problem a flow dependent188

approach was applied in Fletcher & Zupanski (2007) and all subsequent publications189

associated with the mixed distribution based data assimilation schemes. This flow190

dependency is achieved through using the averages and covariance averages from the191

differences between the previous background trajectory and the current trajectory192

through the time to the next cycle analysis time. This has been shown through the193

non-Gaussian development to help stablise the mixed approach. To highlight the im-194

pact of not updating the background error covariance it can be seen in the results in195
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3DVar-ML:  1.109

Figure 1. Plot comparing 3DVar-G (green), 3DVar-Mix (yellow) and 3DVar-ML (blue) with

an observation period of 4 time steps, with skewness window lengths of 9 (left) and 29 (right)

points. X-axis shows number of runs (each run has 5000 observations) and the y-axis is RMSE,

with a rounded cumulative RMSE for each method in the legend.

Kliewer et al. (2016) that when the dynamics become more Gaussian rather lognormal196

the Gaussian retrieval has a smaller root mean square error than the mixed approach,197

but when the dynamics appear more lognormal then the mixed approach was optimal.198

This is an indicator that flow dependency helps improve the performance of the log-199

normal approach. However, because this was a retrieval system and not a model, there200

was no way to time evolve the solution from the previous retrieval time and hence a201

climatological background error covariance matrix was used.202

In figure 1, we compare the three data assimilation methods with an observation203

period of 4 time steps, and skewness window lengths of 9 points (left) and 29 points204

(right). It can be seen that the 3DVar-ML outperforms both the 3DVar-G and 3DVar-205

Mix in both scenarios. On the left plot, we see 3DVar-G also is more accurate (in terms206

of combined RMSE for x, y and z) than the 3DVar-Mix. On the right plot, we see the207

opposite. In this case, 3DVar-Mix outperforms 3DVar-G. Comparing both plots, the208

shorter skewness window length is more accurate than having a longer window length.209

This could be due to the skewness being accurate for the current observation, but as210

the skewness window length increases, more information from different parts of the211

attractor will be added to the distribution calculations.212

By increasing the observation period to 28 time steps, it can be seen in figure 2213

how the methods work in a more nonlinear setting. On the left plot, with a skewness214

window length of 9 points, 3DVar-ML outperforms both other methods, this result is215

also the case in the right plot where the skewness window length is 29 points.216

By comparing figures 1 and 2, the common result is that 3DVar-ML outperforms217

both 3DVar-G and 3DVar-Mix. It is also seen that as we increase the observation218

period and skewness window length, the RMSE increases. The observation period219

correlation to increase RMSE values is due to the greater nonlinearity of the problem.220

As the data assimilation problem becomes more nonlinear, finding the minimum of221

the cost function becomes a more challenging problem (Goodliff et al., 2015).222

In figure 3 we compare the RMSE of each method at different window lengths.223

As the observation period increases, the RMSE increases. This is expected in data224

assimilation due to nonlinear problems being harder to solve for the data assimilation225

methods. Again, from the results shown in figure 3, the common result for all window226
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Figure 2. Plot comparing 3DVar-G (green), 3DVar-Mix (yellow) and 3DVar-ML (blue) with

an observation period of 28 time steps, with skewness window lengths of 9 (left) and 29 (right)

points. X-axis shows number of runs (each run has 5000 observations) and the y-axis is RMSE,

with a rounded cumulative RMSE for each method in the legend.
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Figure 3. RMSE (y-axis) of all methods with different skewness window lengths, as a function

of different observation periods (x-axis), over 50 runs.
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Figure 4. Skewness Window Length by Observation Period. This graph shows the improve-

ment in RMSE from 3DVar-G to 3DVar-ML

lengths is that 3DVar-ML outperforms 3DVar-G and 3DVar-Mix at all observation227

periods.228

Figure 4 shows the percent improvement in RMSE comparing 3Dvar-G and229

3DVar-ML over the all ranges set above, the improvement is higher in a more lin-230

ear setting, with higher skewness window radii. It can be seen that a larger skewness231

window length improves the RMSE more than a shorter skewness window length.232

This could be due to the larger windows having more data, so that it is better able to233

describe the probability skewness.234

5 Conclusion235

In this paper, we have used a machine learning technique to improve the pre-236

dictability of 3DVar when there is a change in the underlying distribution for the237

background error distribution from Gaussian to lognormal and back to Gaussian again.238

This improvement was achieved through using a support vector machine to detect and239

predict non-Gaussian distributions on the z component of the Lorenz 63 model. This240

model was used due to its simplicity, while being a chaotic system, as it is often used241

to simulate the behaviour of the atmosphere. To determine the improvement through242

using the support vector machine approach three data assimilation methods were com-243

pared: a Gaussian fits all 3DVar, referred to as 3DVar-G, a mixed Gaussian-lognormal244

variant, which was referred to as 3DVar-Mix, and finally a version which used a sup-245

port vector machine to switch between Gaussian and lognormal variants for the z246

component, where this formulation was referred to as 3DVar-ML.247

The support vector machine approach showed promising results when used in248

conjunction with 3DVar. It has been shown before that certain areas of the Lorenz 63249

attractor do better with a lognormal variant of 3DVar, Fletcher & Zupanski (2007), due250

to those areas being lognormally distributed. Here, we have shown that assimilating251

certain areas of the attractor, depending on their probability density function (either252

Gaussian or lognormal distributions), can show improvements with respect to the253

analysis root mean square error.254
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For real world applications applying the support vector machine machine learn-255

ing method to choose different data assimilation types could be a way to relax the256

Gaussian assumption for the background and observational error distributions. These257

results could then imply that the most optimal assimilation method could be changing258

dynamically in time, to be consistent with the more physical behavior of the errors.259

By having this flexibility, we hypothesise that it may improve the forecast for non-260

Gaussian variables, such as used in water vapour mixing ratio retrievals Kliewer et261

al. (2016), as well as in operational numerical weather prediction in the prediction of262

humidity and possible certain hydrometeors. Outside of the discipline of atmosphere263

sciences, areas that use the Gaussian assumption for data assimilation in non-Gaussian264

systems such as space weather (example: solar winds, Lang et al. (2017)) and ocean265

dynamics (example, ocean-biogeochemistry assimilation Goodliff et al. (2019)) could266

also benefit through changing the underlying cost function in their data assimilation267

systems. Implementation for this method into a high-dimensional geophysical appli-268

cation would be computationally low cost (except for training, which is usually done269

once, and offline). The switch would act in real time, giving the predicted optimal ver-270

sion of 4DVar for each variable. In future work, we shall apply non-Gaussian detection271

to augment data assimilation in numerical weather prediction models to determine the272

sensitivity of this training data as well as to quantify the improvement in the forecast.273
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van Leeuwen, P. J., Künsch, H. R., Nerger, L., Potthast, R., & Reich, S. (2019).370

Particle filters for high-dimensional geoscience applications: A review. Quarterly371

Journal of the Royal Meteorological Society , 145 (723), 2335-2365. Retrieved from372

https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3551 doi:373

https://doi.org/10.1002/qj.3551374

Wang, X., & Bishop, C. H. (2003). A comparison of breeding and ensemble trans-375

form Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60 , 1140–1158.376

Weyn, J. A., Durran, D. R., & Caruana, R. (2019). Can machines learn to predict377

weather? using deep learning to predict gridded 500-hpa geopotential height from378

historical weather data. Journal of Advances in Modeling Earth Systems, 11 (8),379

2680-2693. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/380

abs/10.1029/2019MS001705 doi: 10.1029/2019MS001705381

Zupanski, M. (2005). Maximum Likelihood Ensemble Filter. Part I: Theoretical As-382

pects. Mon. Wea. Rev , 133 , 1710-1726.383

–13–


