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Abstract

Spectral model turbulence analysis technique is widely used to derive kinetic energy dissipation rates of turbulent structures (ε)

from different in situ measurements in the Earth’s atmosphere. Essence of this method is to fit a model spectrum to measured

spectra of velocity or scalar quantity fluctuations and thereby to derive ε only from wavenumber dependence of turbulence

spectra. Owing to simplicity of spectral model of Heisenberg (1948) its application dominates in the literature.

Making use of direct numerical simulations (DNS) which are able to resolve turbulence spectra down to smallest scales in

dissipation range, we advance the spectral model technique by quantifying uncertainties for two spectral models, the Heisenberg

(1948) and the Tatarskii (1971) model, depending on 1) resolution of measurements, 2) stage of turbulence evolution, 3) model

used.

We show that model of Tatarskii 1971 can yield more accurate results and reveals higher sensitivity to lowest ε-values.

This study shows that the spectral model technique can reliably derive ε if measured spectra only resolve half decade of power

change within viscous (viscous-convective) subrange. In summary we give some practical recommendations how to derive most

precise and detailed turbulence dissipation field from in situ measurements depending on their quality.

We also supply program code of the spectral models used in this study in Python, IDL, and Matlab.
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Abstract14

Spectral model turbulence analysis technique is widely used to derive kinetic energy dis-15

sipation rates of turbulent structures (ε) from different in situ measurements in the Earth’s16

atmosphere. Essence of this method is to fit a model spectrum to measured spectra of17

velocity or scalar quantity fluctuations and thereby to derive ε only from wavenumber18

dependence of turbulence spectra. Owing to simplicity of spectral model of Heisenberg19

(1948) its application dominates in the literature. Making use of direct numerical sim-20

ulations (DNS) which are able to resolve turbulence spectra down to smallest scales in21

dissipation range, we advance the spectral model technique by quantifying uncertain-22

ties for two spectral models, the Heisenberg (1948) and the Tatarskii (1971) model, de-23

pending on 1) resolution of measurements, 2) stage of turbulence evolution, 3) model used.24

We show that model of Tatarskii (1971) can yield more accurate results and reveals higher25

sensitivity to lowest ε-values. This study shows that the spectral model technique can26

reliably derive ε if measured spectra only resolve half decade of power change within vis-27

cous (viscous-convective) subrange. In summary we give some practical recommenda-28

tions how to derive most precise and detailed turbulence dissipation field from in situ29

measurements depending on their quality. We also supply program code of the spectral30

models used in this study in Python, IDL, and Matlab.31

1 Introduction32

Turbulence measurements in atmosphere and ocean comprise remote sensing tech-33

niques and vast of in situ methods. The most detailed picture of turbulence dissipation34

or intensity fields can only be acquired by in situ measurements. In situ measurement35

techniques in turn, utilize different principles depending on altitude (depth) region and36

consequently its accessibility means.37

Different physical quantities inside turbulent flows when measured with a sufficient38

precision reveal fluctuations around a mean background value. A spectral analysis of these39

fluctuations shows that they are distributed in a continuous wavenumber space and might40

obey a mathematical law called spectrum function. In the case of the velocity fluctua-41

tions one may find spectrum functions which are the Fourier transform of correlation func-42

tions (see e.g., Hinze, 1975). Similar functions can also be applied to describe spectral43

distribution of other, scalar quantities ϑ, also referred to as tracers. In general case these44

functions are three dimensional (3D) in space and include time dependency. The most45

measurement techniques, however, do measure a quasi-instant one-dimensional (1D) cross46

section of this 3D-spectrum. This technical limitation can normally be circumvented by47

assuming an isotropy of the spectral distribution of the measured fluctuations allowing48

for 3D–to–1D transform of the spectrum functions. Also, the measurements must be per-49

formed during a short time period so that the time dependence can be neglected.50

Lübken (1992) introduced a spectral model method for derivation of turbulence en-51

ergy dissipation rate, ε, based on a theory of spectral distribution of a scalar quantity52

in turbulence field (see e.g., Tatarskii, 1971; Hinze, 1975; A. M. Obukhov, 1988). This53

technique was successfully applied to fluctuations of neutral air density measured in meso-54

sphere by sounding rockets (e.g., Lübken, 1992, 1997; Lübken et al., 1993, 2002; Strel-55

nikov et al., 2003, 2013, 2017, 2019; Szewczyk et al., 2013) and to velocity fluctuations56

measured by stratospheric balloons Theuerkauf et al. (2011); Haack et al. (2014); Schnei-57

der et al. (2015, 2017); Söder et al. (2019, 2020). However, the underlying theory and58

therefore the ε-derivation technique are based on assumptions which might introduce some59

uncertainties, which are not quantified yet.60

In last decades direct numeric simulations (DNS) were successfully used to char-61

acterize the structure, dynamics, and anisotropy of turbulence (e.g., Fritts et al., 2003,62

2006). Early DNS studies only captured limited inertial range turbulence dynamics, nev-63

ertheless enabled an assessment of the vorticity dynamics driving the turbulence cascade64
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Arendt et al. (1997); Arendt (1998); Andreassen et al. (1998); Fritts et al. (1998). The65

next generation DNS already allowed for simulations of turbulence field down to fine scales66

within dissipation range with sufficient details (e.g., Fritts et al., 2009b,a). Highly re-67

solved velocity field produced by such DNS allows for precise and detailed derivation of68

kinetic energy dissipation rate with spatial resolution close to those achieved for the ve-69

locity field. Since also scalar fields of potential temperature fluctuations are calculated70

in these DNS, it is possible to relate them to the dissipation of the kinetic energy. Re-71

sults of high resolution DNS of gravity wave (GW) instabilities and the produced vol-72

umetric data are shown and discussed in details in e.g., Fritts et al. (2009b,a).73

More recent DNS by Fritts et al. (2013) and Fritts & Wang (2013) studied mul-74

tiscale dynamics (MSD) accompanying GW instability arising as a result of GW–fine struc-75

ture (GW–FS) interactions. These simulations enlightened differences in morphologies76

of dissipation fields at different stages of evolution accompanying different types of in-77

teractions. Such simulations reproduced fine structure of the velocity and dissipation fields78

and its evolution in time and were successfully used to explain observations of mesosphere/lower79

thermosphere (MLT) dynamics (Fritts et al., 2017).80

Our goal in this work is to apply the spectral model analysis technique to the fluc-81

tuation fields derived in the DNS and thereby to derive the energy dissipation rates ex-82

actly as it is done for in situ measurements. The derived dissipation fields are to be com-83

pared with those ones calculated in DNS. This will yield an assessment of the biases in-84

troduced by the spectral model analysis technique.85

It is worth noting that the direct measurement of turbulence energy dissipation rates86

is rather challenging, especially in the natural environment (i.e., atmosphere and ocean).87

This makes the DNS a unique and valuable tool for validation of such data analysis tech-88

niques and for quantification of their precision.89

This paper does not aim at discussing the merits of theories and underlying assump-90

tions, but to assess the precision and compare uncertainties of the spectral model tech-91

nique when applying particular spectral models to analysis of in situ measurements. For92

detailed discussion and comparison of those assumptions and gained results the reader93

is referred to e.g., Reid (1960); Tatarskii (1971); Hinze (1975) and to number of more94

focused works that address specific topics of analysis techniques or review articles cited95

in our manuscript.96

The paper is structured as follows. In the next section the spectral model analy-97

sis technique is briefly described and main equations are summarized. The DNS data98

itself and how the analysis is applied to these data are described in Sec. 3 and 4, respec-99

tively. The results of this analysis are described in Sec. 5 and critically discussed in Sec. 6.100

In Sec. 7 we summarize the main results.101

2 Spectral model technique102

Lübken (1992) developed a practical algorithm to derive turbulence kinetic energy103

dissipation rate, ε, from a measured universal equilibrium range spectrum. The univer-104

sal equilibrium range of turbulent spectrum includes inertial subrange, where energy trans-105

fer occurs from large to small-scales (from low to high wavenumbers) and the inertial forces106

dominate the motion, and all scales smaller than that (e.g., Hinze, 1975).107

Here we shortly summarize theoretical basis for the spectral model technique. This108

technique utilizes a single expression spectral model which must simultaneously describe109

both inertial (inertial-convective) and viscous (viscous-diffusive) subranges for velocity110

(scalar) fluctuations fields. That is why this method is called spectral model technique.111

–3–
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Such simple spectral models which can provide suitable estimates for the one-dimensional112

velocity spectrum E(k) or scalar spectrum Eϑ(k) as a function of energy dissipation rate113

at a range of wavenumbers evolved from a series of works (e.g., Heisenberg, 1948; Tatarskii,114

1971; Driscoll & Kennedy, 1981, 1983, 1985; Lübken, 1992; Lübken et al., 1993, and ref-115

erences therein). These models e.g., of Heisenberg (1948), Tatarskii (1971), and Driscoll116

& Kennedy (1985) are based on an assumed form for the spectral energy transfer rate117

(see e.g., Hinze, 1975, for details) and showed a good agreement with universal equilib-118

rium range spectral data measured in the Earth atmosphere (e.g., Lübken, 1992, 1997;119

Lübken et al., 1993, 2002; G. Lehmacher & Lübken, 1995; Rapp et al., 2004; Strelnikov120

et al., 2003, 2013; G. A. Lehmacher et al., 2018).121

In general case spectra of scalar field at high wavenumbers beyond the inertial sub-122

range additionally depend on scalar properties described by the dimensionless numbers123

Sc or Pr. Batchelor (1959) derived asymptotic expressions for scalar spectra for cases124

of very high and very low Sc (Pr). These results can be further used to derive a Sc- (Pr-125

) dependent spectral model (e.g., Hill, 1978; Driscoll & Kennedy, 1985). We do not con-126

sider the Sc (Pr) dependencies in this work but only treat cases where Sc (Pr) value is127

close to unity, which covers large enough range of scalar fields and available measure-128

ments. Also, in what follows we only deal with a scalar spectrum and the velocity spec-129

trum can be treated in a similar way.130

Several works suggested an interpolation formula which describes both inertial-convective131

and viscous-diffusive subranges (e.g., Heisenberg, 1948; Novikov, 1961; Grant et al., 1962a;132

Tatarskii, 1971; Driscoll & Kennedy, 1985; Smith & Reynolds, 1991). The spectral model133

technique aimed at derivation of the kinetic energy dissipation rate ε from a measured134

spectrum Eϑ. Lübken’s idea was to only use the scale (wavenumber) dependence of the135

spectrum Eϑ(k) and not its absolute level. By fitting a model spectrum to the measured136

one the scale (wavenumber) of the transition between the inertial-convective and viscous-137

diffusive subranges, l0 = 2π/k0 (inner scale), can be derived quite precisely. Energy dis-138

sipation rate is then directly derived from the inner scale l0. The advantage of this ap-139

proach is that normalization of the spectrum does not affect the ε-derivation results. In140

other words, there is no need for precise measurements of absolute values of fluctuations,141

but only relative ones.142

By applying some algebra Lübken adapted the original interpolation formulas to143

the form applicable to measurements. Thus, the adapted Heisenberg (1948) spectrum144

reads (Lübken et al., 1993):145

Eϑ(k) =
Γ(5/3) sin(π/3)

2π
a2

εϑ
ε1/3

fa
k−5/3(

1 +
[
k
/
k0

]8/3)2 (1)

where k0 = 2π/l0 is the wavenumber for inner scale l0, a2 = 1.74 and fa = 2 are con-146

stants discussed in Lübken (1992) and in Sec. 6, and Γ is gamma function.147

Similarly, the model of Novikov (1961), also described in the book of Tatarskii (1971)148

and, after Lübken (1992) and Lübken (1997) often referred to as “Tatarskii model” is149

described by the equation (Lübken, 1992):150

Eϑ(k) = εϑ · ε̃−3/4 · 2π · b5/6
∫ ∞
y

y−8/3e−y
2

dy (2)

where ε̃ = ε/(0.033 · a2)3 is normalized kinetic energy dissipation rate, y = k/k0 is a151

dimensionless wavenumber, k0 is the wavenumber for inner scale l0, b = (3Γ(5/3)faπν/Pr
mol
n )3/2,152

and the Prandtl number for molecular diffusion of air Prmol
n = 0.83.153

The key feature of the adapted models is that they explicitly include l0(ε) depen-154

dence in the form:155

l0 = C · η = C ·
(
ν3

ε

)1/4

(3)
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where η is Kolmogorov scale and the dimensionless constant C is model dependent.156

There are different approaches how to derive the constant C. Thus e.g., A. Obukhov157

(1949) defined the inner scale l0 as intersection of asymptotic extensions of the struc-158

ture functions (which can be related to the spectrum) in inertial and viscous subranges.159

A. Gurvich et al. (1967) suggested to derive this constant empirically based on measured160

spectra. Lübken utilized relation between second derivative of structure function at zero,161

Hϑ(0) and 3D spectrum Φϑ (e.g., Tatarskii, 1971; Hinze, 1975; A. S. Gurvich et al., 1976):162

d2

dr2
Hϑ(0) =

1

fa

2

3

εϑ
Dϑ

=
8π

3

∫ ∞
0

Φϑ(k)k4dk (4)

The 3D spectrum and its 1D intersection with all the assumptions mentioned above are163

related via (e.g., Tatarskii, 1971; Hinze, 1975; A. S. Gurvich et al., 1976):164

Φϑ(k) = − 1

2πk

dEϑ(k)

dk
(5)

Combining Eq. 4 and Eq. 5 Lübken (1992) and Lübken et al. (1993) derived:165

CH =
lH0
η

= 2π

(
9a2faΓ(5/3)sin(π/3)

16Prmol
n

)3/4

= 9.90 (6)

CT =
lT0
η

= 2π

(
3 · (5/3)a2faΓ(5/3)sin(π/3)

4πPrmol
n

)3/4

= 7.06 (7)

where superscript H and T denotes Heisenberg or Tatarskii model, respectively.166

Lübken (1992), Lübken et al. (1993), and Lübken (1997) applied the spectral model167

technique using models of Heisenberg (1948) and Tatarskii (1971), i.e. Eq. 1 and 2, to168

relative fluctuations of neutral air density measured in mesosphere. Based on a limited169

set of data Lübken et al. (1993) and Lübken (1997) showed that application of these mod-170

els reveals values of the derived energy dissipation rates which are close to each other.171

Since then mostly the model of Heisenberg (1948) has been applied by scientific com-172

munity for derivation of turbulence energy dissipation rate, ε, based on the Lübken’s spec-173

tral model technique (e.g., Blix et al., 2003; Kelley et al., 2003; Croskey et al., 2004; G. A. Lehmacher174

et al., 2006; Das et al., 2009; Chandra et al., 2012; G. A. Lehmacher et al., 2018; Triplett175

et al., 2018). The main reason for that was relative simplicity of implementation and nu-176

merical stability of the Heisenberg (1948) model. Strelnikov et al. (2017, 2019) and Staszak177

et al. (2021) applied Lübken’s technique utilizing both Heisenberg (1948) and Tatarskii178

(1971) models and showed that the results can reveal considerable discrepancies as far179

as absolute ε-values are concerned, however yielding very similar relative vertical struc-180

ture and variability.181

3 DNS data182

In this work we make use of the DNS by Fritts et al. (2013) and Fritts & Wang (2013)183

where they studied spanwise- and domain-averaged turbulence evolutions and statistics184

which yields knowledge on evolution of turbulent patches as whole, as well as their mor-185

phological and dynamical properties. In particular, Fritts et al. (2013) studied influences186

of FS orientation and character on GWs, instability, and turbulence evolutions arising187

in these flows.188

Fig. 1 shows an example of 2D slices taken from 3D fields obtained by Fritts et al.189

(2013). The dimensions of the shown surfaces are normalized to the vertical size of the190

simulation domain. For a typical GW-breakdown scenario in mesosphere this vertical191

size will be 3 to 15 km. The shown 2D-fields are tilted at an angle of ∼ 5 ◦ for consis-192

tency and comparability with figures in Fritts et al. (2009b,a, 2013), Fritts & Wang (2013),193

and Fritts et al. (2017).194

–5–
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As in their previous studies Fritts et al. (2013) and Fritts & Wang (2013) solve the195

nonlinear Navier-Stokes equations subject to the Boussinesq approximation in a Carte-196

sian domain aligned along the phase of the primary GW.197

The equations were non-dimensionalized with respect to the GW vertical wavelength198

λz and the buoyancy period, Tb = 2π/N . In those DNS the following parameters were199

used: a kinematic viscosity ν =1 m2s−1 and a Prandtl number Pr = 1; a sufficiently200

high value of Reynolds number Re = λ2z/νTb = 2 × 105 appropriate for a GW in the201

mesosphere having λz ∼3 to 15 km.202

The dissipation data calculated in these DNS are directly derived from the gradi-203

ents of the velocity fluctuations (see e.g., Landau & Lifshitz, 1987) which results that204

the dimensions of the εDNS-fields are 2/3 of the dimensions for the velocity (or poten-205

tial temperature) fields.206

An example of distributions of the three parameters obtained in the DNS in vertical-207

streamwise surfaces, i.e. the data to be analyzed in this work is shown in Fig. 1. These208

data were taken at DNS time of t = 11.5Tb when the structures were in its well devel-209

oped mature state. In this work we analyze snapshots of the DNS data taken at differ-210

ent times which includes different stages of turbulence evolution. In the next sections211

we will demonstrate the results of fluctuations data analysis using two DNS times t =212

11.5Tb and t = 20.0Tb. This will mainly show two largely different stages of fully de-213

veloped and strongly decayed turbulence from the domain-average point of view. How-214

ever, the same data also include, as their internal parts, portions of newly created, de-215

veloped, and decayed structures in smaller regions of the simulation domain. We will ad-216

dress this in detail in Sec. 6.217

In situ measurements (either from rockets, aircraft, or balloons) do only measure218

a single profile across the 2D-field shown in Fig. 1a or Fig. 1b. Such a profile is a sub-219

ject for further analysis using the described in Sec. 2 spectral model technique.220

4 Analysis approach221

For an incompressible flow (i.e. for motions significantly slower than speed of sound)222

under Boussinesq approximation relative density fluctuations (originally studied by Lübken,223

1992) reveal the same structuring as relative fluctuations of potential temperature (e.g.,224

Nappo, 2002):225

θ′/θ = −ρ′/ρ (8)

where θ′ and θ are fluctuations and mean of the potential temperature; ρ′ and ρ are fluc-226

tuations and mean values of air density.227

This implies that by analyzing the potential temperature fluctuations derived in228

these DNS we can directly draw conclusions on the spectral model technique originally229

introduced by Lübken (1992). By taking a profile from the simulated fluctuations of po-230

tential temperature (Fig. 1b) and applying Lübken’s spectral model analysis technique231

(Sec. 2) one can derive a profile of the turbulence kinetic energy dissipation rate, ε. The232

latter, in turn, can be compared with the profile directly calculated in DNS (Fig. 1c).233

As mentioned in Sec. 3, the original DNS data are dimensionless. To make it rep-234

resentative of MLT dynamics one has to scale the computational domain by a vertical235

wavelength of GW, λz. The kinetic energy dissipation rate can be scaled to the real phys-236

ical units by the factor Sε = λ2z/T
3
b (Fritts & Wang, 2013; Fritts et al., 2017). For the237

data demonstrated in this work we used λz=10 km and Tb=5 min, which are quite typ-238

ical for MLT region.239

Thus, our analysis approach is as follows. A profile of potential temperature fluc-240

tuations taken from the DNS data represents the density fluctuations measured in situ241

–6–
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(a) Velocity fluctuations.

(b) Potential temperature fluctuations.

(c) Kinetic energy dissipation rate.

Figure 1: Example of 2D fields derived by DNS. DNS-Time=11.5 (∼developed turbu-
lence). Lighter colors correspond to higher values.

by, for example a rocket-borne instrument. This profile is to be analyzed by the spec-242

tral model technique, yielding a profile of the turbulence kinetic energy dissipation rates,243

ε. We will apply two spectral models, the Heisenberg (1948) and the Tatarskii (1971)244

model, thereby deriving profiles of εH and εT , respectively. The derived profiles will be245

compared with profile of the energy dissipation rate calculated in the DNS, εDNS .246

As noted by Fritts et al. (2017), their DNS studies show that a single (or even sev-247

eral sporadic) ε-profile(s) cannot adequately characterize turbulence field in terms of their248

mean ot highest values. Therefore, it makes more sense to obtain some statistics by an-249

alyzing vertical-streamwise cross sections, similar to those shown in Fig. 1b, by subse-250

quently deriving ε-profiles and, thereby constructing εH - and εT -surfaces for compar-251

–7–
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ison with the εDNS-surface (Fig. 1c). This will also yield a statistical basis for assess-252

ment of biases introduced by the fluctuation data analysis technique.253

The exact analysis technique is described in detail by e.g., Strelnikov et al. (2003)254

or Strelnikov et al. (2013). It is based on theory and models developed by Lübken (1992)255

and Lübken et al. (1993) and summarized in Sec. 2, but utilizes wavelet spectral anal-256

ysis technique instead of the Fourier transform originally used by Lübken. Advantage257

of the wavelet analysis is that it yields much higher spatial (vertical) resolution, theo-258

retically (in ideal case) the same as for the measured fluctuations profile. In practice, how-259

ever, it is usually more reasonable to limit the resolution of the analysis (to approximately260

30 to 100 m in case of rocket measurements in MLT) because of smoothing properties261

of the wavelet analysis itself and because of noisiness of real measurements (see Strel-262

nikov et al., 2003, 2013, for details). In this study we do not reduce the resolution of the263

analysis to achieve the most detailed comparison of the turbulence dissipation fields. Also,264

for the same reason we interpolate the dissipation fields derived in DNS (εDNS) to the265

resolution of fluctuations data. This makes the εDNS and analysis results εH and εT to266

be directly comparable with each other.267

5 Results268

In this section we show the results of analysis of the potential temperature fluc-269

tuations data and compare them with the εDNS-values directly derived in the DNS. First,270

we show a single profile randomly chosen from the vertical-streamwise cross section. We271

note that any profile within the analyzed surfaces shows regions of perfect, good, and272

strongly biased ε-values. Our goal is to find out when the biases occur and quantify how273

strong these biases are depending on particular dynamical situation. Next, we compare274

the entire surfaces of the energy dissipation rates in terms of single values and their statis-275

tics. As noted above, the DNS data were scaled to values typical for MLT and the re-276

sultant computational domain was between 80 and 90 km altitude. The following dis-277

cussion will use this altitude range for simplicity.278

5.1 Profiles279

To demonstrate a typical result of the ε-derivation we show in Fig. 2 profiles of the280

kinetic energy dissipation rates. The blue profile is directly taken from the DNS data281

whereas orange and green profiles represent the analysis results by using the Heisenberg282

and Tatarskii spectral models, respectively. It is seen, that in the regions of strong tur-283

bulence (ε & 1mW · kg−1, above 85 km and around 80 km) both models show values284

close to the εDNS . In the region where DNS reveals low ε-values (ε < 1mW · kg−1),285

analysis results show different deviations. Mean ratios of the derived-to-DNS ε-values286

are εT /εDNS=1.07 and εH/εDNS=1.14 for Tatarskii and Heisenberg models, respectively.287

To see more details in the region of a good agreement between εDNS and εH,T we288

show in Fig. 3 a smaller altitude range with the same profiles. It is now seen that the289

derived energy dissipation rates closely reproduce general behavior of the εDNS-values290

directly calculated in DNS. The analysis results, i.e. εT and εH , sometimes even coin-291

cide with the εDNS-values. The reasons for and implications of the deviations between292

εDNS and εH,T are discussed in Sec. 6.293

As mentioned in Sec. 4, when real measurements are analyzed, as a consequence294

of analysis technique limitations (discussed in Sec. 6), a smoothing is normally applied.295

Therefore, to infer the effect of smoothing on the assessment of biases in estimation of296

the energy dissipation rates from a single in situ sounding, we show smoothed ε-profiles297

in Fig. 4. This plot enlightens several features of the analysis results. First, general struc-298

ture of the 1D section of dissipation field is well reproduced by both εH - and εT -profiles:299

One can easily recognize major wave-like variations in all three profiles. Herewith the300

–8–
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Figure 2: Example of vertical profiles of the derived energy dissipation rates. Blue profile
shows the DNS data, whereas the orange and green profiles show the analysis results us-
ing the Heisenberg and Tatarskii spectral models, respectively. gray bold horizontal lines
mark altitudes where power spectra are taken from for demonstration in section 5.2.
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Figure 3: Same as Fig 2 but for smaller altitude range.

results of the Tatarskii model fit look much closer to the “true”, i.e. εDNS-values. Sec-301

ond, the high ε-values, i.e. ε & 10−3 W kg−1, derived by the spectral model technique302

based on both models are quite close to the “true” values. Also, both spectral models303

show results which are close to each other in the regions of high energy dissipation rates.304

In regions of low dissipation the spectral model analysis results underestimate the amount305

of energy dissipation. Herewith the Heisenberg model reveals a much stronger bias. At306

the same time, the Heisenberg results slightly overestimate energy dissipation rates at307

the peaks of ε-profile.308
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Figure 4: Same as Fig 2 but smoothed over ∼1 km.

5.2 Spectra309

In Fig. 5 we further demonstrate performance of the spectral model analysis tech-310

nique by showing the spectra which yield the energy dissipation rates. The blue line shows311

a global wavelet spectrum at altitude of 85.413 km. This altitude is marked by a gray312

line in Fig. 2.313
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Figure 5: Example of power spectra which yield the ε-profiles shown in Fig. 2 taken at
an altitude of 85.413 km. Blue, orange, and green lines show the DNS, Heisenberg, and
Tatarskii data. Bold vertical dashed lines show the inner scales (l0 = 2π/k0) derived from
the fit of the Heisenberg (lH0 = 9.9(ν3/εH)1/4) and Tatarskii (lT0 = 7.06(ν3/εT )1/4)
models in orange and green, respectively. Vertical dashed-dotted lines show the in-
ner scales derived from the DNS data (εDNS-value) based on the Heisenberg model
(lH0 = 9.9(ν3/εDNS)1/4) and Tatarskii (lT0 = 7.06(ν3/εDNS)1/4) model in orange and
green, respectively.

The orange and green lines show the fitted spectra of Heisenberg and Tatarskii mod-314

els, respectively. The values of energy dissipation rates derived by our analysis are εH=50 mW kg−1315

and εT =40 mW kg−1, whereas “true” value calculated in DNS is εDNS=50 mW kg−1.316

We recall, that these ε-values are derived from the transition scale l0 = 2π/k0 between317

the inertial-convective and the viscous-diffusive subranges (inner scale) as described in318
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Figure 6: Same as Fig. 5, but for an altitude of 86.367 km.
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Figure 7: Same as Fig. 5, but for an altitude of 86.470 km.
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Figure 8: Same as Fig. 5, but for an altitude of 83.109 km.

Sec. 2. The inner scales for the Heisenberg and Tatarskii models are marked by the ver-319

tical bold dashed lines in orange and green, respectively. To compare these inner scales320

with the “true” values inferred from the DNS we show two vertical dashed-dotted lines,321

which were derived from the εDNS-value. These lines were derived based on the Heisen-322

berg model as lH0 = 9.9(ν3/εDNS)1/4 and on the Tatarskii model as lT0 = 7.06(ν3/εDNS)1/4,323

and are shown in orange and green, respectively. This is an example of perfect agree-324

ment between DNS data and the analysis results. However, already this plot demonstrates325

how precise (or, in turn, uncertain) are the spectral functions of both models in the dis-326

sipation range. One can clearly see that at wavenumbers k & 0.6 cycles/m the spec-327

tral slopes of the both models increasingly deviate from the DNS spectrum. This, how-328

ever, obviously does not affect the result of derivation of the energy dissipation rate, ε.329

This is because the analysis technique only relies on a small part of the spectrum where330

the transition from the inertial to viscous subrange takes place.331
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Figure 9: Same as Fig. 5, but for an altitude of 82.073 km.

A more detailed analysis of the derived spectra shows that there are different sit-332

uations of how the DNS spectra are approximated by the model spectra. Fig. 6 shows333

an example when the Tatarskii model with its exponential drop-off in the dissipation range334

perfectly follows the DNS spectrum. This, however does not imply coincidence of the335

energy dissipation rate values εT =6·10−4 W kg−1 and εDNS=4·10−4 W kg−1, even though336

the difference is not significant. The Heisenberg model in this case shows a somewhat337

opposite situation. The dissipation range slope of k−7 only approximately follows the338

DNS spectrum and only in the nearby region close to the transition wavenumber (scale).339

At the same time, the derived energy dissipation rate εH=7·10−4 W kg−1 is still in an340

acceptably reasonable agreement with the εDNS-value of 4·10−4 W kg−1. These spec-341

tra correspond to the DNS scaled altitude of 86.367 km. This height is marked in both342

Fig. 2 and 3.343

Yet another example of the comparison of DNS with model spectra is shown in Fig. 7.344

In this case the Tatarskii model demonstrates a somewhat acceptable but far from be-345

ing precise approximation of the DNS-spectrum in the dissipation range. At the same346

time, the derived value of the energy dissipation rate εT =7·10−2 W kg−1 can be consid-347

ered as acceptably close to the DNS value of εDNS=9·10−2 W kg−1. The Heisenberg model,348

in turn, follows quite close the DNS spectrum in the beginning of the dissipation range.349

Whereas the derived value of the energy dissipation rate εH=2·10−2 W kg−1 is obviously350

underestimated.351

In Fig. 8 and 9 we show spectra from the low dissipation part of the profiles shown352

in Fig. 2, that is below 85 km height. In these cases the approximation of the DNS-spectra353

by the model-spectra is, like in previous cases, acceptably reasonable. The derived val-354

ues of the energy dissipation rates are, however, strongly underestimated. These strong355

biases are discussed in Sec. 6.356

5.3 Statistics357

After subsequent analysis of every profile of the potential temperature fluctuations358

in a 2D vertical-streamwise slice of a DNS volume we reconstruct a surface of the energy359

dissipation rates.360

An example of such a 2D section of the analyzed turbulence field is shown in Fig. 10,361

where panels a, b, and c show the “true” ε-field, Tatarskii, and Heisenberg model results,362

respectively.363

These figures demonstrate the same features as was inferred from the profile anal-364

ysis in Sec. 5.1, but with stronger statistical basis. Every surface in Fig. 10 consist of ap-365

proximately six thousands profiles or ∼17 millions points (single ε-values). The main fea-366
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(a) DNS.
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(b) Tatarskii model.
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(c) Heisenberg model
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Figure 10: 2D fields of the kinetic energy dissipation rates. Panel (a) shows the “true”
DNS data used as reference (the same as Fig. 1c). DNS-time=11.5, i.e. for well devel-
oped turbulence. Panels (b) and (c) show analysis results using Tatarskii and Heisenberg
models, respectively. Lighter colors correspond to higher ε-values. Panel (d) shows the
same data as in panels (a), (b), and (c), but as histograms of ε-distributions and fitted
PDFs. Vertical dashed lines show medians of corresponding data sets (here the DNS and
Tatarskii results almost coincide and are hardly distinguishable).

tures of the spectral model analysis technique that can be inferred from the comparison367

of the 2D slices of the “true” and “measured” turbulence fields are as follows.368

• Morphology of the turbulence field, i.e. general structure with major features is369

well reproduced by the analysis regardless of spectral model used.370

• Main regions of strong dissipation are reconstructed quantitatively quite well.371

• Analysis technique is not sensitive enough in the regions of weak dissipation, i.e.372

underestimates low ε-values.373

• Heisenberg model reveals much lower sensitivity to low energy dissipation rate val-374

ues than the Tatarskii model.375

• Heisenberg model tends to overestimate highest ε-values.376

• Analysis technique is not sensitive enough to resolve very fine structure of the en-377

ergy dissipation field.378

Next, in Fig. 10d we examine distributions of the energy dissipation rate values from379

the 2D slices shown in Fig. 10a, b, and c. Histograms in orange, green, and blue show380

ε-distributions for the “true” (DNS), Tatarskii, and Heisenberg analysis results, respec-381

tively. Solid lines show Gaussian functions fitted to the respective distributions in log-382

arithmic domain, i.e. represent lognormal distributions of the corresponding energy dis-383

sipation rates. Vertical dashed lines mark median value for each distribution. This fig-384

ure shows some more details which are not obvious when examining the surface plots shown385
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(b) Tatarskii model.
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(c) Heisenberg model
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(d) Distributions.

Figure 11: Same as Fig. 10, but for DNS-time=20.0, i.e. for decaying turbulence.

in Fig. 10a-c. First of all, all three distributions can be described by the Gaussian func-386

tion acceptably well. Median value inferred from distribution when Tatarskii spectral387

model applied almost coincides with the median of the “true” DNS distribution. How-388

ever, both tails of the entire Tatarskii-distribution are slightly expanded relative to the389

εDNS-distribution. This means, that the highest εT -values are overestimated whereas390

the lowest values of dissipation rates are underestimated. Distribution of the Heisenberg391

model results supports the conclusions summarized above and clearly demonstrates that392

the median εH -value is almost one order of magnitude smaller than the median εDNS .393

The statistics shown so far reflects features of the spectral model analysis technique394

applied to idealized in situ measurements of well developed active turbulence. Idealized395

measurements means that they are capable of resolving full range of fluctuations down396

to finest scales. By choosing the DNS time t = 11.5 we took for analysis a fully devel-397

oped active turbulent structure. This implies, that the assumptions used in classical tur-398

bulence theory are satisfied as much as it can be achieved in these simulations.399

In Fig. 11 we show another sample of DNS data, taken at a later stage of evolu-400

tion of the turbulent structure and the analysis results. The DNS time is t = 20.0 mean-401

ing that turbulence is already decaying in these data. Even though some classical assump-402

tions of fully developed turbulence most probably do not hold in this case, the key fea-403

ture for application the spectral model technique is still present. Namely, at this stage404

the decaying turbulence still has a prominent inertial and the viscous subranges. From405

analysis of Fig. 11a-c one can draw the same conclusions as for the case of the developed406

structure shown above (Fig. 10). However, the histogram plot shown in Fig. 11d reveals407

also some differences if compared with Fig. 10d. First, distributions of the results de-408

rived using both spectral models are shifted to lower values compared to the developed409

turbulence case shown in Fig. 10d. Second, distribution width of the Heisenberg model410
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results is significantly narrower than for the developed case and its width is quite close411

to those of εDNS .412

5.4 Sensitivity to instrumental noise413

As noted in the previous section, we applied the spectral model analysis technique414

to the DNS fluctuations-data assuming there were no instrumental noise. This is what415

we called idealized measurements. In real measurements the smallest amplitudes of the416

measured quantities (e.g., density fluctuations) are usually hidden by instrumental noise.417

This results in a measured spectrum which only shows a low wavenumber (large scale)418

part of the viscous subrange. To our knowledge there are no publications which show419

spectra measured down to Kolmogorov scale. This technical imperfection of the in situ420

measurements motivated us to perform a sensitivity study to asses how experimental lim-421

itations affect the analysis results.422

Fig. 12 shows schematics to demonstrate how the instrumental noise affects 1D in423

situ measurements of turbulence spectra. Bold black curve shows a spectral function cal-424

culated based on Tatarskii model for typical MLT conditions (kinematic viscosity ν=1 m2s−1)425

and turbulence energy dissipation rate ε=1 mW kg−1.426
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Figure 12: Schematics of power spectra measured with different resolutions. Instrumental
noise will cut the measured spectrum as demonstrated by the green line.

Black horizontal “tails” to the right of the spectrum show white noise levels from427

0.001-1.0 %. The noise levels are taken as fractions of maximum amplitude of fluctua-428

tions in spectrum. For example, noise level of 0.1% means that if measured density fluc-429

tuations due to turbulence are at most 2% (e.g., Lübken, 1992, 1997; Lübken et al., 1993;430

G. Lehmacher & Lübken, 1995; Strelnikov et al., 2013), noise flour will hide out all fluc-431

tuations smaller than 0.002%. In spectral domain these measurements will look like it432

is shown in Fig. 12. The spectra will only be resolved between 100 and ∼10−6, i.e. in-433

clude six decades of power which is a typical spectral coverage for high resolution mea-434

surements in atmosphere (e.g., Lübken, 1992, 1997; Lübken et al., 1993; G. Lehmacher435

& Lübken, 1995; Strelnikov et al., 2003, 2013, 2019; Söder et al., 2021). Green solid line436

in Fig. 12 shows the part of the spectrum above the noise level of 0.1 % which will be437

fitted by a model. Vertical dashed line shows the inner scale, i.e., the visible part of the438

viscous (viscous-convective) subrange lies between the dashed line and instrumental noise.439

The shown spectrum is normalized to have its maximum at 100 to simplify estimation440

of power change between maximum and noise level. It is seen, e.g., that an increase of441

the noise level by factor 10 reduces visible (resolved by measurements) part of spectrum442
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by two orders of magnitude. This is because the spectrum is proportional to the square443

of fluctuations (PSD ∝ ∆n2).444

In the analyzed DNS data the large-scale part of turbulence spectra (i.e. to the left445

of the dashed line in Fig. 12) reveal approximately 3 to 4 decades of power drop and 3.5446

decades on average. Note that it is not necessarily that the inertial (inertial-convective)447

subrange covers all those large-scales. The large-scale (small wavenumber) limit of the448

inertial subrange does not affect the analysis results and is not discussed in this work.449

The analysis technique only needs some part of the inertial subrange in the vicinity of450

the inner sale to be resolved by measurements.451

For the sensitivity study we artificially cut the spectra derived from the DNS fluc-452

tuations data below the noise level, as demonstrated in Fig. 12 by the green line. Thereby453

the spectral models were fitted to the “measured” (i.e. DNS) spectra which included inertial-454

convective subrange and only some part of the viscous-diffusive subrange. By increas-455

ing the noise level we shortened the portion of the viscous-diffusive subrange that was456

used in the fitting process. In this study we utilized power spectra which covered 8, 6,457

and 4 orders of magnitude. This approximately corresponds to power drop within the458

viscous-diffusive subrange of 4.5, 2.5, and 0.5 decades or to noise levels of 0.01, 0.1, and459

1.0 %, respectively. Note, that this is not a noise level in terms of fraction of dynami-460

cal range of instrument, but a fraction of largest amplitude of fluctuations produced by461

turbulence. It is, however, normally possible to relate these quantities in the frame of462

a defined experiment.463

5.4.1 Developed turbulence464

Fig. 13, 14, and 15 show the original (i.e. calculated in DNS) and the reconstructed465

dissipation fields, as well as the related statistical distributions, similar to those shown466

in Fig. 10. Power spectra used for derivation of the ε-fields shown in Fig. 13, 14, and 15467

were limited to 8, 6, and 4 decades, that is the viscous-diffusive subrange revealed ap-468

proximately 4.5, 2.5, and 0.5 decades of power change, which is equivalent to noise lev-469

els of 0.01, 0.1, and 1.0 %, respectively. For convenience, hereafter we will refer to this470

limitations as to spectral coverage, keeping in mind that this describes how much of the471

viscous subrange is resolved by the measurements.472

Results shown in these figures demonstrate the following tendencies:473

• Reduction of spectral coverage (increasing noise level) continuously increases bias474

in estimation of ε using Tatarskii spectral model.475

• Sensitivity of the Tatarskii model to low energy dissipation rates reduces with the476

reduction of spectral coverage (increase of noise level).477

• Heisenberg model is less sensitive to the spectral coverage (noise level) within these478

limits (i.e., demonstrates similar results independent of how much of the viscous479

subrange is used for the fit).480

• At spectral coverage of 2.5 decades (noise level of 0.1 %) both models demonstrate481

very similar results. This is in accord with the earlier comparisons by Lübken (1992);482

Lübken et al. (1993); Lübken (1997).483

• For spectral coverage of 0.5 decade (noise level of 1 %) median of Heisenberg model484

results lies closer to the median of the true ε-values than the Tatarskii results.485

• At the same time, all other features characteristic for an idealized analysis of a486

developed turbulence shown in the previous sections, which do not contradict 5487

listed here items, remain valid.488
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(a) DNS.
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(b) Tatarskii model.
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(c) Heisenberg model
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Figure 13: Same as Fig. 10, but for noised spectra with 4.5 decades of visible power
within the viscous subrange (noise level of 0.01 %).

5.4.2 Decaying turbulence489

Next, in Fig. 16, 17, and 18 we show results of the same sensitivity study, but ap-490

plied to decaying turbulent structures (DNS time t = 20). Interestingly, these results491

show the same features and lead us to the same conclusions summarized in the previ-492

ous section. Only a small correction to the last item in that list has to be kept in mind,493

that the list of the mentioned properties must be extended by the features, character-494

istic for a decaying structure described in the end of Sec. 5.3.495

5.4.3 Poorly resolved viscous subrange496

Further decrease of the spectral range used for the ε-derivation gradually increases497

the negative tendencies of the spectral model analysis technique described above, regard-498

less of a particular model used. The main of them are, that precision of the derived ε-499

values becomes very low and the analysis technique becomes almost insensitive to low500

energy dissipation rates. Since the large-scale part of the spectra (i.e. down to scale l0)501

sometimes includes up to four decades of power drop, the spectral coverage of less than502

four decades can completely cut the viscous-diffusive subrange. In such a case the fit-503

ting process either does not converge or results in a huge fitting error.504

5.5 Errors and biases505

5.5.1 Full spectral coverage (low instrumental noise)506

Statistical basis for analysis of a 2D-slice of the dissipation field discussed in Sec. 5.3507

consists of ∼16.6 and ∼3.4 millions ε-values for DNS times 11.5 and 20, respectively. Rig-508

orous derivation of measurement error when applying the spectral model analysis tech-509
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(a) DNS.
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(b) Tatarskii model.
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(c) Heisenberg model
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Figure 14: Same as Fig. 10, but for noised spectra with 2.5 decades of visible power
within the viscous subrange (noise level of 0.1 %).

nique to measured spectra of density fluctuations was addressed by Hillert et al. (1994).510

They showed that the value of ε-error (∆εH,T ) can be obtained by a proper derivation511

of the fitting error when applying the least squares technique. However, their error prop-512

agation analysis only accounts for precision of measurements of the tracer and uncer-513

tainties in spectral analysis. The fitting errors for our DNS data, are relatively small ow-514

ing to smooth spectra - a consequence of the idealized measurements. Median fitting er-515

rors for both DNS times 11.5 and 20 are 12 % and 29 % for the Heisenberg and Tatarskii516

model, respectively. Note, that when spectral models are fitted to turbulent spectra mea-517

sured in the atmosphere, the fitting errors normally exceed 30 % and often reach ∼100 %.518

Our goal here is to account for the entire scope of possible uncertainties including519

biases introduces by the spectral models. To assess distribution of the ε-derivation er-520

rors we analyzed ratios of the derived to the true values of the energy dissipation rates:521

εH/εDNS and εT /εDNS . Fig. 19 shows these results for active turbulence case (DNS time=11)522

in more detail. Bi-dimensional histograms of the two data samples, the derived energy523

dissipation rates εH,T versus the ratios εH,T /εDNS are shown in the middle panels of Figs. 19a524

and b. The corresponding distributions of εDNS , εH , and εT are shown on the top pan-525

els (the same as in Fig. 10d).526

The bi-dimensional histograms show how the measurement errors (represented by527

the ratios εH,T /εDNS) are distributed along the distributions of the derived εH,T -values528

(shown in the upper sub-panels). The dashed lines plotted on top of the bi-dimensional529

histograms show the upper and lower quartiles of the error-distributions. That is, peak530

of the error distributions for a particular range of ε-values lies between the dashed lines.531

Also, 50 % of all the ε-values derived within this range lie between the dashed lines and532

are often referred to as interquartile range (IQR). The dotted lines plotted on the bi-dimensional533

histograms show medians of the measurement errors (i.e., of the ratios εH,T /εDNS). The534
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(b) Tatarskii model.
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(c) Heisenberg model
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Figure 15: Same as Fig. 10, but for noised spectra with 0.5 decades of visible power
within the viscous subrange (noise level of 1 %).

horizontal solid zero lines in the middle panels of Fig. 19 show the ratios of εH,T /εDNS =535

1, that is where the derived dissipation rates equal the true (εDNS) value. The right-hand-536

side panels show histograms of the ratios log10(εH,T /εDNS) for the entire data sets and537

for selection of data around the zero line. The selection was made to mark region of ε-538

values where analysis yields most precise results and to see how the distribution of er-539

rors in this region looks like.540

Thus, it is seen from Fig. 19 that the results of analysis using Tatarskii model re-541

veal lowest errors in the range of ε-values ∼10−3 to ∼10−1 W kg−1. Within this range542

50% of the derived ε-values (IQR) have error lower than half decade. Whereas for the543

Heisenberg model the same error is only achieved in the range 10−2 . εH .10−1 W kg−1.544

It is also remarkable, that most of the lowest ε-values (e.g., all of them beyond the εDNS-545

distribution) are underestimated whereas the highest values are mostly overestimated.546

5.5.2 Limited spectral coverage or dependence on instrumental noise547

The errors of the energy dissipation rate derivation discussed in the previous sec-548

tion are only relevant for an idealized measurements when measured spectra are well re-549

solved down to smallest scales. To assess the accuracy of the spectral model technique550

for real measurements we made a series of analyses with artificially reduced resolutions551

in Sec. 5.4. From every of those results one can derive the same ratios, i.e. εH/εDNS and552

εT /εDNS , for every derived point (i.e., ε-value). In Sec. 5.3 and 5.4 we showed results553

of analysis of eight 2D ε-fields for every spectral model, i.e. sixteen ε-surfaces in total.554

Based on the whole statistics of all the derived ε-values we derived median and lower555

and upper quartiles for the ratios εH,T /εDNS (i.e., the same as Fig. 19, but for differ-556

ent resolutions and DNS-times). Thereby we analyzed how many of the derived energy557
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(b) Tatarskii model.
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(c) Heisenberg model
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(d) Distributions.

Figure 16: Same as Fig. 11, but for noised spectra with 4.5 decades of visible power
within the viscous subrange (noise level of 0.01 %).

dissipation rates lie close to the true value. It is appeared, that different parts of the ε-558

distribution reveal systematically similar biases for different resolutions and times.559

To simplify representation of these results we only consider the median of the ra-560

tios εH,T /εDNS . Fig. 20 further shows the same curve as the dotted line in the middle561

panel of Fig. 19b (i.e., median of ε-error along the ε-distribution) and aims to help in562

understanding of the derived statistics. Color-coding (of both line and colorbar) mirrors563

the ordinate axis. The data were split in ranges of one decade starting from zero and step-564

ping to both positive and negative sides. One special range of 0.0±0.5 decade is addi-565

tionally marked by white color. Such a curve was made for every instance of our anal-566

ysis, i.e. for different noise levels (i.e., spectral coverage), DNS-times, and spectral mod-567

els.568

Fig. 21 shows compilation of these analysis results, where eight curves like that one569

in Fig. 20 are shown for every spectral model. Abscissa in Fig. 21 shows energy dissi-570

pation rates in logarithmic scale, log10(ε), and the orange curves schematically show the571

PDFs of the εDNS-distributions. Upper and lower panels in Fig. 21a and 21b show re-572

sults for active and decaying turbulence (DNS times 11.5 and 20), respectively. Left and573

right panels (Fig. 21a and 21b) show results for the Heisenberg and Tatarskii spectral574

model, respectively. Reddish colors show regions where the ratios εH,T /εDNS are greater575

than unity, that is the derived values εH and εT are overestimated. Blueish colors show576

regions where the derived energy dissipation rates are underestimated. Gray color marks577

region outside the derived range of values.578

The error analysis shown in Fig. 21 reveals several features. Thus, e.g., it is clearly579

seen, that the right part of the ε-distributions (i.e., values to the right side of the me-580

dian) are more precisely reproduced by both spectral models than low ε-values. The best581

precision is achieved by applying the Tatarskii model to data with low noise levels. De-582
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(b) Tatarskii model.
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(c) Heisenberg model
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(d) Distributions.

Figure 17: Same as Fig. 11, but for noised spectra with 2.5 decades of visible power
within the viscous subrange (noise level of 0.1 %).
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(b) Tatarskii model.
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(c) Heisenberg model
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(d) Distributions.

Figure 18: Same as Fig. 11, but for noised spectra with 0.5 decades of visible power
within the viscous subrange (noise level of 1 %).
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Figure 19: Distributions of the derived energy dissipation rates and of the errors (repre-
sented by the ratios εH,T /εDNS) in logarithmic scale. The left (a) and right (b) subfigures
are for the Heisenberg and Tatarskii model, respectively. Middle panels: Bi-dimensional
histograms of the derived energy dissipation rates (εH,T ) and of the measurement errors
(εH,T /εDNS). Solid horizontal lines show the ratio εH,T /εDNS = 1. The dashed lines
show upper and lower quartiles of the respective ratio εH,T /εDNS , i.e. the area between
dashed lines shows the interquartile range for the ε-derivation error. The dotted line
shows the median error. Upper panels: Distributions of εH , εT , and εDNS in blue, green,
and orange, respectively. Right-hand-side panels: Distributions of the ratios εH,T /εDNS .
Red color in the mid- and right-panels shows selection of data with errors within one
decade around the zero-line: -0.5<log10(εH,T /εDNS) <0.5. Red histograms show distribu-
tions of errors for the selection of data. The black dotted lines show the lower and upper
quartiles for red histograms.

crease in spectral coverage (i.e., increasing instrumental noise) reduces overall precision583

of the Tatarskii model results. However, the Tatarskii model shows higher precision than584

the Heisenberg model for instrumental noise levels above 0.1 %, i.e. when viscous sub-585

range reveals more than 2.5 decades of power above noise level. The Heisenberg model,586

in turn, demonstrates robustness to increasing instrumental noise. If spectral coverage587

of viscous-convective subrange is decreased to approximately 2.5 to 2 decades above noise588

level, both models demonstrate quite similar results. Although, within small range of589

ε-values Tatarskii model may reveal slightly lower ε-estimates than it will be inferred from590

the Heisenberg model. At the highest noise level when viscous-convective subrange re-591

veals ∼0.5 decade of power drop Tatarskii model shows some more underestimates than592

the Heisenberg model does. At the same time for such noisy data both models show some-593

what least accurate results. Fig. 21 also demonstrates that the most of the εDNS-distribution594

can be approximated by both models with an uncertainty less than one decade, even when595

the measured spectra are poorly resolved (i.e. only show half decade of the viscous-convective596

subrange).597
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Figure 20: Example of the derived ε-error represented by the ratio in logarithmic scale:
log10(εT /εDNS). Color-coding of both line and colorbar mirrors the ordinate axis. White
color shows range of εH,T -values where their error falls within half-decade interval:
−0.5 < log10(εH,T /εDNS) < 0.5. Red and blue colors show regions where derived εH,T

are over- and underestimated, respectively.

6 Discussion598

Despite all mentioned imperfections of the spectral model turbulence analysis tech-599

nique, the analysis results in the regions of moderate to strong dissipation reveal very600

good agreement with the reference DNS fields. Although the energy dissipation rates are601

underestimated in the regions of weak turbulence, a general morphology of turbulence602

in these regions is still reconstructed. That is, if layer of weak dissipation appears in the603

DNS data, it also appears in the analysis, though the absolute ε-values are smaller.604

The results of the assessment of precision of spectral model turbulence analysis tech-605

nique shown in previous sections suggest that if measurements allow to resolve more than606

two decades of power for viscous-convective subrange above noise level, making use of607

the Tatarskii model yields better overall precision and lower biases at the edges of the608

actual ε-distribution. Also, it better resolves structures in regions where turbulence re-609

veals low dissipation. The higher the spectral resolution of measurement technique is,610

the more sensitive is the Tatarskii model to fine structure of weak dissipation. The best611

resolved fine structure of turbulence is achieved when the Tatarskii model is applied to612

the highly resolved spectra, which reveal about six and more decades of power change613

in the viscous (viscous-diffusive) subrange. However, even in this case, in regions of very614

weak turbulence analysis underestimates magnitude of its dissipation considerably. Also,615

not all fine structure of weak dissipation is reconstructed by the best results of this anal-616

ysis. The reason for this insensitivity is limitation of the wavelet spectral analysis tech-617

nique in precision of assessment of amplitudes when resolving very fast changing spec-618

tral content. Or, in other words, smoothing properties of the wavelet analysis (e.g., Tor-619

rence & Compo, 1998). In this analysis we applied the Morlet wavelet function of sixths620

order (e.g., Grossmann & Morlet, 1984) which yields the highest time resolution which621

is in our case the spatial (altitude) resolution. This represents the main natural limita-622

tion of the spectral model turbulence analysis technique. This limitation is due to the623

width of the wavelet function in time domain (equivalently spatial domain in our case)624

leading to that at a given frequency (or wavenumber) the resulting spectral amplitude625

of a time series under analysis represents an average over range of the nearest points which626

is defined by the width of the wavelet function.627

Another reason of deviations of the derived energy dissipation rates from the true628

ε-field is the “measurement technique”. As noted in Sec. 2, the measurements are done629

–23–



manuscript submitted to JGR: Atmospheres

10 8 6 4 2 0 2
log10( , W kg 1)

full

4.5

2.5

0.5

full

4.5

2.5

0.5

po
we

r a
bo

ve
 n

oi
se

 in
 v

isc
ou

s s
ub

ra
ng

e,
 d

ec
ad

es

t=20.0

t=11.5

Heisenberg

6
5
4
3
2
1

0
1
2
3
4
5
6

lo
g 1

0(
H
/

D
N

S )

(a)

10 8 6 4 2 0 2
log10( , W kg 1)

full

4.5

2.5

0.5

full

4.5

2.5

0.5

po
we

r a
bo

ve
 n

oi
se

 in
 v

isc
ou

s s
ub

ra
ng

e,
 d

ec
ad

es

t=20.0

t=11.5

Tatarskii

6
5
4
3
2
1

0
1
2
3
4
5
6

lo
g 1

0(
T /

D
N

S )

(b)

Figure 21: Ratios of the derived to true energy dissipation rates in logarithmic scale:
log10(εH,T /εDNS) shown by colors as a function of εH,T -value (abscissa) and spectral res-
olution (ordinate). White color shows range of εH,T -values where their error falls within
half-decade interval: −0.5 < log10(εH,T /εDNS) < 0.5. Red and blue colors show re-
gions where derived εH,T are over- and underestimated, respectively. Orange Gaussians
schematically show PDF(εDNS).

as a one dimensional section of the 3D structures. We recall, that the true dissipation630

field is derived from all three dimensions, that is it accounts for gradients in fluctuation631

field perpendicular to the direction of sounding. This can be seen, e.g. from Fig. 3 and632

8 where the good spectral fits yield energy dissipation rates which deviate from the true633

εDNS-value. This is the reason why energy dissipation rate profiles derived by the spec-634

tral model analysis technique shown in Fig.2 and 3 do not exactly reproduce the refer-635

ence profile εDNS . To address this principal problem in frame of the spectral model tech-636

nique it is not only necessary to make 3D soundings, but also to find (either analytically637

or empirically) a proper 3D spectral function which adequately describes scalar (veloc-638

ity) spectra in the entire universal range.639

The next potential source of uncertainty or biases in estimation of turbulence en-640

ergy dissipation rates by means of the spectral model technique is the precision of the641

spectral functions used. The main requirement to these functions is to relate the tur-642

bulence kinetic energy dissipation rate with the region of transition from inertial to vis-643

cous subranges in wavenumber (or frequency) space as precisely as possible. Whereas644

it is generally accepted that the inertial (inertial-convective) subrange is precisely de-645

scribed by the k−5/3 power law, there is still no theory which unambiguously defines the646

spectral function for the viscous (viscous-diffusive) subrange. In fact, there are many sug-647

gestions how to describe spectral form in the viscous subrange (e.g., Heisenberg, 1948;648

Kovasznay, 1948; Novikov, 1961; Grant et al., 1962b; Gorshkov, 1966; Tchen, 1973, 1975;649

Hill, 1978; Driscoll & Kennedy, 1981, 1983, 1985; Smith & Reynolds, 1991, and many650

other). However, none of those has received a universally satisfactory confirmation by651

experiments. All the more uncertain is the approximation of the transition from iner-652

tial (inertial-convective) to viscous (viscous-diffusive) subrange in the existing spectral653

models. This transition is described by interpolation formulas which are not based on654

a physical reasoning but they are merely a mathematical convenience.655

Since the statistical properties of the viscous subrange are defined by the two phys-656

ical quantities, ε and η, the transition scale l0 (transition wavenumber k0) must also be657

defined by these two parameters (e.g., A. Gurvich et al., 1967; Tatarskii, 1971; Hinze,658
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1975). For both Heisenberg and Tatarskii models this dependence is expressed by Eq. 3,659

which states that the transition (inner) scale lH,T
0 is proportional to the Kolmogorov scale660

(see e.g., A. Gurvich et al., 1967, for a review on this proportionality). The proportion-661

ality constant CH,T is of the order ten as was also noted in early works (e.g., MacCready Jr.,662

1962; Grant et al., 1962a; Pond et al., 1963; A. Gurvich et al., 1967; Tatarskii, 1971; Hinze,663

1975; A. S. Gurvich et al., 1976). The range of the suggested values span between 8 and664

15 (see e.g., A. Gurvich et al., 1967). The Kolmogorov scale, in turn, is inversely pro-665

portional to 1/4 degree of the energy dissipation rate (η ∝ ε(−1/4)), which makes small666

changes of l0 to produce large variations of ε. The constants CH,T derived by Lübken667

(1992) and Lübken et al. (1993), in turn, depend on the constant a2 or, equivalently, C1
ϑ,668

which are known with a limited precision, as discussed in Sec. 2 and 7. The range of a2669

between 2.3 and 3.47, i.e. between the lowest possible value (see Sec. 7) and that one670

used in our calculations, yields CH between 7.3 and 9.9 and CT between 5.2 and 7.1. This671

implies an uncertainty of almost four decades for derivation of εH and one decade for672

εT . Herewith the lower values of constants CH,T yield lower ε. That is, application of673

lower CH,T -values would introduce an additional negative offset to the derived εH,T -distributions.674

Making use of the maximum acceptable value for the constant a2 of 4.02 (see Sec. 7) will675

yield ε-values which are only twice or half as high as the shown here ε-values for the Heisen-676

berg or Tatarskii model, respectively. Taking into account that analysis results yield con-677

siderably more underestimates than overestimates, the choice of the constant a2 = 3.47678

looks quite well justified.679

After a certain stage of evolution of a turbulence structure every 2D slice of the680

DNS volumetric data includes patches of active turbulence and also decaying structures.681

That is, the turbulence fields derived in these DNS are highly intermittent (e.g., Fritts682

et al., 2009b, 2013). Detailed comparison of spectra and analysis results for weak and683

strong, decaying and active turbulences, suggests that the relation between the inner scale684

l0 and the energy dissipation rate ε given by Eq. 3 may be oversimplified. At least, it685

does not exhibit sufficiently broad universality. Also the scaling law in wavenumber space686

for the viscous subrange and, therefore for the transition region, is obviously not pre-687

cisely described by either of models in all these considered cases. This fact, however, was688

already known a priori (see Sec. 2) and moreover, the spectral models were build upon689

assumption of active developed turbulence (e.g., Heisenberg, 1948; Tatarskii, 1971; Hinze,690

1975). Thus, the better results of this analysis for the developed structures with strong691

dissipation are somehow expected.692

7 Summary693

In this work we estimated uncertainties and biases in results of spectral model tur-694

bulence analysis technique applied to in situ measured fluctuations of scalar quantities.695

Such measurements do only sample fluctuations along one dimension, which forces ex-696

perimentalists to apply generalized simplifications, e.g. to assume isotropy. This, in turn697

introduces certain biases in estimated dissipation fields. Uncertainties were determined698

by application of the spectral model analysis technique to DNS data, in which ε-fields699

can be rigorously and uniquely determined.700

The main results of this study can be summarized as follows.701

• The spectral model technique can reproduce morphology of turbulence field amaz-702

ingly well and with sufficient details.703

• The Tatarskii model reveals high precision of the derived ε-values in the range ∼10−3704

to 10−1 W kg−1 if measurements resolve the viscous (viscous-convective) subrange705

for more than 2 decades of power change, which approximately corresponds to noise706

level of 0.1 %.707

• The Heisenberg model yields a good qualitative picture of the dissipation field,708

although it is stronger biased than the Tatarskii model.709
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Some more detailed summary of the uncertainties of the spectral model technique710

are as follows.711

• This technique robustly detects regions of moderate to strong turbulence with very712

high precision.713

• Kinetic energy dissipation rates derived within such regions reveal uncertainties714

of less than one order of magnitude.715

• At least 50 % of those values lie in 1-sigma interval of their derivation error.716

• The minimum spectral coverage needed to reliably apply spectral model technique717

only requires half decade of power drop within viscous (viscous-convective) sub-718

range (which corresponds to noise level of 1 % of fluctuations’ amplitude).719

• If the viscous (viscous-convective) subrange is resolved to reveal at least two decades720

of power drop, the models of Heisenberg (1948) and Tatarskii (1971) demonstrate721

similar results and relatively high precision.722

• If the viscous (viscous-convective) subrange is resolved within more than two decades723

of power change, the model of Tatarskii (1971) shows more accurate results and724

reveals relatively high sensitivity to low ε-values.725

• The spectral model of Heisenberg (1948), on the other hand, is almost insensitive726

to the quality of measured spectra (i.e., reveals near the same accuracy regard-727

less of how much of the viscous subrange is resolved by measurements).728

Specifically for MLT, that is taking into account the applied scaling of the dimen-729

sionless DNS data we can additionally highlight several features.730

• Low values of energy dissipation rates, i.e. ε .1 mW·kg−1 are mostly underes-731

timated, meaning that the true ε-value can exceed the measured ones.732

• Very high values of energy dissipation rates, i.e. ε &10 W·kg−1 are strongly over-733

estimated.734

• If the derived energy dissipation rates lie in the range between ∼ 2·10−5 W kg−1735

and ∼ 1 W kg−1, their value does not deviate from the true ε-value by more than736

one decade with probability of 50 %.737

With all the uncertainties critically discussed above, the spectral model analysis738

technique of in situ measurements reproduces the ε-reference fields not only amazingly739

well, but also in much more details compared to other techniques available for atmospheric740

or oceanographic turbulence soundings.741

Appendix A: Uncertainties of constants used in spectral functions742

Eq. 6 and 7 show that the constants fa and a2 are explicitly used to derive the con-743

stant C which connects the inner scale l0 and the energy dissipation rate ε. The constant744

fa was introduced by Lübken (1992) to make it possible to apply the same formulae for745

both energy (i.e. velocity) and scalar spectra. For energy and scalar spectra fa takes val-746

ues of 1 and 2, respectively. The constant a2 is somewhat worse defined. It appears from747

derivation of the Obukhov-Corrsin law for the inertial subrange when comparing differ-748

ent derivation approaches. Constant a2, in particular can be related to the Obukhov-749

Corrsin constant C1
ϑ as (see e.g., Tatarskii et al., 1992):750

C1
ϑ =

Γ(5/3)sin(π/3)

2π
· a2 ≈ 0.1244 · a2 (9)

Since in the inertial-convective subrange the 3D-spectrum has the same form as the 1D-751

spectrum, it must be distinguished between the Obukhov-Corrsin constants for these cases,752

with C1
ϑ replaced by a different constant Cϑ for 3D spectrum. Isotropy implies that they753

are related as (e.g., Hill, 1978; Sreenivasan, 1996):754

Cϑ = (5/3) · C1
ϑ (10)
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From the derivation of the Obukhov-Corrsin law it follows that the Obukhov-Corrsin755

constant must reveal a universality, that is it must be valid for different type turbulence756

(grid, wind tunnel, free atmosphere, ocean) and different type scalars. As for now a huge757

experimental work has been done to measure the Obukhov-Corrsin constant at differ-758

ent conditions. An extensive review of different measurements has been made by Sreeni-759

vasan (1996) who concluded that most of C1
ϑ-values lie in a band between 0.3 and 0.5,760

suggesting a mean value of about 0.4. On the other hand, Tatarskii et al. (1992) also re-761

viewed large set of measurements and compared them with a revised version of the Tatarskii762

(1971) and Hill (1978) spectral models. They found that a solution of the system of equa-763

tions exists only for a2 < 2.8. Tatarskii et al. (1992) also concluded that to obtain a764

good agreement between the experimental values for temperature spectra with the Hill765

(1978)’s bump and theory, it is necessary to choose the value a2 = 2.3. These two works766

together imply that for range of Obukhov-Corrsin constants C1
ϑ = 0.3−0.5 (Cϑ = 0.5−767

0.83) corresponds range of values a2 = 2.41−4.02, whereas the maximal suggested value768

of a2 = 2.8 yields C1
ϑ = 0.35, Cϑ = 0.58, i.e. it falls in the middle of the range recom-769

mended by Sreenivasan (1996). The recommended by Tatarskii et al. (1992) value of a2=2.3770

corresponds to the C1
ϑ = 0.29 (Cϑ = 0.48), i.e. lies just at the lowest limit recommended771

by Sreenivasan (1996).772

A. S. Gurvich et al. (1965) published early measurements of a2 which reveal val-773

ues in the range a2 = 2.3− 2.8 and noted that other researches derived lower values.774

Based on the work of Hill & Clifford (1978), Lübken (1992) chose value of Cϑ =775

0.72 which corresponds to one-dimensional constant C1
ϑ = 0.43, which according to Eq. 9776

must imply a2=3.47. Lübken (1992)’s 3D–to–1D conversion factor for the Obukhov-Corrsin777

constant was 0.424 which lead him to the a2 = 1.74. This, however, was compensated778

by the normalization constant fa = 2 which, eventually implies the same (i.e. correct)779

result (fa · a2 = 3.47) used in Lübken’s spectral models.780
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Schneider, A., Gerding, M., & Lübken, F.-J. (2015). Comparing turbulent parame-955

ters obtained from LITOS and radiosonde measurements. , 15 , 2159–2166.956
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