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Abstract

Source time functions are essential observable quantities in seismology; they have been investigated via kinematic inversion

analyses and compiled into databases. Given the numerous available results, some empirical laws on source time functions have

been established, even though they are complicated and fluctuate along time series. Theoretically, stochastic differential equa-

tions, which include a random variable and white noise, are suitable for modeling such complicated phenomena. In this study,

we model source time functions as the convolution of two stochastic processes (known as Bessel processes). We mathemati-

cally and numerically demonstrate that this convolution satisfies some of the empirical laws of source time functions, including

non-negativity, finite duration, unimodality, a growth rate proportional to t³, ω-²-type spectra, and frequency distribution. We

interpret this convolution and speculate that the stress drop rate and fault impedance follow the same Bessel process.
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1 Introduction16

Earthquake source time functions (STFs), which are temporal variations in the slip rate integrated over17

faults during earthquakes, are macroscopically observable in seismology and have been widely investi-18

gated regarding kinematic source inversions and dynamic sourcemodeling. To review some knowledge19

on STFs, we �rst summarize some empirical laws (ELs) for STFs:20

EL1 STFs are dominantly non-negative, continuous, compactly supported, and unimodal.21

EL2 The moment functions, which are proportional to the time-integration of STFs, evolve as ∼ t3,22

where t is the time since their ignition (this is referred to as “the cube law” herein).23

EL3 The !−2-model can satisfactorily approximate the amplitude of STF Fourier spectra.24

EL4 The frequency of their total moment follows the Gutenberg-Richter (GR) law.25

Many studies, from early pioneering research [e.g., Houston, 2001] to recent revelations [e.g., Yin26

et al., 2021] have cataloged numerous STFs and revealed their tendencies and variabilities over time.27

Although several outliers have been found, EL1 has arisen as an obvious tendency, based on cataloged28

data. For example, ∼80% of the cataloged STFs are unimodal; they are labeled Group 1 in the research29

of Yin et al. [2021]. In EL1, the fact that STFs are compactly supported is natural because regular earth-30

quakes terminate within a few minutes, whereas slow earthquakes have longer durations.31

Uchide and Ide [2010] compared themoment functions ofMw1.7−6.0 events in Park�eld, California,32

based on multi-scale inversion analyses. They pointed out that EL2 holds from the very early to later33

stages of the source processes. Meier et al. [2016] demonstrated that peak ground displacement evolves34

with the cube law. As the far-�eld ground displacement is proportional to STFs, they suggested that35

the law is sourced from the phenomenon of self-similar rupturing of the fault, which results in EL2.36

In addition, the proportionality between the �nal moment and the cube of the total duration has been37

established [e.g., Houston, 2001].38

Given the spectra of STFs, their amplitudes above their corner frequencies can bemodeled by a power39

law, and their fall-o� rates can be quanti�ed. As shown by numerous studies [e.g., Boatwright, 1980;40
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Abercrombie, 1995; Kanamori, 2014], EL3 seems to be very robust. Some forward modeling studies of41

dynamic rupturing have been conducted to explain the !−2-model; they have shown that STFs consist42

of functions that are almost entirely smooth, except for a kink. For example, Brune’s model has a kink43

at its start, while Sato&Hirasawa’smodel andMadariaga’smodel both have a kink due to their stopping44

phases [see the review of Madariaga and Ruiz, 2016, on each mathematical or numerical representa-45

tion]. However, the cataloged STFs do not show such an isolated kink, but do show some �uctuations46

[Yin et al., 2021]. This implies that the traditional modeling approaches are too simpli�ed to reproduce47

the complexity of STFs, and thus, that some stochastic modeling is required.48

Apart from the entire shape of each STF as discussed above, it has been well established that EL449

holds. The GR law originally means that the probability density function (PDF) of a seismic moment is50

a power law. By recalling the cube law between the moment and the duration, the GR law means that51

the PDF of the duration is also a power law. Once we model stochastic STFs, we can estimate the PDF52

of the duration and discuss whether the PDF satis�es the GR law.53

The stochastic modeling of faulting processes has been proposed both theoretically and numerically.54

Andrews [1980, 1981] considered a spatio-temporal slip distribution with self-a�nity, mainly in the55

Fourier domain. This approach revealed the spectra of the distribution and energetics of the faulting.56

Signi�cantly, the fault impedance, which is the factor of proportionality between the slip rate and stress57

drop in the Fourier domain, can enlighten the relationship between the quantities, even in the stochas-58

tic model. After Andrews [1980, 1981], the importance of stochasticity has been more recognized (see59

the introduction of Aso et al. [2019] for details). Aso et al. [2019] introduced temporal stochasticity60

into their boundary integral equation for the dynamic rupture process and demonstrated the rupture61

complexity. While such numerical modeling is developing, mathematical modeling, if available, would62

contribute to the understanding of complex faulting processes.63

Stochastic di�erential equation(SDE)-based models have been employed in the �eld of earthquake64

source physics. Matthews et al. [2002] and Ide [2008] modeled recurrent and slow earthquakes, respec-65

tively, as Brownian motion. Matthews et al. [2002] focused on regular earthquakes; however, the time66
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scale considered by them was longer than each event, and they did not consider the properties of STFs.67

Wu et al. [2019] assumed that the generalized Langevin equation can model the equation of motion for68

the fault slip rate. Although their model was based on some physical properties of dynamic friction,69

their solution was Brownian motion, which cannot satisfy the non-negativeness (EL1) or the !−2-like70

spectrum (EL3). Thus, a novel approach is need for SDE-based modeling under EL1–4.71

In this article, we consider an SDE known as the Bessel process. We analytically and numerically72

demonstrate that the convolution of two solutions from the sameBessel process satis�es EL1–4. Finally,73

we discuss the physical meaning of these two solutions on the basis of the fault impedance.74

2 Mathematical modeling75

In the following, we do not distinguish STF ∶= ∫
Γ
V(x, t)dx and moment-rate function Ṁ(t) ∶=76

� ∫
Γ
V(x, t)dx on a �at fault Γ, where � is the rigidity and V is the slip rate distribution. We intro-77

duce a mathematical model to generate Ṁ(t) that satis�es EL1–4 using solutions of an SDE. Ide [2008]78

modeled Ṁ for slow earthquakes as Brownian motion because the observed source spectra of slow79

earthquakes follow the !−1-model, which is similar to the spectrum of Brownian motion. For regular80

earthquakes, however, EL3 holds. Thus, we consider a product of the spectra of two stochastic processes81

(i.e.,!−1×!−1 = !−2), which is a convolution of the two stochastic processes in the time domain, which82

we denote as X(1)
t and X(2)

t herein. Thus, we assume that Ṁ = X(1)
t ∗ X(2)

t holds, where the asterisk “*”83

denotes the convolution in time.84

To ful�ll EL1, we assume that both X(1)
t and X(2)

t are solutions of the following SDE called the Bessel85

process:86

dX(i)
t = d − 1

2
dt

X(i)
t

+ dB(i)t , (i = 1, 2) (1)

with its initial value X(i)
0 (> 0), which is equivalent to the integral form as:87

X(i)
t = X(i)

0 + B(i)t + d − 1
2 ∫

t

0

ds

X(i)
s

, (i = 1, 2) (2)

where B(i)t is a standard Brownian motion and d is the dimension of the Bessel process. SDE(1) is88

valid while X(i)
t > 0 holds. Thus, we de�ne X(i)

t = 0 after the process hits zero; the time T ∶=89
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mint
{
t|t > 0&X(i)

t = 0
}
is referred to herein as the �rst hitting time [Göing-Jaeschke and Yor, 2003].90

According to the above de�nition, X(i)
t is continuous and non-negative. Moreover, X(i)

t with d < 2 is91

compactly supported because T ≪ ∞ holds almost surely if d < 2 [Göing-Jaeschke and Yor, 2003].92

Therefore, given d < 2, EL1 holds if we can con�rm that X(1)
t ∗ X(2)

t is unimodal. We demonstrate this93

statement numerically in the next section.94

We also con�rm that X(1)
t ∗ X(2)

t satis�es EL2 and EL3 numerically in the next section. It can be95

expected that EL3 would be satis�ed, as described in the �rst paragraph of this section.96

The condition for EL4 can be derived analytically. Hamana andMatsumoto [2013] showed that P(T),97

which is the PDF of the �rst hitting time T with d < 2 and X(i)
0 = a, can be represented as:98

P(T) = 2�

a2Γ(|�|)
T�−1 exp (−

a2

2T) , (3)

where � = d
2 −1, and Γ(⋅) is a gamma function. On the other hand, considering the cube law (M0 ∼ T3),99

the GR law with respect toMw =
2
3
log10M0 − 6.1 can be represented as100

P(Mw) ∼ 10−bMw ∼ T−2b, (4)

where b ∼ 1 holds and the constant coe�cients are neglected. Thus, if we assume a su�ciently small101

initial value, a (≪
√
2T), eqs (3) and (4) imply that:102

� = −2b + 1, i.e., d = 4(1 − b) (5)

is required for EL4.103

3 Numerical Modeling and Results104

In the following section, we investigate how the convolution X(1)
t ∗ X(2)

t satis�es EL1–3 after solving105

eq.(1) using the SRIW1algorithm [Rößler, 2010] implemented inDi�erentialEquations.jl ( https://di�eq.sciml.ai/106

) for Julia 1.6.1 ( https://julialang.org/ ). Given eq.(5) and b = 1, we solve:107

dXt = −12
dt
Xt

+ dBt
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with a constant time step of dt = 10−6 and a su�ciently small initial value of X0 = 10−3 up to time108

Tmax = 2 × 10−3 (i.e., 2,000 steps). Because the solution must become zero in our model, we reject109

numerical solutions that never reached zero before Tmax. The convolution of two solutions does not110

follow !−2-model if their corner frequencies, which are comparable to the inverse of their �st hitting111

time, are quite di�erent. Thus, we denote the lower limit of the �rst hitting time as Tmin and reject112

solutions that reach zero before Tmin. In the following, we investigate two cases: A) Tmin = 1 × 10−3113

(i.e., 1,000 steps) and B) Tmin = 2 × 10−4 (i.e., 200 steps). Therefore, we consider the Bessel processes114

with the probabilistic �rst hitting time T satisfying Tmin ≤ T ≤ Tmax, where Tmin∕Tmax = 0.5 for case A115

and Tmin∕Tmax = 0.1 for case B. For every two solutions, we regard the solution with relatively shorter116

duration as X(1)
t and the other as X(2)

t . Thus, Tmin∕Tmax ≤ T1∕T2 ≤ 1 holds, where Ti is the duration117

for X(i)
t (i = 1, 2).118

After iterations, we store 2,000 solutions with Tmin ≤ T ≤ Tmax, which yields 1,000 pairs of solutions,119

and calculate 1,000 convolutions of the pairs. Even though we calculate and abandon many useless120

solutions, we obtain∼120 Bessel processes perminute within the duration range by using 12-core AMD121

Ryzen 9 3900XT.122

The 1,000 convolutions dominantly satisfy EL1 (Fig.1), whereas the case B showsmore variation (see123

Supporting Figures for individual cases). Simultaneously, the time integration (Fig.2) and Fourier am-124

plitude spectra (Fig.3) reproduce EL2 and EL3, respectively. EL4 is almost surely satis�ed, as discussed125

in the previous section. Hence, we conclude that the convolution of two Bessel processes with d = 0126

stochastically ful�lls EL1–EL4.127

4 Discussion128

Here, we interpret the physical meaning of the convolution of two Bessel processes. In the following,129

we consider a �nite �at fault surface Γ and de�ne two convolutions: “∗” as only in time and “∗̃” as in130

on-fault position and time. In the case of a �nite fault, we assume that the stress drop rate, �̇(x, t) for131
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Figure 1: The 1,000 computed convolutions of the two Bessel processes for (a) case A and (b) case B.

Time scale and total moment are normalized.

Figure 2: The normalized moment evolution (∫
t

0
Ṁ(s)ds∕ ∫

∞

0
Ṁ(s)ds) for (a) case A and (b) case B

along normalized time scale (t∕T). The curves dominantly follow the cube law (∼ t3) except

for in their initial stages, which are a�ected by their initial values, and in their �nal stages,

which converge toward their static states.
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Figure 3: The normalized Fourier amplitude spectra of the convolutions plotted in Fig.1 for (a) case A

and (b) case B.

the on-fault position x ∈ Γ, can be represented as:132

�̇(x, t) = − (ṁ∗̃Z) (x, t), (6)

where ṁ(x, t) is the moment-rate density function and Z(x, t) is the fault impedance, as detailed by133

Andrews [1980, 1981]. If the surrounding area is an elastic body, Z can be derived from linear elasticity.134

However, we consider a stochastic process inwhichZ includes a non-deterministic property. Eq.(6) rep-135

resents the stress rate (i.e., Neumann condition) based on the displacement discontinuity (i.e., Dirichlet136

condition) along a �nite fault; thus, Z is called a Dirichlet-to-Neumann operator. Here, we assume that137

there exists a Neumann-to-Dirichlet operator Z−1, whose support is Γ, satisfying:138

ṁ(x, t) = −
(
�̇∗̃Z−1

)
(x, t). (7)

Furthermode, the Fourier transformwith respect to position (∫
Γ
e2�ik⋅xdx, wherek is a two dimensional139

wavenumber) yields:140

ṁ(k, t) = −
(
�̇(k, ⋅) ∗ Z−1(k, ⋅)

)
(t). (8)

As the limit k→ 0 is equivalent to the integration in space (limk→0 ∫
Γ
e2�ik⋅xdx = ∫

Γ
dx), eq.(8) results141

in142

ṁ(t) = Ṁ(t) = −
(
�̇ ∗ K−1

)
(t), (9)

where the overlines denote integration over Γ. Finally, eq.(9) implies that EL1–4 are ful�lled if the stress143

rate, �̇(t), and Neumann-to-Dirichlet operator, Z−1, when integrated over Γ, are Bessel processes.144
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As � comprises stress drop, −�̇(t) is always non-negative and −�(t) is a non-decreasing function145

from zero to its �nal value (> 0). This property is naturally produced if −�̇(t) is a Bessel process.146

For the 1,000 results, X(1)
t ∗ X(2)

t , as obtained in the previous section, we also calculate − ∫
t

0
X(1)
s ds,147

where the duration of X(1)
s is shorter than that of X(2)

s . By considering this quantity as �(t), we con�rm148

the relationship between M(t) and �(t). The results show monotonic slip-weakening curves (Fig.4).149

Therefore, the assumption that the stress drop rate is a Bessel process explains the natural weakening150

process of the on-fault stress change. In Fig.4, the abscissa and ordinate mimic averaged slip and stress151

drop over the fault, respectively. This means that the characteristic slip weakening distance ranges152

from 20% to 50% of the �nal slip amount. Interestingly, this fraction is close to results obtained based153

on observations [e.g.,Mikumo, 2003].154

To interpret the other assumption that the inverse fault impedance, Z−1, is a random process is not155

straightforward. When we calculate seismic waves, the Green functions are well modeled within the156

framework of linear elasticity. This might be because the Green functions depend on the medium be-157

tween the fault and (usually) far-�eld observation points, where almost all of the region is an elastic158

body. However, the (inverse) fault impedance is a propagator among the on-fault positions traveling159

along the fault. In general, faults are segmented, bumpy, and surrounded by fractured rocks. Modeling160

such a complex system by assuming a �at fault may cause non-deterministic �uctuations due to scat-161

tering waves, as schematically illustrated by Aso et al. [2019]. Therefore, this assumption is possible,162

even though it is di�cult to directly observe.163

In the numerical simulation, we restrict the ratio of the duration ofX(1)
t andX(2)

t within tenfold. This164

is not only for EL3, as mentioned here, but also for another physical property. If X(1)
t is the stress drop165

rate, its duration should correspond to the duration of the most energetic faulting process, which is166

given by the fault length divided by the rupture speed. On the other hand, because Z−1(t) = X(2)
t is167

based on the fault impedance, its duration must be equivalent to the time taken for the scattering wave168

to spread over the entire fault. This time is at least, or even a few times greater than, the fault length169

divided by the seismic wave speed. Therefore, the durations of X(1)
t and X(2)

t should have almost the170

9



Figure 4: Normalizedmoment versus normalized stress drop assumed to be time-integration of a Bessel

process for case A.

same order, and Tmin∕Tmax = 0.5 and 0.1 in our assumption might be two possible end members.171

5 Conclusions and outlooks172

Here we demonstrate that the four empirical laws on STFs, or moment-rate functions, can be repro-173

duced by modeling STFs as the convolution of two Bessel processes with almost the same order of174

duration. In terms of fault mechanics, given the complexity of the geometry and surroundings of the175

faults, this result is comprehensible if both the stress drop rate and the inverse fault impedance follow176

a Bessel process.177

One possible future approach could be to extend the model by considering spatial heterogeneity of178

stress, fault geometry, and the surrounding medium. This is similar to the numerical model of Aso179

et al. [2019]; further mathematical model and results will broaden our understanding. The main di�-180

culty might be that we must somehow consider a stochastic partial di�erential equation that considers181

both space and time, which is a more mathematically challenging task. Were such a model available,182

it would be possible to discuss the physical processes related to rupture initiation, propagation, and183

termination as stochastic processes. Moreover, some relationships between the kinetic and potential184

energies released from heterogeneous slip distribution [e.g., Hirano and Yagi, 2017] could be revealed,185

which would be necessary for the energetics of faulting.186
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A future plan could be to apply our model to scienti�c and engineering studies on strong groundmo-187

tions. One way to numerically simulate strong groundmotions is to compute the convolution of an STF188

and the Green function. However, this STF should not be unique, even if we consider a single fault, and189

stochastic simulation would be required by assuming various STFs. Our model allows us to generate190

numerous STFs using a the stochastic process that leads to statistical analyses. In general, even without191

numerous numerical simulations, we can investigate the statistical properties of a stochastic process if192

the PDF of the random variable at any time is available by solving the corresponding Fokker-Planck193

equation. Fortunately, the PDF for the Bessel process is already known [Guarnieri et al., 2017]. Thus, it194

should be possible to calculate some statistical properties of strong groundmotion at low computational195

costs.196
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Supporting Information for1

Source time functions of earthquakes based on a2

stochastic differential equation3

Shiro Hirano14

Individual results of the 1,000 convolutions are shown for case A (Fig.S.1) and case B (Fig.S.2).5

Five results are pltted in different colors for each.6
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Figure S.1: The 1,000 convolusions (4 pages × 10 raws × 5 columns × 5 per each) for case A. The abscissae

and ordinates are normalized by each duration and total moment, respectively (conti.)
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Figure S.1: (conti.)
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Figure S.1: (conti.)
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Figure S.1: (end.)
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Figure S.2: The same plots as Fig.S.1 for case B. (conti.)
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Figure S.2: (conti.)
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Figure S.2: (conti.)
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Figure S.2: (end.)
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