
P
os
te
d
on

30
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
74
79
/v

2
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Medium-resolution multispectral satellite imagery in precision agri-

culture: mapping precision canola (Brassica napus L.) yield using

Sentinel-2 time series

Lan Nguyen1,1, Samuel Robinson1,1, and Paul Galpern1,1

1University of Calgary

November 30, 2022

Abstract

Precision yield data is commonly recorded by modern combine harvesters and can be used to help growers optimize their

operations. However, there have been very few attempts to predict variation in yield within a given field using multispectral

satellite data. We used a precision yield dataset gathered in canola (Brassica napus L.) crops in central Alberta, Canada, and a

time series of medium-resolution Sentinel-2 data collected over the growing season. Using two mapping methods, random forest

regression and functional data analysis, we were able to predict crop yield to within 12-16% accuracy of actual yield, and to

capture within-field variation. Our results demonstrate that time series of medium-resolution multispectral imagery is capable

of mapping small-scale variation in crop yields, presenting new research and management applications for these techniques.
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# Abstract

Remote sensing imagery has been a key data source for precision agriculture.
However, high-resolution and/or hyperspectral imagery have typically been fa-
vored due to their high spectral or spatial information. In this study, we aim
to demonstrate the capability of medium-resolution imagery in precision agri-
culture via an example of mapping canola yield using Sentinel-2 data in central
Alberta. By combining a precision yield dataset gathered by a yield monitor
and freely-available Sentinel-2 time series images, we demonstrate two simple
empirical models to map precision canola yield: Random Forest Regression and
Functional Linear Regression. We were able to predict crop yield to within
12-16% accuracy of reference yield, and to capture within-field variability. Our
results show that a time series of medium-resolution multispectral imagery is
capable of capturing small-scale variation in crop yields. The proposed methods
can be easily applied to other areas or cropping systems to improve understand-
ing of crop growth at both the field-level and regional-level.

Keywords: crop yield; time series images; functional linear regression; random
forest regression

# 1. Introduction

Precision agriculture (PA) uses technological innovations to increase production
by conducting the right management practice at the right time and place. PA
has been practiced commercially since the 1990’s (Mulla, 2013) and is now de-
ployed widely across the North American agricultural sector. For example, in
the United States, guidance systems are used in about half of all planted acres,
and GPS-based yield mapping and variable-rate technology are used in about
40% and 30% of operations, respectively (Schimmelpfennig, 2016). Adoption is
even higher in Canada, as a survey by Agriculture and Agri-Food Canada indi-
cated that 84% of Canadian farmers are currently using PA and have combine
yield monitoring capability, and 75% of participants said they would use more
PA in the future (Steele, 2017).

Remotely sensed imagery is a key data source for PA, with the potential to
assess soil properties (e.g., organic matter, moisture, pH) or plant conditions
(e.g., crop nutrients, biomass, yield, water/heat stress, weed infestation, insects,
and plant diseases) (Thorp & Tian, 2004; Liaghat & Balasundram, 2010; Ge
et al., 2011; Mulla, 2013; Chlingaryan et al., 2018). Crop yield maps are
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perhaps the most important data products for crop management, and medium-
resolution multispectral satellite datasets (� 10-meter) have long aided in this
objective, providing insights at coarse resolution over large areas (Bauer et al.,
1978; Rudorff & Batista, 1991; Doraiswamy et al., 2004; Bala & Islam, 2009;
Liu et al., 2010; Salmon et al., 2015; Hunt et al., 2019; Sakamoto et al., 2020).
However, high-resolution and hyperspectral imagery have typically been favored
for PA due to their high spectral or spatial information content that support the
study of crop biophysical properties (resolution of 5-m or less for high-resolution
data; hundreds of spectral bands for hyperspectral data; Sishodia et al., 2020).

Medium-resolution multispectral satellite data (e.g., Sentinel: 10-meter reso-
lution, Landsat 30-meter resolution) has several advantages that make it at-
tractive for use in agriculture as well as precision agriculture. First, medium-
resolution imagery is often available globally and free to the public, while high-
resolution or hyperspectral data can be costly. Second, those datasets offer
extra spectral bands, including Red Edge and Shortwave Infrared, which are
useful in crop mapping and monitoring (Liu et al., 2004; Herrmann et al.,
2010; Delegido et al., 2013; Braga et al., 2020). Lastly, data products from the
medium-resolution multispectral satellites, especially those from NASA (Na-
tional Aeronautics and Space Administration), JAXA (Japan Aerospace Explo-
ration Agency), and ESA (European Space Agency), are already preprocessed
for time series analysis.

Many studies have explored the capability of medium-resolution satellite im-
agery in mapping or predicting crop yield, especially Sentinel-2 imagery due
to its high spatiotemporal resolution (10-meter spatial resolution and 5-day re-
visit time at equator). The use of medium-resolution satellite data in yield
models has generally taken two forms: (1) incorporating remote sensing im-
agery into a mechanistic crop growth model (Novelli et al., 2019; Zhou et al.,
2019; Courault et al, 2021); and, (2) establishing empirical relationships be-
tween in situ yield measurements and the remotely-sensed indicators (Karlson
et al., 2020; Mehdaoui & Anne, 2020; Segarra et al., 2020; Fernandez-Beltran
et al., 2021). While a mechanistic crop growth model can describe the behavior
of real crop by simulating its physiological processes using equations, it often
includes many input parameters and typically requires more input data to pa-
rameterize. Therefore, the generality of such mechanistic models may come
into question, especially when applied at larger regional scales. Alternatively,
empirical models have fewer data requirements, and thus, are easier to apply
when mapping or predicting crop yield (Novelli et al., 2019). However, the
main drawback of empirical models is that they require a sufficiently long and
consistent time series of both remote sensing imagery and ground measurement
of yield to reliably estimate a relationship. Fortunately, as both yield monitor
data and medium-resolution imagery are now widely available in many regions
of the world, suitable data sets to build empirical models have become less of
an obstacle.

The simplest examples of empirical models use linear or nonlinear regression to
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link remote sensing indicators or phenological metrics with in situ yield statistics
(Weiss et al., 2020). For example, Karlson et al. (2020) correlated above ground
biomass and yield measurements of sorghum, pearl millet and cowpea from
22 experimental plots with various vegetation indices derived from Sentinel-2
imagery using simple linear regression models. The authors found that Sentinel-
2 data could explain up to 80% of crop production variability in an agroforestry
landscape of Burkina Faso. Wang et al. (2019) demonstrated an exponential
relationship between rice yield (from 42 plots) and several indices computed from
Sentinel-1 imagery (SAR—Synthetic Aperture Radar). The results indicated
that Sentinel-1 imagery can be used to predict rice yield quite accurately with a
relative error of 7.93%. Skakun et al. (2019) first extracted air temperature and
phenological metrics (peak and area-under-curve) from a Harmonized Landsat
Sentinel-2 product and then used those data to build a regional-scale regression
model for winter wheat yield in Ukraine. Their best model yielded a relative
error of 5.4% and an R2 of 0.73. More advanced empirical methods that have
been applied include machine learning, Gaussian process regression, and deep
learning (Weiss et al., 2020). These techniques allow the characterization of
complex “spectra-yield” relationships without an explicit formulae describing
the form of that relationship. For example, Gomez et al. (2019) compared
several regressions and machine learning methods in predicting field-level potato
yield for a study area in Spain using monthly composites of Sentinel-2 bands
and indices as input. The results are comparable between models with the
best %MAE (percent mean absolute error) of 8.64% achieved from support
vector machine radial models. Fernandez-Beltran et al. (2021) proposed a
3D convolutional neural network (3D-CNN) that exploits multiple temporal
Sentinel-2 imagery and ancillary data (soil and climate) to predict rice yield in
Nepal where crop production data is very limited (i.e., rice yield data is only
available at district-level). The authors suggested that the proposed method
could be used in other data-deficient locales to help improve crop monitoring.

Despite a large number of remote sensing applications in yield monitoring, few
studies have used medium-resolution satellite imagery for monitoring within-
field conditions (e.g., Thenkabail (2003), Hunt et al. (2019), Kayad et al. (2019),
and more recently Skakun et al. (2021)). Early work by Thenkabail (2003)
showed that Landsat Thematic Mapper images (30-meter resolution) can be
used to quantify between- and within-field variability in biophysical quantities
(e.g., Leaf Area Index, biomass) of six crops, and classified quantities with an
overall accuracy of 81%. They found a significant relationship between combine
yield monitor data and Landsat-derived NDVI (R2 = 0.77). More recently, Hunt
et al. (2019) produced high resolution wheat yield maps at 10-meter resolution
using Sentinel-2 imagery in random forest regression models (RMSE of 0.61
tonnes/ha). Incorporating environmental datasets further improved predictions
(RMSE of 0.66 tonnes/ha). Kayad et al. (2019) investigated within-field rela-
tionships between several vegetation indices retrieved from Sentinel-2 imagery
and corn grain yield at different crop stages. The authors found that within-field
variability of corn yield could be captured the best by Green Normalized Differ-
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ence Vegetation Index at very late stages of corn growth. Most recently, Skakun
et al. (2021) quantified how well satellite imagery at various spatial resolutions
(medium to very high spatial resolution) can explain within-field variability in
yield of corn and soybean. Their results showed that satellite imagery of 3-
meter, 10-meter, 20-meter, and 30-meter resolutions can explain 100%, 86%,
72%, and 59% of variability in yield, respectively. Although extant studies have
successfully demonstrated that medium-resolution satellite imagery can be used
in monitoring and mapping precision crop yield, there remains potential to im-
prove mapping methods, and to better capture within-field variability. Crop
type and its spectral response can also vary greatly due to geographic location
(likely due to climate), more studies are still needed to demonstrate the per-
formance and limitations of medium-resolution imagery in precision agriculture
across a broad range of field conditions.

Our objective in this study is two-fold. First, we aim to demonstrate the ca-
pability of medium-resolution multispectral satellite imagery, e.g., Sentinel-2,
in mapping precision canola yield (dry seed mass in tonnes/ha). Second, we
propose two yield mapping approaches that utilize the freely-available Sentinel-
2 time series, using the platform’s short revisit interval to improve temporal
replication and address the potential inadequacy of single-day observations for
characterizing the yield-spectra relationship. We assess the accuracy of the pro-
posed approaches using mean-absolute-errors (MAE) and a visual comparison
between actual and predicted yield maps.

The proposed yield mapping approaches depend only on the presence of a re-
mote sensing time series, and on no other geographically-determined variables.
Our reliance on only freely-available data, once yield relationships have been
parameterized, supports the extension of the method to other areas and to crop-
ping systems. Our findings have the potential to improve understanding of crop
growth at both the field-level and regional-level. At the field-level, patches of
low and high yields can be identified to help farmers optimize their farming op-
erations, e.g., for variable-rate fertilization. At a broader scale, precision yield
maps can be created at the township, regional or national level to provide infor-
mation for crop insurance adjustment, food security, agricultural management,
and policy.

# 2. Data and methods

## 2.1. Data
### 2.1.1. Precision canola yield

We used precision yield data from eight canola fields (CF) located in the County
of Vermilion River, central Alberta, Canada (relative locations are shown to
protect the data owner’s privacy; Figure 1). Crops in central Alberta are rain-
fed. In this region, fields are large (average size of 40 ha) with relatively lit-
tle non-production vegetation within field boundaries. Crops are grown using
mechanized spraying, fertilization and harvesting, and most farmers in the re-
gion practice conservation tillage and regular crop rotation. The eight refer-
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ence canola fields cover a large area of approximately 360 hectares (36,137 10-
meter resolution pixels). Fields were seeded using three canola varieties (Liberty
L234, L255, and Pioneer P501) in May of 2019, using standard seeding densities
(~60 plants/m2), variable-rate nitrogen application, and single-rate application
of other fertilizers (sulphur, phosphorus, etc.). Fields were treated with pre-
emergence herbicide, and 1-2 passes of post-emergence herbicide, depending on
weed and stand establishment. From late August to late October, all fields were
first swathed and then harvested using two identical Case IH 8230 combines,
each with a 10.7 m header bar and a yield monitor. The yield monitors were
calibrated using a weigh wagon in 2018, and were re-calibrated when necessary
during the harvest season (producer, pers. comm.). Precision yield data was
recorded in segments by the combine on-board yield monitor. In these data,
each segment is characterized by a starting position of the combine (Figure
2b), width of the header bar (m), direction of travel (0-360° N), the length of a
recorded segment (m), and the total dry mass of canola (tonnes). We used these
attributes to construct harvested segments (polygons) within each field (Figure
2c), and rasterized the yield from all polygons using an area-weighted average
yield (tonnes/ha) for each pixel of the Sentinel-2 images (Figure 2c,d). Because
of differences in geometry, Sentinel-2 pixels are sometimes not well-covered by
harvested polygons. To create a reliable yield raster, we only retained pixels
that had at least 95% of their area covered by harvested polygons (Figure 2d).
The rasterized yield map was then used as a reference dataset to train and test
our models.
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Figure 1. Relative locations of canola fields (CF1-CF8) with precision yield data
shown using a UTM-based pseudo coordinate system (both axes are in meters).
The fields for the three training scenarios (see Section 2.3.3) are separated by
coloured lines.

Figure 2. Preparation of precision canola yield from raw yield monitor data
at CF4: (a) a sample Sentinel-2 RGB image of the field, (b) starting positions
of the harvested segments, (c) harvested segments that were constructed from
recorded attributes, and (d) precision canola yield in raster. Axes are in a
UTM-based pseudo-coordinate system (meter)

### 2.1.2. Sentinel-2 images

Sentinel-2 is a European wide-swath, high-resolution, multi-spectral imaging
mission. The mission specification of the twin satellites is designed to give
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a high revisit frequency of 5 days at the Equator. Each satellite carries an
optical instrument payload that samples 13 spectral bands: four bands at 10 m
(including Red, Green, Blue and NIR), six bands at 20 m, and three bands at
60 m spatial resolution. There are two Sentinel-2 products available for users:
Level-1C (top-of atmosphere reflectance) and Level-2A (bottom-of-atmosphere
reflectance). Both products are available in 100x100 km2 tiles and delivered free-
of-charge through multiple sources, including the Google Earth Engine (GEE)
platform. In this study, we used Level-1C product—the only product available
for the study area through the GEE.

We downloaded all top-of-atmosphere Sentinel-2 tiles between Apr-01-2019 and
Oct-31-2019 from GEE. A built-in cloud/snow mask was applied for each image
to remove unreliable observations. In total, 67 Sentinel-2 images were available
for the study area (Table 1). Among eleven spectral bands, only seven were used
in the study to make our approach transferrable to other medium resolution
satellite platforms which commonly have these bands. These included three
visible (B2-Red, B3-Green, B4-Blue), two NIR (near infrared, B8 and B8A),
and two SWIR (shortwave infrared, B11 and B12) bands. After cloud/snow
filtering, the remaining good observations in each band were stacked to create
a time series dataset at each pixel.

Table 1. Sentinel-2 images used in the study.

Beside the seven spectral bands, we also computed two spectral indices: nor-
malized difference vegetation index (NDVI; Tucker, 1979; Huete et al., 1997)
and normalized difference water index (NDWI; Gao, 1996). NDVI [(NIR -
Red)/(NIR + Red)] is an indicator of the greenness of the biomass (photosyn-
thetic activity) while NDWI [(NIR - SWIR1)/(NIR + SWIR1)] is known to be
strongly related to the plant water stress, making these two indices good proxies
for plant health and productivity.

A current trend in remote sensing is to utilize a time series dataset to explore
the spectral signatures of studied objects, as a single snapshot image may not
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capture the best relationship between an object of interest and its corresponding
spectral signature. In addition, observations were often not uniform within and
across fields due to a limited swath width and cloud cover, making a single-image
approach impractical. There are two common approaches for using time series:
(1) generating statistical composites of spectral bands and indices (statistical
features) over a given time window, (e.g., growing season) and (2) reconstructing
the time series to retrieve gap-free dataset at every pixel. In this study, we
assessed both approaches of exploiting time series images in mapping precision
yield.

#### Statistical features

From the time series of seven spectral bands and two indices, we computed six
sets of annual statistical features, including the Min, Max, Mean, and 10th,
50th, and 90th percentiles of each pixel. For each Sentinel-2 tile, 54 composites
(9 data layers x 6 statistical features) were generated.

#### Reconstructed NDVI and NDWI time series

Since the masking process on GEE is not able to completely remove unreliable
observations from Sentinel-2 images (Figure 3), we applied an additional filter
(Appendix A) to further reduce noise in the NDVI time series. Masked data
points in the NDVI time series were also removed from the NDWI time series.
We then retrieved daily NDVI and NDWI values between Apr-01 and Oct-30
(day-of-year or doy: from 91 to 304) from the corrected time series by a simple
linear interpolation (Figure 3).

Figure 3. Reconstruction of NDVI time series at a sample location (pixel) of
CF7. The additional filter was applied to further reduce noise in the GEE-
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retrieved (original) NDVI time series. Daily NDVI values (reconstructed NDVI)
were obtained from the corrected time series by a simple linear interpolation.
Note that additional filter cannot completely remove cloud-contaminated ob-
servations (e.g., at DOY 280) but majority of large noises were successfully
removed.

## 2.2. Mapping precision canola yield
We used two statistical approaches for modelling canola yield given a time series
of remotely sensed images. First, we used statistical features of each pixel as
inputs into a random forest regression (RFR; Breiman, 2001). RFR has been
used widely in agricultural remote sensing to predict crop health and develop-
ment using spectral information (Zhou et al., 2016; Liang et al., 2018; Hunt et
al., 2019; Sakamoto, 2020). Secondly, we used functional data analysis (FDA;
Ramsay & Silverman, 2005) to predict the canola yield using the reconstructed
NDVI/NDWI time series, because it is more natural to think about plant growth
as a continuous process (in a functional form of NDVI/NDWI time series) rather
than sequence of individual observations. A specific type of FDA—functional
linear regression (NDVI/NDWI time series) with scalar response (canola yield)—
was used in this study (Kokoszka & Reimherr, 2017).

### 2.2.1. Random Forest Regression

Random forest regression is an ensemble of randomized regression trees, each
created with a random subset of training samples and features. The random
forest predictor is then retrieved by averaging the results of all individual trees.
Performance of RFR—prediction accuracy and computational time—can vary
widely due to size of the sample dataset (sample_size) as well as the tuning
of hyper-parameters (e.g., the number of regression trees: n_estimators, the
number of features tested at each node: max_features, and the minimum num-
ber of samples required to split an internal node: min_sample_split). We
experimented with different parameter settings, deciding on the following “op-
timal” settings to balance between prediction accuracy and computation time :
n_estimators = 200, max_features = 54, min_sample_split = 20, sample_size
= 50% of available pixels. We performed all random forest regression in Python
using scikit-learn library (Pedregosa et al., 2011).

### 2.2.2. Functional Linear Regression

A functional linear regression (FLR) models crop yield, y, as:

𝑦 = 𝑓(𝑋, 𝛽) + 𝜀 = ∫ 𝑋(𝑡)𝛽(𝑡)dt + 𝜀 (Model 1)

where X is the value of a predictor variable at time t (NDVI and/or NDWI, in
our case), while � is the instantaneous effect (slope) of that variable on y. One
way of estimating � is to present the parameters (�) and the functional covariates
(Xi) as a finite sum of pre-defined basis elements: 𝛽(𝑡) = ∑𝑘 𝛽𝑘𝜃𝑘(𝑡) = 𝜃′𝑏;
𝑋𝑖(𝑡) = ∑𝑘 𝑐𝑖,𝑘𝜓𝑘(𝑡) = 𝐶Ψ. Replacing � and X of model 1 by their new forms
results in model 2—a typical multiple linear regression.
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𝑦 = 𝑓(𝑋, 𝛽) + 𝜀 = 𝐶Ψ𝜃′𝑏 + 𝜀 = 𝑍𝑏 + 𝜀 (Model 2)

We performed the functional linear regression between precision canola yield
and remote sensing time series in R using the fda.usc package (Febrero-Bande
& Oviedo de la Fuente, 2012). We tested different types of basis functions for
both � and X, and FLR using a B-spline basis (order of 4 and 4 control points)
returned the best yield prediction.

### 2.2.3. Training-testing scenarios and accuracy assessment

We divided the eight canola fields into training fields and testing fields (Figure
1), in order to test how well an empirical model from a given area performs
in another area with no reference data. Three training-testing scenarios were
examined (Figure 1, Table 3). In all scenarios, we intentionally left CF5 in the
testing set, because this field displayed obvious patches of higher/lower canola
yield that would be helpful in evaluating performance of our models.

Table 2. Training-testing scenarios

Performance of both RFR and FLR in mapping precision canola yield was com-
pared using Mean-absolute-errors (MAE) at scenario-level and through a visual
inspection of yield maps and regression residual maps.

# 3. Results

## 3.1. Descriptive statistics of precision canola yield

Figure 4 shows the descriptive statistics for precision canola yield (tonnes/ha)
measured at the field-level and scenario-level. There was substantial variation
between fields (Figure 4a). The least productive field (CF3; median value of
2.138 tonnes/ha) had approximately 18% lower yield than the most productive
field (CF5; median value of 2.592 tonnes/ha). Across the three scenarios, S3
showed the most similar yield distribution between the training and testing
fields (Figure 4b), while in other two scenarios, the testing fields were clearly
more productive than the training fields. This is especially so in S1 where the
difference in median yield was 13.7%.
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Figure 4. Distribution of precision canola yield at the (a) field level and (b)
scenario level.

## 3.2. Qualitative visual analysis

Visual inspection of CF5 over the growing season (planted: May-15-2019 and
harvested: Sep-24-2019; Figure 5a-h) revealed patches where canola productiv-
ity was lower (black boxes: L1, L2, L3) or higher (blue boxes: H1, H2) than
other areas of the field. Soil conditions in the field are partly visible in the pre-
planting image, where two patches appear darker than other parts (blue and
black boxes; Figure 5a). Day 43 after the planting (Jun-28-2019), while most
of CF5 was still soil-coloured, two patches—one at the top (H1) and another in
the middle of field (H2)—showed a strong green signal (Figure 5b), while the
small patch at the bottom-right corner (L1) is still shaded in dark soil colour.
Two weeks after that (Jul-13-2019), while the canola has greened up on most of
CF5, a few patches still appear greyish (Figure 5c). Although L1 did not appear
clearly in Figure 5c because of cloud cover, it is still easy to see that canola did
not grow well there. Low or high growth patches of CF5 remained on RGB im-
ages until after flowering (flowering: Jul-23-2019, early ripening Aug-02-2019),
especially at L1. RGB images at the end of season did not show differences
between low or high growth patches (Figure 5g,h). The spatial distribution of
canola yield (Figure 5i) is clearly reflected in the RGB images (Figure 5a-b),
but we also observed a patch of lower yield at the bottom edge of the field (L4)
that was not reflected in the visual inspection.

NDVI and NDWI images over the growing season were also related to canola
yield (Figure 6). Similarities between yield and NDVI/NWDI were clearly visi-
ble in early season images (Jun-28-2019). While the pattern of low / high growth
continued until very late in the canola season (Sep-04-2019) in the NDVI images,
we did not see strong correlation between yield and NDWI after Jul-13-2019, ex-
cept at L1 and L3. L1 and L3 showed consistently lower values in NDVI and
NDWI over the entire season.
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Figure 5. Sentinel-2 RGB images over the growing season (a to h) and precision
canola yield (i) of CF5. L1, L2, and L3 indicate low-yield patches, while H1 and
H2 indicate high-yielding patches, demonstrating that spatial patterns in yield
can be spotted across a time series of true colour imagery.
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Figure 6. Snapshots of NDVI and NDWI over the growing season at CF5.

## 3.3. Predicted canola yield: Random Forest Regression vs. Functional
Linear Regression

RFR had better prediction accuracy in the training datasets but performed
similarly to FLR on testing datasets (i.e., out-of-field prediction; Table 3). S3
had the lowest prediction error, but differences between S3 and the other two
scenarios were minor. Although RFR clearly performed better for the training
fields, predictions of FLR were slightly more accurate for all three scenarios,
indicating that RFR was likely overfitting. Overall, the testing MAEs on the
testing dataset ranged from 300 to 390 kg/ha, approximately 12.6% to 15.5%
of the median yield in each scenario. FLR models using solely NDVI or NDWI
time series were similar, but the NDVI time series provided more spatial detail
due to the finer resolution of NDVI images (Red and NIR: 10 m, SWIR1: 20
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m). Using both NDVI and NDWI yielded the best predictions in scenarios S1
and S3.

Table 3. Mean-absolute-errors of RFR and FLR. Both approaches performed
similarly on the testing dataset with MAEs equivalent to 12%-16% of the median
yields.

The results from field CF5 are helpful for explaining our overall results. Figure
7 shows predicted canola yield maps of CF5 from both RFR and FLR for three
scenarios using a heat map (low yield: Red → high yield: Yellow). All yield
maps were able to predict areas with the lowest yield (L1 and L3). Spatial yield
patterns in FLR maps, especially in S3, appear to match the yield data better
than those from RFR as they successfully predicted higher yields in H1 and H2,
and lower yields in L1 to L3. However, none of models were able to predict a
patch of lower yield at the bottom of CF5 (L4).

Figure 8 shows the spatial distribution of residuals (predicted - actual) in field
CF5, showing distinct areas of negative and positive residuals. Both FLR and
RFR predictions overestimated the actual canola yield in the northern part of
the field. Predictions in scenario S3 are less biased as we see a good balance
between the blue-green and the yellow-red colours (Figures 8f, 8i). In all three
scenarios, both RFR and FLR consistently overestimated yield in areas with
low actual values (especially in L4) and underestimated yield in areas with
high actual values. Histograms of residuals (Figure 8d-f, 8j-i) confirm that
the predicted yield maps underestimated the actual canola yield for field CF5.
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Median yield residuals in scenarios S1 and S2 (-0.2256, -0.3392 and -0.3406, -
0.2140 tonnes/ha for FLR and RFR, respectively) were more positively biased
than those in S3 (-0.0942 and -0.0101 tonnes/ha for FLR and RFR, respectively).

Figure 7. Spatial pattern of actual vs. predicted canola yield at CF5. L1-L4
(black boxes) indicate low-yield patches, while H1 and H2 (blue boxes) indicate
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high-yield patches. Both NDVI and NDWI time series were used in FLR models.

16



17



Figure 8. Spatial distribution and histogram of residuals at CF5 (predicted -
actual). Both NDVI and NDWI time series were used in FLR models.

## 3.4. Contribution of remote sensing features in canola yield mapping.

The contribution of remote sensing variables in both FLR and RFR for S3—the
most accurate scenario—was presented in Table 4 and 5. Those results help to
explain findings in the previous section that patches of low or high growth were
identifiable from early season NDVI images and were still distinguishable late
in the season (around the end of the canola ripening stage). The early season
NDWI image (Jul-13-2019) also showed a similar pattern with canola yield.

Among the 5 components of the NDVI b-spline basis, #3 and #4 were the more
significant and larger (in terms of absolute values) than the other three (Table 4),
suggesting that satellite observations around the peaks of those components were
most influential for prediction—day 200 (flowering stage) for #3 and day 255
(early in the ripening stage) for #4 (Figure 9). Five components of NDWI were
equally significant. In S3, the FLR model using NDVI performed better than
the model using NDWI, meaning that FLR models picked up more information
from the NDVI signal.

We aggregated scores of strongly correlated statistical features: “min” and “10th
percentile” into “low”, “mean” and “50th percentile” into “medium”, “max” and
“90th percentile” into “high”. The RFR models showed that the peak NDVI value
and the median NDWI value were the most important variables for predicting
yield (Table 5). Peak NDVI is often observed in the later-season pod-ripening
stage. The second most important feature was a “medium” value of NDWI,
which was observed around the end of the stem-elongation stage at approxi-
mately Jul-16-2019.

Table 4. Summary of FLR model using both NDVI and NDWI time series for
S3 scenario.
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Figure 9. b-spline basis with order of 4 (a) and NDVI slope as a function of
time — �(t) (b)

Table 5. Top 10 most important features of RFR model for S3.
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# 4. Discussion

In this study, we demonstrated the capability of Sentinel-2 imagery in mapping
precision canola yield. At the field-scale, our predicted yields had MAEs ranging
from 0.30 to 0.39 tonnes/ha, equivalent to 12.6%-15.5% of the median yields
(Table 3). This result is promising for several reasons. First, we predicted
precision yield at a medium spatial resolution (10 m). Secondly, even though
our reference dataset was relatively small (only 8 canola fields), our method was
still able to predict well. Lastly, no ancillary data, such as soil moisture, climatic
conditions, crop variety, or agricultural practices, were integrated into any of
our models. Those variables are commonly used inputs of crop yield mapping
(e.g., Prasad et al., 2006; Jeong et al., 2016; Kern et al., 2018). Nevertheless,
our MAEs are in the same range as those reported in Mkhabela et al., 2011 (0.08
– 0.4 tonnes/ha), which forecast regional canola yield in the Canadian Prairies
based on a simple regression that used multiple-years of MODIS-derived NDVI
to predict yield statistics.

Our results showed that both RFR and FLR models performed the best in
scenario S3 (Table 3). One possible reason for this was that the similarity in
yield distribution between the training and testing datasets were highest for S3
(Figure 4b). Our accuracy assessment focused on CF5 because this field pre-
sented a distinctive pattern of high and low yield patches. Our intention was
to demonstrate that using moderate resolution satellite images, we can capture
accurately within-field variations of canola precision yield. A further examina-
tion of CF5 indicated that the models consistently underestimated canola yield
of this field (Figure 8). This outcome is reasonable because CF5 is the most
productive field (Figure 4a) and the training dataset is likely not able to cap-
ture the complete yield dynamics of the field. In terms of spatial accuracy, we
observed that both RFR and FLR maps successfully captured patches of low
or high canola yields. However, residuals were not spatially homogeneous. Our
predicted maps overestimated values in low-yield areas (L1-L4) and underesti-
mated values in high-yield areas (H1, H2). This is likely caused by the noisy
reference dataset. For example, operating the yield monitor without crop flow-
ing through the combine will reduce the recorded yield. Additionally, yield
monitors must be cleaned periodically, as debris can accumulate on the sensor
surface, causing sensor drift over time (producer, pers. comm.).
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Our prediction accuracy could probably be improved slightly if the training and
testing pixels were selected randomly from the data pool (the training data
would contain pixels from all studied fields). However, our purpose in selecting
training or testing datasets was not only to achieve the highest prediction ac-
curacy but also to create a geographic gradient to test how well an empirical
model from one area performed in another area without reference data.

Another aim of this study was to examine two different approaches to using
time series data in yield mapping: statistical features (input to a Random For-
est Regression) and functional data (input to a Functional Linear Regression).
While RFR is a robust machine learning algorithm that is a built-in option on
several cloud-computing platforms including Google Earth Engine, Functional
Data Analysis has received relatively little attention in the remote sensing com-
munity (but see Zhao et al., 2009; Yu et al., 2010; Acar-Denizli et al., 2018).
Our results show that predictive performance of FLR is comparable to or better
than RFR. We want to note that although the two proposed models were not
configured in a way (FLR in R and RFR in Python, no code optimization for
both models) to allow strict comparison of their performance as this was not an
objective of this study. One should expect FLR to be faster computationally
than RFR. While FLR prediction is a simple matrix multiplication (covariates
matrix × slope vector), RFR prediction is an aggregation of all regression trees’
outputs. Depending on a chosen number of trees (default value is 200) and the
size of study area, RFR prediction can take a substantial amount of time. In
our case, while FLR prediction only took 4 minutes, RFR prediction took 2.5
hours.

Because the two proposed methods rely on time series images, they may be
less suitable for geographic regions with persistent cloud cover. However, the
temporal resolution of satellite data can be improved by using comparable sen-
sor datastreams, e.g., Landsat and Sentinel-2 (Skakun et al., 2018; Nguyen et
al., 2020). In addition, there is potential to include SAR imagery, which “see”
through cloud, into yield models to improve prediction capability and accuracy
(Setiyono et al., 2014; Khabbazan et al. 2019; Wang et al., 2019, Skakun et al.,
2021).

We note that accuracy of RFR could be improved if we had used all available
pixels in the training datasets. However, this would have come at the cost of
computational time. Because of our smaller dataset, it is difficult to make broad
statements about the relative performance of RFR versus FLR. Nevertheless, we
are optimistic about the potential of FLR in remote sensing (and precision agri-
culture), and it deserves more consideration for a few reasons. First, FLR was
computationally much faster than RFR and resulted in similar inferences to
the widely used linear regression model. This could permit much more rapid
modelling of yield using the large data sets that will be necessary to capture
geographic variation in the yields across broad geographic areas. Second, our
approach makes use of the fact that all remote sensing time series are effectively
functional datasets—data in a form of function—as they provide spectral re-
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sponses of an object over time (i.e., are functions of time). Thus, FLR (and
more generally FDA with a scalar response) are from first principles an ideal
tool for the analysis of remote sensing data, because these models can integrate
the spectral state of an object over time and relate this to a single response
value. In our study, this response was the crop yield measured at a pixel, which
is likely to be the product of plant health conditions that vary continuously
throughout the growing season, and therefore have the potential to be captured
by a function of the spectral state of that pixel over time.

# 5. Conclusion

Here we presented a simple method to predict precision crop yield using a
Sentinel-2 time series and a reference dataset recorded by a Case IH combine
yield monitor. We examined two methods of using time series images: using
statistical features in a Random Forest Regression and analyzing the spectral
time series in a Functional Linear Regression. Results from both modeling ap-
proaches indicated that we could predict precision canola yield quite accurately
from space. Mean-absolute-errors of all scenarios range from 300 to 390 kg/ha,
equivalent to 12.6%-15.5% of the corresponding median values. The spatial
distribution of crop yield within the field was also captured in predicted yield
maps. Our study is among the first attempts to demonstrate the capability of
freely-available medium-resolution multispectral data in mapping precision crop
yield. Predicted yield maps can likely be improved in future studies by using a
larger reference dataset or incorporating ancillary data such as soil moisture, cli-
matic conditions, crop variety or agriculture practices, although this additional
data collection burden might not be desirable when prediction across large ge-
ographic areas is the objective. Nonetheless, our findings underline that using
medium-resolution multispectral satellite data in precision agriculture research
and applications is promising. In this study, we also offer a way to leverage a
rich dataset from combine harvester yield monitors to understand crop growth
better at both field-level and regional-level. At the field-level, we can identify
patches of low and high yields. This information is important for optimizing
the productivity of farming operations, and could potentially be used in other
applications, such as crop insurance adjustment. At a broader scale, precision
yield maps can be created at the township or regional level to provide vital
information for food security, agricultural management, and policy.
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At any particular location (pixel), let X be a vector containing n values of days-
of-year (DOYs) and Y be a vector containing n values of the GEE-retrieved
NDVI observed at DOYs in X.

Rule 1: If a large change in NDVI is detected within a searching window of 14
days, a pixel is considered as cloud contaminated.

We define �Y—an n x n matrix containing distances between a particular Y value
and all values in the Y vector (�Yi = yi – Y with i indicates a value position
in X, Y vectors and a row position in �Y). At a random position j, we split �Yj
into two part: �Yj1 — distances between yj and Y values to the left of j (start
→ j), and �Yj2 — distances between yj and Y values to the right of j position
in Y (j → end).

If min(�Yj1) < -0.1 & min(�Yj2) < -0.1 & (min(�Yj1) + min(�Yj2)) < -0.3, we
conclude that the NDVI observation at j is contaminated by cloud.

Rule 2: If a very large change in NDVI is detected between three consecutive
valid observations (no matter how far they are from each other in terms of DOY),
a pixel is considered as cloud contaminated.

Let x1, x2, x3 be three consecutive DOYs with GEE-filtered NDVI observations—
y1, y2, y3.

If (y1-y2) � 0.15 & (y2-y3) � -0.15 & (y1+y3) � 0.35, we conclude that NDVI at
x2 is contaminated by cloud.
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