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Abstract

Large ensembles of model simulations require considerable resources, and thus defining an appropriate ensemble size for a
particular application is an important experimental design criterion. Utilizing the recently developed CLIVAR ENSO Metrics
Package (Planton et al., 2021), we estimate the ensemble size (N) needed to assess a model’s ability to capture observed ENSO
behavior. Using the larger ensembles available from CMIP6 and the CLIVAR Large Ensemble Project, we find that larger
ensembles are needed to robustly capture baseline ENSO characteristics (N > 65) and physical processes (N > 50) than the
background climatology (N [?] 12) and remote ENSO teleconnections (N [?] 6). While these results vary somewhat across
metrics and models, our study highlights that ensembles are required to robustly evaluate simulated historical ENSO behavior,

and provide initial guidance for designing model ensembles to reliably evaluate and compare ENSO simulations.
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Key Points

e We examine the performance of climate models in reproducing ENSO,
including multiple ensemble members performed with individual models.

e There is broad range in the relative performance of models, with intrinsic
variability influencing the robustness of many characteristics.

o We quantify the ensemble sizes required to characterize various important
aspects of ENSO using large ensembles and Monte-Carlo sampling.

Plain Language Summary

To account for uncertainties arising from the chaotic nature of the climate sys-
tem, Earth system models are often used to generate a large number of simu-
lations under slightly different initial conditions. These large ensembles enable
the consistency between models and observations to be addressed while account-
ing for the intrinsic variability in the climate system. Creating a set of ensemble
simulations requires substantial resources, and so in this study we diagnose what
ensemble size is sufficient to robustly represent the simulated behavior of the
El Nifio / Southern Oscillation (ENSO), one of the most important modes of
variability affecting climate worldwide.
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Abstract

Large ensembles of model simulations require considerable resources, and thus
defining an appropriate ensemble size for a particular application is an important
experimental design criterion. Utilizing the recently developed CLIVAR ENSO
Metrics Package (Planton et al., 2021), we estimate the ensemble size (N) needed
to assess a model’s ability to capture observed ENSO behavior. Using the larger
ensembles available from CMIP6 and the CLIVAR Large Ensemble Project,
we find that larger ensembles are needed to robustly capture baseline ENSO
characteristics (N > 65) and physical processes (N > 50) than the background
climatology (N 12) and remote ENSO teleconnections (N 6). While these
results vary somewhat across metrics and models, our study highlights that
ensembles are required to robustly evaluate simulated historical ENSO behavior,
and provide initial guidance for designing model ensembles to reliably evaluate
and compare ENSO simulations.

1. Introduction

The El Nino Southern Oscillation (ENSO) is the dominant mode of tropical vari-
ability with far-reaching climatic and societal impacts (Clarke, 2008; McPhaden
et al. 2006, 2020; Ropelewski & Halpert, 1987). ENSO generates large-scale sea
surface temperature (SST) variations in the eastern equatorial Pacific Ocean,
with SST anomalies typically between 1-3°C, accompanied by changes in the
oceanic thermal structure and currents, and in the atmospheric circulation and
convective activity. General circulation models (GCMs) have striven to capture
key observed characteristics of ENSO as documented by many previous studies
(e.g., AchutaRao & Sperber, 2002; Guilyardi et al., 2020; Ham & Kug, 2014).

Evaluating GCMs against observations is essential to identify strengths and
weaknesses of different models for different applications, and to track model im-
provements during model development and across generations of the Coupled
Model Intercomparison Project (CMIP). For example, AchutaRao and Sperber
(2006) compared the ENSO performance of the CMIP2 and CMIP3 models,
and found improvements in representing the spatial patterns of the SST anoma-
lies in the eastern Pacific. Later, Bellenger et al. (2014) examined the ability
of the CMIP3 and CMIP5 models to simulate the tropical Pacific climatology
and ENSO, and found reduced inter-model spread in ENSO amplitudes and im-
proved ENSO lifecycles in CMIP5 relative to CMIP3. Such model improvements
are key for improving forecasts and projections of future ENSO risks (Ding et
al., 2020; Guilyardi et al., 2020; L’Heureux et al., 2020; Stevenson et al., 2021).

Recently, an International CLIVAR Pacific Region Panel team developed a suite
of performance metrics to evaluate ENSO simulations, and applied these met-
rics to the CMIP5 and CMIP6 models (Planton et al., 2021). They raised a
point that the climate model evaluation depends on the aspect to focus on: 1)
background climatology and basic ENSO characteristics, 2) ENSO’s worldwide



teleconnections, and 3) ENSO’s internal processes and feedbacks represented in
historical simulations of GCMs. However, in a multi-model ensemble, it can
be difficult to tease apart the role of internal variability (sampling variation)
versus model formulation (different physical parameterizations, resolutions, dy-
namical cores, representations of fluxes between ocean and atmosphere, etc.) in
generating inter-model spread in the ENSO performance metrics.

To resolve this uncertainty, one can leverage ensembles of simulations from
individual models to test the sensitivity of the ENSO metrics to internal vari-
ability alone. While most contributing modeling groups typically provide fewer
than 10 historical simulations (exploring different initial conditions, initializa-
tion procedures, physical parameterizations or forcings) to CMIP, some have
produced 30 or more (e.g., Boucher et al., 2020; Delworth et al., 2020; Deser
et al., 2020). These large ensembles offer a valuable testbed to determine the
ensemble size needed to measure model performance relative to a specific skill,
especially when evaluating climate variability (Deser et al., 2020). In particular,
multi-millennium simulations have demonstrated that ENSO’s characteristics
(amplitude, spectrum, irregularity, and spatial pattern) can vary substantially
on multidecadal and multi-centennial scales, purely due to internal variability
(Stevenson et al., 2010; Wittenberg 2009; Wittenberg et al., 2014). Thus it is
essential to account for this internal variability when evaluating or comparing
models, by using a sufficient run duration and ensemble size to robustly resolve
any important differences.

Generating a large ensemble of simulations requires considerable resources, and
so defining an appropriate ensemble size for a particular application has been
recognized as an important step in the experimental design of both weather
and climate simulations for decades (e.g., Leith 1974). As the appropriate en-
semble size is application-dependent (e.g., Brankovié¢ & Palmer, 1997; Déqué,
1997; Doi et al., 2019; Pennel & Reichler, 2011; Wills et al., 2020), CMIP has
not yet defined a standard ensemble size or a standard methodology to deter-
mine the minimum ensemble size. For ENSO in GCM, Buli¢ and Brankovié
(2007) concluded that a 35-member atmospheric GCM large ensemble enabled
“better sampling and detection of the ENSO signal in the extratropics where
atmospheric internal variability is relatively strong.” Maher et al. (2018) inves-
tigated the ENSO amplitudes in two large ensembles, and argued that approx-
imately 30-40 ensemble members from a given model were needed to robustly
characterize ENSO. Milinski et al. (2020) found that 50 members were needed
to characterize winter variability in the Nifi03.4 region to within +5% error.
However, gauging the ensemble size needed to robustly characterize a broad
range of ENSO characteristics has not been thoroughly investigated.

In this study, we address the following question: What is the minimum number
of ensemble members needed to obtain robust results for characterising ENSO
performance in GCMs? We examine the models’ ability to capture the elements
of the background climatology relevant to ENSO, the emergent tropical Pacific
behavior of ENSO, ENSO'’s remote teleconnections outside the tropical Pacific,



and key ENSO processes and feedbacks, by applying the CLIVAR ENSO Metrics
Package (Planton et al., 2021).

2. Data and Methods

We use all currently available simulations from the most recent generation of the
Coupled Model Intercomparison Project (CMIP6) and several large ensembles
made available by a few modeling groups. The CMIP6 coupled Historical ex-
perimental protocol (Eyring et al., 2016) is well-suited for evaluating the ENSO
simulations against observations. The Historical simulations are initialized in
1850 and run to 2014 with close to observed time-varying natural and anthro-
pogenic forcings (Durack et al., 2018). We use all available historical members
from 41 CMIP6 models (Table 1) and 2 models from the Single-Model Initial
condition Large Ensembles (SMILEs) Project (Deser et al., 2020).

To gauge how well models simulate the observed characteristics of ENSO, we
apply the CLIVAR ENSO Metrics Package (hereafter CEM2021; Planton et al.,
2021) to examine inter-model and inter-member spread of the metrics results.
The metrics in CEM2021 are divided into three Metrics Collections: Perfor-
mance (i.e., background climatology and basic ENSO characteristics), Telecon-
nections (ENSO’s worldwide teleconnections), and Processes (ENSO’s internal
processes and feedbacks). Each metric is computed using monthly-mean sim-
ulated and observed fields. We use the same observations as in Planton et al.
(2021), including AVISO, ERA-Interim (Dee et al., 2011), GPCPv2.3 (Adler
et al., 2003), and TropFlux (Praveen Kumar et al., 2012, 2013), and refer to
these as our reference datasets (list of variables and epochs are provided in sup-
plement, as Table S1). The analysis is conducted using the PCMDI Metrics
Package (PMP, Gleckler et al., 2016) framework in which the CEM2021 is im-
plemented. In the study of Planton et al. (2021), the CEM2021 metrics were
applied to CMIP6 simulations using one ensemble member per model. In this
study, we apply the CEM2021 metrics to all available ensemble members of the
CMIP6 models, to assess the robustness of model skill.

To estimate the ensemble size needed to gauge ENSO performance, we apply
a Monte Carlo approach as proposed by Milinski et al. (2020). We apply
CEM2021 results from models with large ensembles (LEs) of 20 or more mem-
bers (with varying initial conditions, but fixed initialization procedures, physical
parameterizations, and forcings), to capture the ensemble spread caused by in-
ternal variability. The LEs for include ACCESS-ESM1-5 (Ziehn et al., 2020),
CanESM5 (Swart et al., 2019), CNRM-CM6-1 (Voldoire et al., 2019), EC-Earth3
(Doscher et al. 2021), IPSL-CM6-LR (Boucher et al., 2020), MIROC-ES2L (Ha-
jima et al., 2020), MIROCG6 (Tatebe et al., 2019), and NorCPM1 (Bethke et al.,
2021) of CMIPG6, as well as CESM (Kay et al., 2015) and CanESM2 (Kirchmeier-
Young et al., 2017) of the SMILEs (models marked with asterisk in Table 1). For
each LE model and metric, a random sample of N members (pseudo-ensemble
or PE), with N ranging from 1 to the full ensemble size, is drawn from the
ensemble. We generate 1000 PEs to estimate the sampling distribution for each
metric and model, resampling “with replacement” (each PE member is drawn



from the full ensemble each time, thus independent to previous draws) or “with-
out replacement” (each new member is drawn only from members not previously
selected for that PE). We consider a PE of size N sufficient if at least 95% of
the resampled PE means from the “with replacement” are within £10% of the
“true” ensemble mean estimated from the full ensemble. Additional details are
provided in the supplementary material.

3. Results
3.1 Performance overview

Figure 1 provides a quick-look summary of CMIP6 results using a portrait plot
(Gleckler et al., 2008) for each of the three metrics collections defined as part of
the CEM2021. This figure resembles Fig. 1 of Planton et al. (2021), except here
we include multiple members from individual CMIP6 models, to assess the level
of variation arising from internal climate variability. Objectively summarizing
results across all metrics is achieved via a common normalization, to ensure that
results from each metric span a similar range. Simple normalizations like the
one we use, calculated relative to the multi-model mean error (MMME) for each
metric, are well-established and have been applied in analogous figures for the
mean climate (Gleckler et al., 2008; Flato et al., 2014), indices of temperature
and precipitation extremes (Sillmann et al., 2013; Kim et al., 2020), extratrop-
ical modes of variability (Lee et al., 2019, 2021), and ENSO (Bellenger et al.,
2014; Planton et al., 2021). The color scale in Fig. 1 (2 standard deviation
from the MMME in each column) is expressed relative to the range of errors in
the CMIP6 multi-model ensemble. Figure 1 thus highlights the strengths and
weaknesses of each model relative to the multi-model distribution. For most
models the relative performance is mixed across the metrics, including smaller
(blue) and larger (red) errors relative to the MMME. Fig. 1 indicates that the
members for a given model and metric generally have similar errors relative to
the multi-model distribution, suggesting that each model’s relative performance
is fairly insensitive to internal variability. There are exceptions, however, for
some of the ENSO performance metrics (lifecycle, amplitude, asymmetry, and
diversity), and feedback metrics (in particular the ocean-driven SST tendency),
which show substantial spread due to internal variability when assessed over the
epochs of the reference datasets.

Figure 2 is based on the same statistics used in Figure 1, but without normaliza-
tion. The circles in each panel represent the average error across all members
as compared to our reference dataset, with vertical line markers showing the re-
sults for individual members. These plots collectively illustrate the inter-model
skill differences, as well as the inter-member (internal) variability in the errors
for each model, for those selected three example metrics (analysis for other met-
rics are available in the supplement, Fig. S1). For the Fquatorial SST Bias
metric (Fig. 2a), as well as others based on mean state characteristics (Fig.
S1), the inter-member spread due to internal variability is very narrow. The
internally-generated spread is larger for ENSO Amplitude (Fig. 2b), as large as
1 of inter-model spread in general. For ENSO Asymmetry (Fig. 2¢), there are



some members that nearly match the observations while others differ strongly
from observed (e.g., CanESM2). For metrics with such behavior, multiple mem-
bers are needed to obtain an accurate assessment of skill relative to observations.
Figure 2 also shows that the inter-member spread is model dependent.

3.2. Estimating the Required Ensemble Size

We now estimate how many members are needed for each metric, to ensure that
the results are reasonably representative of any given model’s overall perfor-
mance. We use results from the four models contributed to CMIP6 or SMILEs
that have 20 or more ensemble members with varying initial conditions but
fixed physical parameterizations, thus focusing on the ensemble spread caused
by internal variability. These models are ACCESS-ESM1-5, CanESM5, CNRM-
CM6-1, EC-Earth3, IPSL-CM6-LR, MIROC-ES2L, MIROCG6, and NorCPM1 of
CMIP6, and CESM and CanESM2 of the SMILEs (Table 1).

Figure 3 depicts the distribution of sampling errors for IPSL-CM6A-LR as a
function of ensemble size (N). Results are shown for metrics that vary little
from one member to another (Equatorial SST Bias), moderately (ENSO Am-
plitude) and substantially (ENSO Asymmetry) relative to other metrics, for an
epoch of the length of the reference dataset. The pseudo-ensemble means from
the “without replacement” sampling results converges to the full ensemble mean.
On the contrary, pseudo-ensemble means from the “with replacement” sampling
does not converge to the mean when the entire sample size is considered, which
approximates what would happen if the samples had been drawn from the un-
derlying infinite-member distribution. We define our estimate of a minimum
ensemble size needed to resolve differences in skill between the models, N,,;,, as
the smallest value of n (i.e, number of sample in subset) where at least 95% of
the “with replacement” pseudo-ensemble means fall within 10% of the mean of
the full ensemble. The N,,,, is estimated to be 1 for Equatorial SST Bias, and
8 for ENSO Amplitude, while entire ensemble size (32) is not large enough for
ENSO Asymmetry, for the IPSL-CM6A-LR model and for the epoch lengths of

the reference dataset.

We repeated the aforementioned analysis to estimate the N, for individual
metrics, and from the four large ensembles mentioned above (i.e., models high-
lighted in Table 1). The height of each bar in Figure 4 shows the maximum N,,;,
for each metric, selected conservatively as the largest value of N, among the
10 models. As anticipated, the background climatology metrics (light green)
and teleconnection metrics (yellow) require smaller ensembles (1-12 members
and 1-6 members, respectively) than metrics evaluating basic ENSO character-
istics (magenta, 17-65 members). Note that in the CEM2021 the teleconnection
metrics measure the skill on global spatial pattern, while if a metric targets
regional analysis then it may show larger spread (e.g., AchutaRao & Sperber,
2006). The ENSO Asymmetry and Diversity metrics require the largest N,,;,,
65. For the metrics evaluating physical processes (cyan), the N, . varies across
from 1-50. The two largest include the SST-Tauz Feedback metric, examining

the sensitivity of sea surface temperature anomalies in the eastern equatorial



Pacific to zonal wind stress anomalies in the western equatorial Pacific, and
the Ocean driven SST metric, which gauges how much anomalous heating by
local ocean advection and mixing is associated with a 1 K change in SST in the
eastern equatorial Pacific Nifio3 region (5N-5S, 150W-90W).

4. Summary and Discussion

We applied the CLIVAR ENSO Metrics Package (CEM2021; Planton et al.,
2021) to all available ensemble members of the models in the CMIP6 Historical
experiment database plus two additional large ensembles. Several ensembles ex-
ceeded 20 members (ACCESS-ESM1-5, CanESM5, CNRM-CM6-1, EC-Earth3,
IPSL-CM6-LR, MIROC-ES2L, MIROC6, and NorCPM1 of CMIP6, and CESM
and CanESM2 of the SMILEs). We then estimated the minimum number of
members needed to diagnose how well climate models simulate a diverse suite
of ENSO characteristics. We find that the results vary across metrics and are
somewhat model dependent. Models require a larger ensemble to constrain base-
line ENSO characteristics (N > 65) and physical processes (N > 50) than they
do for the background climatology (N 12) and ENSO related teleconnections
(N 6). We have shown how estimates of an N, can vary from one model to
the next, and thus we encourage future investigators to apply the same tests
to other large ensembles as they become available. With the approach we have
applied, however, the minimum effective ensemble size is constrained by the size
of the full ensemble (i.e., N,,,, cannot exceed the size of the largest ensemble)
and can be biased low if the available ensemble size is too small. Nonetheless,
where gauging the simulation of ENSO may be of interest, we recommend these
estimates be considered in the design of new coordinated experiments, includ-
ing the Historical simulations in the next phase of CMIP. Considering the early
studies of how climate change affects ENSO amplitude in the future were based
on CMIP model simulations with far fewer than 10 and often only 1 ensemble
member (e.g., Collins et al., 2010; Meehl et al., 2007; van Oldenborgh et al.,
2005), increasing ensemble size would help strengthen robustness of the results.

It is clear that improvement of ENSO in models is not an easy task. The diverse
range of model performance within each of the process metrics is indicative of
the complex nature of the model biases, and the tolerance level will depend on
application and the signal-to-noise ratio (i.e., how large of a difference matters
for a given metric). The requirement for robustness also depends on the metric
and ultimately the science question being asked. The CEM2021 is particularly
designed to address the three basic science questions identified in Planton et
al. (2021), and because each of them incorporate some of the baseline ENSO
characteristics, our findings suggest that to fully address each question requires
a substantial ensemble size (N > 65 for Performance and Process, N 47 for
Teleconnection Metrics Collections of CEM2021), reinforcing the importance of
the large ensembles.

It must also be kept in mind that multiple century-long control runs span a
more diverse set of ENSO regimes than sampled in the limited record length of
available observations (Wittenberg 2009). For these diverse regimes, it is entirely



likely that different balances for processes are in effect (e.g., Atwood et al., 2017;
Chen et al., 2017). One possible avenue of evaluation is to subsample simulated
ENSO’s variability that is consistent with the range of present observations as
a basis for more rigorous assessment for GCMs. But given the role of multi-
decadal ENSO variability possibly extending to much longer time scales, high-
quality observational records and reanalyses for the tropical Pacific must be
sustained to support help improve understanding of longer time scale changes
in the behavior of ENSO and its evaluation in climate models (Cravatte et
al., 2016; Kessler et al., 2019). Inclusion of more regionally based metrics may
also influence the assessment of model performance (e.g., AchutaRao & Sperber,
2006; Cai et al., 2018). Further work is also needed to establish how the selection
of reference data may influence any conclusions derived from the CEM2021.
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Table 1. List of models and ensemble sizes. Models having 20 or more “initial
condition” ensemble members (i.e., varying initial condition but fixed physical
parameterizations) are marked in bold and with an asterisk (*) and used for
determining the required ensemble size in Section 3.2. Models marked with a
hash (#) are excluded despite having 20 or more members because of varying
physical parameterizations. CMIP6 models that are available as of June 2021
are applied in this study. Further information on each CMIP6 model is available
at https://es-doc.org/cmip6/.

Participation Model Members Model

CMIP6 ACCESS-CM2 3 GFDL-CM4
ACCESS-ESM1-5 30* GFDL-ESM4
AWI-CM-1-1-MR 5 GISS-E2-1-G
AWI-ESM-1-1-LR 1 GISS-E2-1-G-CC
BCC-CSM2-MR 3 GISS-E2-1-H
BCC-ESM1 3 HadGEM3-GC31-LL
CAMS-CSM1-0 3 HadGEM3-GC31-MM
CanESM5 65%* INM-CM4-8
CanESM5-CanOE INM-CM5-0
CESM2 1 IPSL-CM5A2-INCA
CESM2-FV2 IPSL-CM6A-LR

CESM2-WACCM IPSL-CM6A-LR-INCA

3

1

3

3
CESM2-WACCM-FV2 3 KACE-1-0-G
CMCC-CM2-HR4 1 KIOST-ESM
CMCC-CM2-SR5 1 MIROC-ES2H
CMCC-ESM2 1 MIROC-ES2L
CNRM-CM6-1 29* MIROCS6
CNRM-CM6-1-HR 1 MPI-ESM-1-2-HAM
CNRM-ESM2-1 10 MPI-ESM1-2-HR
E3SM-1-0 5 MPI-ESM1-2-LR
E3SM-1-1 1 MRI-ESM2-0
EC-Earth3 22% NESM3
EC-Earth3-AerChem 2 NorCPM1
EC-Earth3-CC 1 NorESM2-LM
EC-Earth3-Veg 9 NorESM2-MM
EC-Earth3-Veg-LR 3 SAMO-UNICON
FGOALS-f3-L 3 TaiESM1
FGOALS-g3 6 UKESM1-0-LL
FIO-ESM-2-0 3

SMILEs CESM1-CAM5 40%* CanESM2

Members

ATH#
254

50%*
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Figure 1. ENSO Metrics portrait plot for CMIP6 with results for Performance,
Teleconnection, and Processes metrics defined as part of CEM2020 (Planton et
al. 2021). Multiple realizations are shown as available, with a maximum of 5
per model for brevity. The initial error metrics are positive-definite measures of
distance from the reference observations (e.g., root-mean-square error or percent
absolute error), for a given physical field of interest (see Table Bl of Planton
et al. 2021 for definitions). To aid comparison across models and metrics,
the metrics are displayed non-dimensionally, as a difference from the multi-
model mean error (MMME) computed from all CMIP6 divided by the inter-
model standard deviation () within each metric column. A displayed value
of 0 (white) corresponds to the MMME; a value of 2 (dark red) corresponds
to a model error two standard deviations greater (worse) than the MMME;
and a value of -2 (dark blue) a model error that is two standard deviations less
(better) than the MMME. To weight the models equally in the MMME, the error
metrics of each model are first averaged across its own ensemble members before
averaging across all models. Metrics are grouped and highlighted according to
their application (metrics collection or MC), evaluating background climatology
(light green), basic ENSO characteristics (magenta), teleconnections (yellow), or
physical processes (cyan).
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Figure 2. Error metrics calculated for ensemble simulations from the CMIP6
models and Large ensembles of CESM1-CAMS5 and CanESM2. Lines represent
standard deviation of error metrics for individual model ensembles, with circles
denoting the average of all members for any given model. Three representative

(a) Equatorial SST Bias, (b) ENSO Amplitude and (c)

Asymmetry, with results from other metrics in Supplemental Fig. S1. In each

metrics are shown:

panel, a corresponding unit is given in the subtitle. Models are sorted by their
metric values (smaller metric value for better performance). Vertical solid and
dashed lines are for multi-model mean error and its £1 standard deviation,

respectively. Error metrics calculated for alternative observation-based datasets

(Alt OBS) are shown at the top row of each panel.
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Figure 3. Absolute difference of the sample mean from the actual mean
of the entire IPSL-CMG6A-LR ensemble (ordinate) for pseudo-ensembles sam-
pled with (orange) or without (blue) replacement at different sample sizes (ab-
scissa). Three representative metrics are shown: (a) Equatorial SST Bias, (b)
ENSO Amplitude and (c) Asymmetry. Annotated N indicates the minimum
ensemble size (N,,;,) for which at least 95% of the “with replacement” pseudo-
ensemble means fall within 10% of the mean metric value from the full en-
semble. Shaded area indicates the full min-max range of the sample distribu-
tion, long-dashed lines indicate 95th percentiles of the sample distribution, and
short-dashed horizontal lines indicate a difference of 10% from the mean of the
full ensemble. Note that by definition the distribution of the pseudo-ensemble
without replacement (blue) converges toward the mean of the full ensemble.
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Figure 4. Minimum number of required ensemble members (N,,,, of Fig. 3)
for individual metrics obtained from models with at least 20 initial condition
ensemble members (see Table 1). Each vertical bar indicates the maximum
N,..n (across the 4 models) for the given metric. Metrics are listed along the
abscissa. Ordinate indicates the minimum required ensemble size for 95% of
the ensemble means (so estimated) to fall within 10% of the actual mean of the
full ensemble, as shown in Figure 3. Markers in red indicate cases where N_,;,
exceeds the full ensemble size. Metrics are color coded as in Figure 1, for the
background climatology (light green), basic ENSO characteristics (magenta),

teleconnections (yellow), and physical processes (cyan).
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