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Abstract

Most Earth-system simulations run on conventional CPUs in 64-bit double precision floating-point numbers Float64, although

the need for high-precision calculations in the presence of large uncertainties has been questioned. Fugaku, currently the world’s

fastest supercomputer, is based on A64FX microprocessors, which also support the 16-bit low-precision format Float16. We

investigate the Float16 performance on A64FX with ShallowWaters.jl, the first fluid circulation model that runs entirely with

16-bit arithmetic. The model implements techniques that address precision and dynamic range issues in 16 bit. The precision-

critical time integration is augmented to include compensated summation to minimize rounding errors. Such a compensated

time integration is as precise but faster than mixed-precision with 16 and 32-bit floats. As subnormals are inefficiently supported

on A64FX the very limited range available in Float16 is 6.10-5 to 65504. We develop the analysis-number format Sherlogs.jl

to log the arithmetic results during the simulation. The equations in ShallowWaters.jl are then systematically rescaled to fit

into Float16, using 97% of the available representable numbers. Consequently, we benchmark speedups of 3.8x on A64FX with

Float16. Adding a compensated time integration the speedup is 3.6x. Although ShallowWaters.jl is simplified compared to

large Earth-system models, it shares essential algorithms and therefore shows that 16-bit calculations are indeed a competitive

way to accelerate Earth-system simulations on available hardware.
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Most Earth-system simulations run on conventional CPUs in 64-bit double precision
floating-point numbers Float64, although the need for high-precision calculations in
the presence of large uncertainties has been questioned. Fugaku, currently the
world’s fastest supercomputer, is based on A64FX microprocessors, which also
support the 16-bit low-precision format Float16. We investigate the Float16
performance on A64FX with ShallowWaters.jl, the first fluid circulation model that
runs entirely with 16-bit arithmetic. The model implements techniques that address
precision and dynamic range issues in 16 bit. The precision-critical time integration is
augmented to include compensated summation to minimize rounding errors. Such a
compensated time integration is as precise but faster than mixed-precision with 16
and 32-bit floats. As subnormals are inefficiently supported on A64FX the very
limited range available in Float16 is 6.10-5 to 65504. We develop the analysis-number
format Sherlogs.jl to log the arithmetic results during the simulation. The equations
in ShallowWaters.jl are then systematically rescaled to fit into Float16, using 97% of
the available representable numbers. Consequently, we benchmark speedups of 3.8x
on A64FX with Float16. Adding a compensated time integration the speedup is 3.6x.
Although ShallowWaters.jl is simplified compared to large Earth-system models, it
shares essential algorithms and therefore shows that 16-bit calculations are indeed a
competitive way to accelerate Earth-system simulations on available hardware.

Plain Language Summary

Computational performance is a major limitation to improved weather and climate
forecasts. Most Earth-system simulations run on conventional computers with every
calculation being performed with 64 bit at very high precision, although the need for
high-precision calculations in the presence of large uncertainties of the climate system has
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been questioned. We present results with ShallowWaters.jl, the first fluid circulation model
that runs entirely with 16-bit precision, essentially making every calculation only to 4 digits
accurate. Furthermore, only numbers between 6.10-5 to 65,504 are representable and we
systemically rescale all calculations to not exceed this range, making use of 97% of all
representable numbers within. Simulations with ShallowWaters.jl performed on modern
hardware are almost 4x faster than the conventional high-precision calculations. Although
ShallowWaters.jl is simplified compared to large Earth-system models, it shares essential
algorithms and therefore shows that 16-bit calculations are indeed a competitive way to
accelerate Earth-system simulations on available hardware.

Key points

- The first fluid circulation model entirely based on 16-bit instead of conventional
64-bit calculations approaches 4x speedups on hardware.

- Systematically rescaling squeezes all calculations into the very limited range of
Float16, making use of 97% of the available numbers.

- Compensated summation in the precision-critical time integration minimizes
rounding errors from Float16 and is faster than mixed-precision.

1. Introduction

The first numerical weather prediction models have recently moved away from 64-bit
double precision floating-point numbers for higher computational efficiency in lower
precision (Govett et al., 2017; Nakano et al., 2018; Rüdisühli et al., 2013; Váňa et al., 2017).
While both Float32 and Float64 formats are widely available for high-performance
computing, support for 16-bit arithmetic is only available on mainstream hardware for a
few years, due to the demand for low precision by deep learning. The transition for an
existing application towards 16 bit is challenging: Rounding errors from low precision have
to be controlled and a limited range of representable numbers cannot be exceeded
without causing often catastrophic under and overflows. But the potential performance
gains are promising, with 4x speedups compared to 64-bit calculations, not to mention the
reduced energy consumption.

The current boom in machine learning applications is supported by advances in
microprocessors. Instead of conventional central processing units (CPU), graphic and
tensor processing units GPU, TPU (N. Jouppi et al., 2018; N. P. Jouppi et al., 2017; Steinkraus
et al., 2005) are used, which are better suited for the workloads of machine learning. While
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most supercomputers are based on Intel CPUs with the x86-64 architecture (Dongarra &
Luszczek, 2011), many new installations transition towards GPUs or alternative
microprocessor architectures (Zheng, 2020). The trend is towards heterogeneous
computing with specialised hardware, which is both a challenge and an opportunity for
weather and climate models (Bauer et al., 2021). Fugaku, the world’s fastest supercomputer
as of 2020, is based on Fujitsu’s A64FX processors with ARM architecture (Odajima et al.,
2020; Sato et al., 2020). The A64FX also implements the Float16 format (1 sign, 5 exponent
and 10 mantissa bits) and Fujitsu promises a four-fold increase in the number of
floating-point operations per second.

Float16 is the 16-bit variant of Float32 and Float64 and is defined in the 2008 revision of the
IEEE-754 standard on floating-point arithmetic (‘IEEE Standard for Binary Floating-Point
Arithmetic’, 1985; ‘IEEE Standard for Floating-Point Arithmetic’, 2008). Alternatives such as
bfloat16 (Burgess et al., 2019; Kalamkar et al., 2019), minifloats (Fox et al., 2020),
logarithmic fixed-point numbers (Johnson, 2020; Sun et al., 2020), posits (Gustafson &
Yonemoto, 2017; Klöwer et al., 2019; Langroudi et al., 2019; Zhang & Ko, 2020) and
stochastic rounding (Croci & Giles, 2020; Hopkins et al., 2020; Mikaitis, 2020; Paxton et al.,
2021) have been investigated, most of these are not available on standard supercomputing
hardware. Currently only floats (and integers) enjoy a widely available support in terms of
hardware, libraries and compilers that effectively make it possible to execute complex
computational applications.

The use of low-precision number formats is motivated as in the presence of large
uncertainties in the climate system rounding errors are masked by other sources of error
(Palmer, 2015). Typical rounding errors from high-precision calculations are many orders of
magnitude smaller than errors in the observations, from coarse resolution or
underrepresented physical processes. Low-precision calculations are therefore, at least in
theory, sufficient without a loss in accuracy for a weather forecast or a climate prediction.
Emulated in parts of weather and climate models, 16-bit half precision has been shown to
be a potential route to accelerated simulations (Chantry et al., 2019; Hatfield et al., 2019;
Klöwer et al., 2020).

Although weather and climate model data often comes with large uncertainties, many
intermediate calculations inside a model simulation require a higher precision. Time
integration is often a precision-critical part of numerical simulations of dynamical systems.
Stability constraints require small time steps such that tendencies are often several times
smaller than the prognostic variables (Courant et al., 1967). Adding the two yields a loss of
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precision from the tendency as small increments can only be poorly resolved in low
precision (S. Gill, 1951; Kahan, 1965; Møller, 1965). In extreme cases this can lead to a
model stagnation (Croci & Giles, 2020), and is often dealt with using mixed-precision
approaches (Dawson et al., 2018; Klöwer et al., 2020; Tintó Prims et al., 2019), where the
tendencies are computed in low-precision, but converted to a high-precision format before
addition. This is beneficial as a large share of computing time is accelerated with low
precision, while precision-critical operations are kept in high precision.

Precision loss in calculations can be analysed with a variety of available tools, like FPBench
(Damouche et al., 2017), CADNA (Jézéquel & Chesneaux, 2008), Verrou (Fevotte &
Lathuilière, 2019), and Verificarlo (Denis et al., 2016). Such tools are often either based on
interval arithmetic, providing rigid rounding error bounds, or on stochastic arithmetic to
assess the rounding error growth. While these can be useful to identify the minimal
decimal precision for simulating chaotic systems, analysing the limited dynamic range of
low precision number formats is largely unaddressed in these tools.

Here, we present, to our knowledge, the first fluid circulation model that runs entirely in
hardware-accelerated 16-bit floats on the ARM architecture-based microprocessor A64FX.
Strategies are presented to solve precision and range issues with 16-bit arithmetic: In
section 2 we scale the shallow water equations, and an appropriate scale is found with the
newly-developed analysis-number format Sherlogs.jl, which is introduced in section 3. A
compensated time integration is presented in section 4 to minimize precision issues.
Section 5 analyses the rounding errors of Float16 in ShallowWaters.jl and benchmarks the
performance compared to Float64. Section 6 discusses the results.

2. Scaling the shallow water equations

The shallow water equations describe atmospheric or oceanic flow idealised to two
horizontal dimensions. They result from a vertical integration of the Navier-Stokes
equations (A. E. Gill, 1982; Vallis, 2006) and are simplified but representative of many
weather and climate models, which are usually solved with many coupled horizontal layers.

They describe the time evolution of the prognostic variables velocity , and
interface height in the following form

(1)

https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7Bu%7D%20%3D%20(u%2Cv)#0
https://www.codecogs.com/eqnedit.php?latex=%5Ceta#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D%5C%5C%5C%5C%20%5Cpartial_t%5Cmathbf%7Bu%7D%20%26%2B%20%5Cmathbf%7Bu%7D%20%5Ccdot%20%5Cnabla%20%5Cmathbf%7Bu%7D%20%2B%20f%5Cmathbf%7Bz%7D%20%5Ctimes%20%5Cmathbf%7Bu%7D%3D%20-g%5Cnabla%20%5Ceta%20%2B%20%5Cnu_B%20%5Cnabla%5E4%20%5Cmathbf%7Bu%7D%20-%20r%20%5Cmathbf%7Bu%7D%20%2B%20%5Cmathbf%7BF%7D%5C%5C%5C%5C%20%5Cpartial_t%5Ceta%20%26%2B%20%5Cnabla%20%5Ccdot%20(%5Cmathbf%7Bu%7Dh)%20%3D0%5C%5C%5C%5C%20%5Cpartial_tq%20%26%2B%20%5Cmathbf%7Bu%7D%20%5Ccdot%20%5Cnabla%20q%20%3D%20-%5Ctau(q-q_0)%5C%5C%5C%5C%20%5Cend%7Balign*%7D#0
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defined over a rectangular domain with zonal and meridional coordinates of size =

8000km, = 4000km, respectively. The domain is a zonal channel with boundary
conditions being periodic in . The channel setup is motivated by zonal flows like the
Antarctic Circumpolar Current but highly idealised (Jansen et al., 2015).

The non-linear momentum advection is . The Coriolis force is

with the Coriolis parameter using a -plane approximation at 45˚N. The pressure

gradient scales with a reduced gravitational acceleration to
represent baroclinic ocean/atmosphere dynamics (A. E. Gill, 1982). The zonal wind forcing

is a meridional shear which reverses

seasonally ( ). Lateral diffusion of momentum is described by , with
biharmonic viscosity coefficient . Linear bottom friction is represented by which

decelerates the flow at a time scale of . The equation for interface height
is the shallow water-variant of the continuity equation, ensuring conservation of volume.

The layer thickness is of a fluid with depth at rest. Several meridional ridges
on the seafloor trigger instabilities in the zonal flow, but they are small compared to the
fluid depth. The shallow water equations are complemented with an advection for the

passive tracer , which is stirred by the flow and slowly ( ) relaxed back to a
reference . For further details and parameter choices see the Appendix.

In order to control the range of numbers occurring in the simulation, the shallow water
equations are scaled with a multiplicative constant. The evaluation of linear terms is not
affected, but the non-linear terms involve an unscaling. The same constant is chosen for
zonal velocity and meridional velocity , such that and . Additionally, we

use dimensionless spatial gradients , etc. by scaling the equations
with the grid spacing . For simplicity, we use the same in and -direction but
generalisation to less regular grids is possible. The grid spacing is then combined with

the time step and . Due to the 4th-order gradient in the viscosity, we

scale its coefficient as . Using the potential vorticity , with the

relative vorticity , and the Bernoulli potential , the shallow
water equations can be written into a scaled form as

https://www.codecogs.com/eqnedit.php?latex=x%2Cy#0
https://www.codecogs.com/eqnedit.php?latex=L_x#0
https://www.codecogs.com/eqnedit.php?latex=L_y#0
https://www.codecogs.com/eqnedit.php?latex=x#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7Bu%7D%20%5Ccdot%20%5Cnabla%20%5Cmathbf%7Bu%7D#0
https://www.codecogs.com/eqnedit.php?latex=f%5Cmathbf%7Bz%7D%20%5Ctimes%20%5Cmathbf%7Bu%7D%20%3D%20(-fv%2Cfu)#0
https://www.codecogs.com/eqnedit.php?latex=f#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
https://www.codecogs.com/eqnedit.php?latex=-g%5Cnabla%20%5Ceta#0
https://www.codecogs.com/eqnedit.php?latex=g%3D0.01~%5Ctext%7Bms%7D%5E%7B-2%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BF%7D%20%3D%20(F_x%2C0)#0
https://www.codecogs.com/eqnedit.php?latex=F_x%20%3D%20F_0%5Csin(%5Comega%20t)%5Ctanh(2%5Cpi(yL_y%5E%7B-1%7D%20-%20%5Ctfrac%7B1%7D%7B2%7D))#0
https://www.codecogs.com/eqnedit.php?latex=%5Comega%5E%7B-1%7D%20%3D%20365~%5Ctext%7Bdays%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cnu_B%20%5Cnabla%5E4%20%5Cmathbf%7Bu%7D#0
https://www.zotero.org/google-docs/?PA2Pqj
https://www.codecogs.com/eqnedit.php?latex=-r%5Cmathbf%7Bu%7D#0
https://www.codecogs.com/eqnedit.php?latex=r%5E%7B-1%7D%20%3D%20300~%5Ctext%7Bdays%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ceta#0
https://www.codecogs.com/eqnedit.php?latex=h%20%3D%20%5Ceta%20%2B%20H#0
https://www.codecogs.com/eqnedit.php?latex=H#0
https://www.codecogs.com/eqnedit.php?latex=q#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctau%5E%7B-1%7D%20%3D%20100~%5Ctext%7Bdays%7D#0
https://www.codecogs.com/eqnedit.php?latex=q_0#0
https://www.codecogs.com/eqnedit.php?latex=s#0
https://www.codecogs.com/eqnedit.php?latex=u#0
https://www.codecogs.com/eqnedit.php?latex=v#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7Bu%7D%20%3D%20su#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7Bv%7D%20%3D%20sv#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7B%5Cpartial_x%7D%20%3D%20%5CDelta%20x%20%5Cpartial_x%2C%20%5Chat%7B%5Cnabla%7D%20%3D%20%5CDelta%20x%20%5Cnabla#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20x#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20x#0
https://www.codecogs.com/eqnedit.php?latex=x#0
https://www.codecogs.com/eqnedit.php?latex=y#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20x#0
https://www.codecogs.com/eqnedit.php?latex=%5Cwidehat%7B%5CDelta%20t%7D%20%3D%20%5Ctfrac%7B%5CDelta%20t%7D%7B%5CDelta%20x%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7B%5Cpartial_t%7D%20%3D%20%5CDelta%20x%20%5Cpartial_t#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7B%5Cnu_B%7D%20%3D%20%5CDelta%20x%5E%7B-3%7D%5Cnu_B#0
https://www.codecogs.com/eqnedit.php?latex=h%5E%7B-1%7D(f%20%2B%20%5Czeta)#0
https://www.codecogs.com/eqnedit.php?latex=%5Czeta%20%3D%20%5Cpartial_xv%20-%20%5Cpartial_yu#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctfrac%7B1%7D%7B2%7D(u%5E2%20%2B%20v%5E2)%20%2B%20g%5Ceta#0
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(2)

Square brackets denote pre-computed constants and only the volume fluxes have
to be unscaled on every time step. As the volume fluxes are quadratic terms, the evaluation

of scales as , which therefore has to be partly unscaled with . The continuity

equation is rescaled with , i.e. as well as , and the tracer advection

equation is rescaled with , so that

(3)

ShallowWaters.jl solves these scaled shallow water equations with 2nd order finite
differencing on a regular, but staggered Arakawa C-grid (Arakawa & Lamb, 1977). The
advection of potential vorticity uses the energy and enstrophy-conserving scheme of
Arakawa and Hsu (Arakawa & Hsu, 1990). The tracer advection equation for is solved with
a semi-Lagrangian advection scheme (Diamantakis, 2013; Smolarkiewicz & Pudykiewicz,
1992). This scheme calculates a departure point for every arrival grid point one time step
ago. The tracer field is then interpolated onto the departure point, which is used as the
tracer concentration at the arrival point for the next time step. More details on the
implementation of the semi-Lagrangian advection scheme is described in Klöwer et al.
2020. The time integration of ShallowWaters.jl is discussed in section 4.

3. Choosing a scale with Sherlogs.jl

The scaling of equations has to be implemented carefully when using number formats with
a limited dynamic range, such as Float16 (Fig. 1). Subnormals for Float16 are in the range of
6.10-8 to 6.10-5 (see the appendix). Subnormals are inefficiently supported on some
hardware, such that their occurrence causes large performance penalties. This reduces the
available range of Float16 even further and a simulation has to fit as best as possible in the
remaining 9 orders of magnitude between 6.104 . 10-5 and 65,504. A single overflow, i.e. a
result above 65,504, will abort the simulation. Understanding the range of numbers that

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D%5C%5C%5C%5C%20%5Chat%7B%5Cpartial_t%7D%5Chat%7Bu%7D%20%26%3D%20%5Cfrac%7B%5Bs%5CDelta%20x%20f%5D%2B%20%5Chat%7B%5Czeta%7D%7D%7B%5Chat%7Bh%7D%7D%5Cfrac%7B%5Chat%7Bv%7D%5Chat%7Bh%7D%7D%7Bs%7D%20-%5Chat%7B%5Cpartial_x%7D%20%5Cleft(%5B%5Cfrac%7B1%7D%7B2s%7D%5D(%5Chat%7Bu%7D%5E2%20%2B%20%5Chat%7Bv%7D%5E2)%20%2B%20%5B%5Cfrac%7Bsg%7D%7Bs_%5Ceta%7D%5D%5Chat%7B%5Ceta%7D%20%5Cright)%20%2B%20%5Chat%7B%5Cnu_B%7D%20%5Chat%7B%5Cnabla%7D%5E4%20%5Chat%7Bu%7D%20-%20%5Br%5CDelta%20x%5D%5Chat%7Bu%7D%20%2B%20%5Bs%5CDelta%20x%20F_x%5D%5C%5C%5C%5C%20%5Chat%7B%5Cpartial_t%7D%5Chat%7Bv%7D%20%26%3D%20-%20%5Cfrac%7B%5Bs%5CDelta%20x%20f%5D%2B%20%5Chat%7B%5Czeta%7D%7D%7B%5Chat%7Bh%7D%7D%5Cfrac%7B%5Chat%7Bu%7D%5Chat%7Bh%7D%7D%7Bs%7D%20-%5Chat%7B%5Cpartial_y%7D%20%5Cleft(%5B%5Cfrac%7B1%7D%7B2s%7D%5D(%5Chat%7Bu%7D%5E2%20%2B%20%5Chat%7Bv%7D%5E2)%20%2B%20%5B%5Cfrac%7Bsg%7D%7Bs_%5Ceta%7D%5D%5Chat%7B%5Ceta%7D%20%5Cright)%20%2B%20%5Chat%7B%5Cnu_B%7D%20%5Chat%7B%5Cnabla%7D%5E4%20%5Chat%7Bv%7D%20-%20%5Br%5CDelta%20x%5D%5Chat%7Bv%7D%20%2B%20%5Bs%5CDelta%20x%20F_y%5D%5C%5C%5C%5C%20%5Cend%7Balign*%7D#0
https://www.codecogs.com/eqnedit.php?latex=uh%2Cvh#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7Bu%7D%5Chat%7Bh%7D#0
https://www.codecogs.com/eqnedit.php?latex=s%5E2#0
https://www.codecogs.com/eqnedit.php?latex=s%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=s_%5Ceta#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7B%5Ceta%7D%20%3D%20s_%5Ceta%20%5Ceta#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7Bh%7D%20%3D%20%5Chat%7B%5Ceta%7D%20%2B%20s_%5Ceta%20H#0
https://www.codecogs.com/eqnedit.php?latex=s_q#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7Bq%7D%20%3D%20s_q%20q#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D%5C%5C%5C%5C%20%5Chat%7B%5Cpartial_t%7D%20%5Chat%7B%5Ceta%7D%20%26%3D%20-%5Chat%7B%5Cpartial_x%7D(%5Cfrac%7B%5Chat%7Bu%7D%5Chat%7Bh%7D%7D%7Bs%7D)%20-%20%5Chat%7B%5Cpartial_y%7D(%5Cfrac%7B%5Chat%7Bv%7D%5Chat%7Bh%7D%7D%7Bs%7D)%5C%5C%5C%5C%20%5Bs%5Chat%7B%5Cpartial_t%7D%5D%20%5Chat%7Bq%7D%20%26%3D%20%5Cleft(-%5Chat%7Bu%7D%5Chat%7B%5Cpartial_x%7D%20%5Chat%7Bq%7D%20-%20%5Chat%7Bv%7D%5Chat%7B%5Cpartial_y%7D%20%5Chat%7Bq%7D%5Cright)%20-%20%5B%5Ctau%20%5CDelta%20x%5D(%5Chat%7Bq%7D%20-%20%5Chat%7Bq_0%7D)%5C%5C%5C%5C%20%5Cend%7Balign*%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=q#0
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occur in all operations and ideally in which lines of the code is therefore very important.
For most algorithms this is very difficult to achieve unless the numbers are directly
measured within the simulation.

Figure 1 | Decimal precision of Float16 and Float32 over the range of representable numbers.
The decimal precision is worst-case, i.e. given in terms of decimal places that are at least correct
after rounding (see Appendix). The smallest representable number (minpos), the smallest normal
number (floatmin) and the largest representable number (maxpos) are denoted with vertical dashed
lines. The subnormal range is between minpos and floatmin respectively.

We therefore developed the analysis-number format Sherlogs. Sherlog16, for example,
uses Float16 to compute, but after every arithmetic operation the result is also logged into
a bitpattern histogram. Running a simulation with Sherlogs will take considerably longer
due to the overhead from logging the arithmetic results, which can be obtained in the form
of a bitpattern histogram upon completion. The bitpattern histogram will reveal
information such as the smallest and largest occurring numbers or how well an algorithm
fits into a smaller dynamic range. An example usage of Sherlogs is given in Fig. 2.
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1 julia> using ShallowWaters, Sherlogs # load packages
2 julia> # run ShallowWaters with Sherlog16 which logs all arithmetic results
3 julia> run_model(Sherlog16) # use Sherlog16 as number format
4
5 julia> get_logbook(1) # retrieve the bitpattern histogram
6 65536-element LogBook(1112720887, 1484631, 1378491, 1024411, … , 0, 0, 0, 0, 0)
7
8 julia> # run ShallowWaters with DrWatson16 recording a stack trace when f=true
9 julia> f(x) = 0 < abs(x) < floatmin(Float16) # true for subnormals
10 julia> run_model(DrWatson16{f}) # use DrWatson16 as number format
11
12 julia> get_stacktrace(1) # retrieve the first stack trace
13 3-element Vector{Base.StackTraces.StackFrame}:
14 * at DrWatson16.jl:52 [inlined] # subnormal occurred in *
15 caxb!(...) at time_integration.jl:320 # inside this function
16 time_integration(...) at time_integration.jl:82 # called from here

Figure 2 | Example usage and output of Sherlogs.jl, a package for Sherlogs and DrWatson, two
analysis-number formats that can be combined with type-flexible functions in Julia. Using
Sherlog16 as the first argument of run_model runs ShallowWaters.jl with Float16 but also logs the
bitpattern of every arithmetic result into a logbook of length to create a bitpattern
histogram. DrWatson16{f} uses Float16 but also records a stack trace (a list of calling functions and
respective lines of code) every time the function f(x) evaluates to true with the arithmetic result x.
Here, a subnormal arises in a multiplication (* in line 14 here) in line 320 of the code in script
time_integration.jl.

Sherlogs are implemented in the package Sherlogs.jl, which makes use of the type-flexible
programming paradigm in Julia (Bezanson et al., 2017). A function is written in an abstract
form, which is then dynamically dispatched to the number format provided and compiled
just-in-time. Such a number format can therefore be, for example, Float64 or Float16, but
also any user-defined number format such as Sherlogs.

An appropriate scaling has to be chosen for a given set of parameters. The
bitpattern histogram of the entirely unscaled shallow water equations simulated with
Float32 reveals range issues that would arise with Float16 (Fig. 3a). A large share (10%) of
the arithmetic results would be below the representable range of Float16. Consequently,
running the model without any scaling modifications in Float16 would round many
numbers to 0, causing so-called underflows that deteriorate the simulated dynamics
(Klöwer et al., 2020). Most of these underflows occur in the calculation of gradients, which
consequently have to be non-dimensionalised as previously suggested (Klöwer et al., 2019).
This also largely removes a resolution-dependence of the bitpattern histograms, such that
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Float16 simulations are possible across a wide range of resolutions. Dimensionless
gradients are a major improvement to fit ShallowWaters.jl into the available range with
Float16, yet 3% of the arithmetic results are subnormals (Fig. 3b). On A64FX a flag can be
set to avoid the performance penalty from subnormals by flushing every occurring
subnormal to zero. The smallest representable number is therefore  6.104 . 10-5.

Using the DrWatson number format from Sherlogs.jl identifies the addition of the
tendencies to the prognostic variables as prone to produce subnormals (Fig. 2). We
therefore increase the scales to scale up the prognostic variables and consequently

their tendencies. Choosing reduces the amount of subnormals to 0.04%,
while leaving about a factor two headspace between the largest occurring numbers (about
30,000) to avoid overflows beyond 65,504 (Fig. 3b). The compensated time integration
(section 4) increases this share to about 0.2%.

The idealised tracer in ShallowWaters.jl takes values in (-1,1), so we scale this variable by

in order to use most of the Float16 range. This is to allow as many bitpatterns as
possible for the interpolation in the semi-Lagrangian advection scheme, which uses
non-dimensional departure points on a locally relative grid for 16-bit arithmetic, as
described in Klöwer et al., 2020.

Consequently, the fully scaled shallow water equations are squeezed well into Float16,
making near-optimal use of the available bitpatterns, of which only 3% are unused (NaNs
excluded). In contrast, a simulation with Float32 does not make use of at least 81% of
available bitpatterns (Fig. 3), assuming that for a simulation run long enough all bitpatterns
within the used range occur eventually. Extrapolating this to Float64 with a representable
range of 5.10-324 to 2.10308 the share of unused bitpatterns is at least 97.5%. This
computational inefficiency can be overcome with 16-bit number formats and systematic
scaling as presented here. However, scaling leaves the precision issues with low-precision
formats unaddressed, for which we present a technique in the next section.
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Figure 3 | Bitpattern histogram of all arithmetic results in ShallowWaters.jl. a 200-day
simulation at = 20km based on Float32 arithmetic. The share of numbers outside the Float16
range (grey shading) are colour-coded to the respective histograms. b as a but based on Float16.
Bitpattern histograms are created with Sherlogs.jl. The logarithmic y-axis denotes the number of
occurrences N of the respective bitpattern during the simulation. The histograms span all available
bitpatterns in the respective formats evenly but are sorted and relabelled with the corresponding
values for readability. The range of bitpattern that are subnormals or interpreted as Not-A-Number
(NaN) are marked. Bitpatterns histograms are without compensated time integration (section 4).

4. A compensated time integration

To minimize the precision loss in the time-integration, we adopt compensated summation
as an alternative approach to mixing precision. Compensated summation is a simple, yet
powerful technique that prevents the accumulation of rounding errors in the computation
of large sums. Since the addition of multiple terms is ubiquitous in scientific computing,
compensated summation can be used to improve the accuracy of many algorithms such as
numerical linear algebra operations, integration or optimization. Here we use compensated
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summation to augment the resilience to rounding errors of our half-precision
time-stepping method.

The first version of compensated summation was used by Gill in 1951 in a Runge-Kutta
integrator scheme in fixed-point arithmetic (S. Gill, 1951), and the idea was subsequently
extended to floating-point arithmetic by Kahan (Kahan, 1965), Møller (Møller, 1965) and
others (Higham, 1993; Linnainmaa, 1974; Vitasek, 1969). That we are aware of, our paper is
the first work in which compensated summation is used in a fluid circulation model with
16-bit arithmetic.

To understand compensated summation, consider the following naïve algorithm for the
summation of all the entries of a length- vector

1 sum = 0 # variable to store the sum
2 for ai in a # loop over all elements of a
3 sum = sum + ai # accumulate each element into sum
4 end
5 return sum

This algorithm is prone to rounding errors, which accumulate at a rate proportional to
(Higham, 1993). Furthermore, the algorithm might cause stagnation, a phenomenon for
which the partial sum becomes too large, causing each subsequent addition to be
neglected due to rounding. Compensated summation offers a much better alternative at
the cost of introducing an additional compensation variable c:

1 c = 0 # compensation, initially 0
2 sum = 0 # variable to store the sum
3 for ai in a # loop over all elements of a
4 aic = ai - c # compensate rounding error from previous iteration
5 temp = sum + aic # add next element of a, but store in temp
6 c = (temp-sum) - aic # rounding error from sum+aic
7 sum = temp # copy addition back to sum
8 end
9 return sum

At infinite precision, the compensation c will remain 0. At finite precision, however,
calculating c = (temp-sum) - aic will estimate the rounding error in the addition sum + aic

and subsequently attempt to compensate for it in the next iteration through aic = ai - c.
For base-2 floating point arithmetic we have exactly sum + ai = temp + c, i.e. the
compensation variable c correctly captures the rounding errors in the addition.
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Compensated summation prevents the rounding errors from accumulating, and the overall
summation error will stay a mere multiple of machine precision (Higham, 1993). Overall,
the compensation c can be interpreted as a storage variable for rounding errors and
effectively prevents rounding errors in the summation from growing beyond machine
precision accuracy.

Compensated summation is especially useful in settings in which the order of summation
cannot be manipulated to prevent rounding error growth. Time integration schemes, for
which the state variables are updated sequentially, are especially amenable to
augmentation by compensated summation. Over a time period the number of terms to
be added scales as , proportional to one for each time step. The naÏve algorithm

would cause rounding errors to grow like , causing errors to counter-intuitively
grow as the time-step is refined. With compensated summation the rounding errors will

stay .

ShallowWaters.jl uses the 4-th order Runge-Kutta scheme (Butcher, 2008) to integrate the

non-dissipative terms in time: The momentum advection ; the Coriolis force ;

the pressure gradient ; the wind forcing ; and the conservation of volume

are summarized as the right-hand side function . The time integration is now
augmented with compensated summation. The rounding error that occurs in the
addition of the total tendency to the previous time step is calculated and stored. On
the next time step, this rounding error is subtracted from the total tendency in an
attempt to compensate for the rounding error from the previous time step. This is
illustrated here for the zonal velocity in isolation, although in practice time integration
has to update the prognostic variables simultaneously. A compensated time
integration for with RK4 can be written as

(4)
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with as initial condition. The addition usually suffers from rounding errors
as described above. The loss of precision in is calculated in (which is only 0 in exact
arithmetic). The compensation is analogously implemented with for the other
prognostic variables.

The dissipative terms, i.e. biharmonic diffusion of momentum and bottom friction
, are integrated with a single forward step after the Runge-Kutta integration in

ShallowWaters.jl and summarized as . To compensate for rounding errors for both
the dissipative and non-dissipative terms simultaneously, from Eq. (4) is subtracted from
the total dissipative tendency . In that sense, the rounding error from Eq. (4) is
attempted to be compensated subsequently in Eq. (5), and vice versa.

(5)

Only the addition of the total tendency is compensated here to minimize the amount of
additional calculations, which increases when also compensating the 3 sub steps in RK4.

The compensated time integration is an alternative to mixed-precision approaches. While
those aim to keep the precision high in the precision-critical calculations, the compensated
time integration introduces a new variable to compensate for the rounding errors in one
precision-critical calculation. With compensated time integration all variables can be kept in
16 bit, and no conversions between number formats are necessary.

5. A fluid simulation calculated entirely in 16 bit

The accumulated rounding error from mixing precision and compensated time integration
is now assessed. ShallowWaters.jl is started from identical, in Float16 perfectly
representable, initial conditions in a domain of 8000km by 4000km. The model is spun-up
to reach a turbulent flow domain-wide, while the tracer starts from an idealised
checkerboard pattern to better highlight the turbulence everywhere in the domain. The
grid consists of 3000x1500 points at about 2.7km grid-spacing (see appendix for the
physical parameters). With Float16 and without compensated time integration, the
accumulated rounding error for zonal velocity compared to Float64 exponentially
increases 100-fold in the first 150 days (Fig. 4a). With mixed-precision, using Float16 for the
tendencies and Float32 for the prognostic variables, this rounding error growth is strongly
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reduced. Errors after a few time steps without mixed-precision are reached after about 100
days (~25,000 time steps) of integration. After that the error growth accelerates and chaos
removes the information of the initial conditions.

Using a compensated time integration, the rounding error from Float16 is strongly reduced
and matches well with the error growth of mixed-precision. From the perspective of
rounding errors the two methods are therefore equivalently suited to reduce rounding
errors with 16-bit arithmetic. The rounding error growth of the other prognostic variables is
similar. The positive effect of compensated time integration is well illustrated in snapshots
of tracer mixing where even after 100 days of simulation only a very slight deviation from
the Float64 reference is observable (Fig. 4b, c and d).

Figure 4 | Rounding error growth with Float16 in ShallowWaters.jl using compensated time
integration or mixed-precision. a Errors are root-mean square (RMS) errors of zonal velocity
relative to Float64. Solid lines denote the median and shadings the interdecile confidence interval.
b,c Snapshots of tracer from a zoom into Fig. 5 after 100 days of simulation and d as c but without
compensated time integration.

Even after 100 days of simulation a large simulation (3000x1500 grid points) with Float16
shows minimal errors in the tracer mixing compared to Float64 (Fig. 5). Only at regions
near the boundaries, where the mixing is enhanced, a difference is visible. The remaining
rounding error is small and will be masked in a more realistic setup by model or
discretization errors. To better understand the simulated timescales, an animated version
of Fig. 5 is available in the supplement.
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Reducing the precision in calculations raises concerns about the numerical conservation of
physically conserved quantities like mass. The compensated time integration conserves the
mass in the shallow water equations with Float16 (<0.002% change within 500 days
compared to Float64), similar to mixed-precision (Fig. S1). Without compensated time
integration for Float16 the conservation is with 0.05% change over 500 days less accurate.
Similar results were obtained for the conservation of the tracer. We will now assess the
speedups with Float16 compared to Float64 on A64FX.
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Figure 5 | Turbulent tracer mixing as simulated by ShallowWaters.jl. a Simulation based on
Float64 arithmetic and b Float16 with compensated time integration. Snapshot is taken after 100
days of simulation (~25,000 time steps) with 3000x1500 grid points starting from identical initial
conditions. Remaining errors between a and b from low precision Float16 are tolerable and will be
masked by other sources of error in a less idealised model setup.
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The A64FX is a microprocessor developed by Fujitsu based on the ARM-architecture. It
powers not just the fastest supercomputer in the world as of June 2021 (measured by
TOP500.org, Dongarra & Luszczek, 2011), Fugaku, but also a number of smaller systems
around the world, including Isambard 2 which we use here. The A64FX has a number of
features intended to accelerate machine learning applications. Notably, it allows not just
Float32 and Float64 arithmetic but also Float16. Official benchmarks of the A64FX
demonstrate a cost increase which is linear with the number of bits. In that sense, Float32
can be twice as fast in applications than Float64, while Float16 can be four times as fast,
when optimized well. In practice, speedups in complex applications are due to a mix of
factors: In compute-bound applications, the wall-clock time is largely given by the clock rate
of the processor and the vectorization of arithmetic operations (such that small sets of
them are performed in parallel on a single processor core). Using Float16 instead of Float64
allows to put four times as many numbers through the vectorization, theoretically allowing
for 4x speedups. The performance of memory-bound applications, on the other hand, is
largely determined by the data transfer rate between the processor and its various levels of
caches that increase in size but decrease in bandwidth. Using Float16 instead of Float64
allows to load four times as many numbers from memory, which theoretically translates to
4x speedup as well.

Figure 6 | Performance increase from Float16 when running ShallowWaters.jl at varying grid
sizes. The grid size is the total number of grid points . All timings are single-threaded
median wall clock times relative to Float64, excluding compilation, model initialisation and memory
pre-allocation. The corresponding size of the L1 and L2 cache (64KiB, 8 MiB) of A64FX is given as
vertical lines for arrays of 16, 32 and 64-bit floats.
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ShallowWaters.jl is a memory-bound application for which the biggest benefit from Float16
will be the reduction of the size of the arrays by a factor of four when compared to Float64.
The arrays can therefore be read faster from memory with a potential speedup of 4x. We
benchmark ShallowWaters.jl at varying grid sizes, excluding compilation, model
initialisation and memory pre-allocation. With grid sizes of 105 (about 450x225 grid points)
and larger, there is a clear improvement from using Float32 instead of Float64 which
approaches 2x speedups (Fig. 6). Using Float16 these speedups reach up to 3.8x for grid
sizes beyond 3.106 (about 2450x1225 grid points). The dependency of the speedup on the
grid size is complicated: While larger grids usually experience more acceleration on A64FX
in Float16, there are ranges where the speedup drops to 3-3.25x. This is likely due to
peculiarities in the memory and cache hierarchy of the A64FX, such that the performance
benefit of Float16 cannot always be fully realised. A detailed assessment of these
peculiarities is beyond the scope of this study, but it is nevertheless reassuring that, even in
the worst case, Float16 is still at least three times faster than Float64 for these large grids.

As discussed in previous sections, using a compensated time integration can be used to
minimize the rounding errors, which comes with a small additional computational cost:
Using the compensated time integration the speedups drop to about 3.6x for large grids.
Nevertheless, a compensated time integration yields higher performances than mixing the
precision of Float16 and Float32, which approaches only 2.75x here. Consequently, a
compensated time integration for Float16 is, although as precise, faster than
mixed-precision.

6. Conclusions

Low-precision calculations for weather and climate simulations are a potential that is not
yet fully exploited. While the first weather forecast models are moving towards Float32,
16-bit arithmetics will likely find increasing support on future supercomputers. We present,
to our knowledge, the first fluid simulation that runs entirely in hardware-accelerated 16 bit
with minimal rounding errors but at almost 4x the speed. The simulations were performed
on A64FX, the microprocessor that is used in Fugaku, the fastest supercomputer as of
November 2020.

The complex partial differential equations underlying weather and climate simulations are
difficult to fit into the limited range of Float16, but here we have presented a method to do
this more systematically. We present Sherlogs.jl to analyse number formats. Sherlogs.jl
allows to assess any changes to the scaling of the equations to minimize underflows while
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making the most of the available representable numbers. In our case, subnormal
floating-point numbers had to be avoided and scaling of the equations dropped the
amount of subnormals occurring below 0.2%.

Using 16-bit floats will likely cause precision issues in fluid simulations. While
mixed-precision has been used to minimize rounding errors in precision-critical
calculations, we have presented here an approach that compensates for rounding errors to
allow for simulations entirely within 16-bit arithmetic. The compensated time integration
minimizes rounding errors from this precision-critical part of a simulation at a slightly
higher cost. Benchmarking in comparison to mixed-precision shows that the compensated
time integration is faster in ShallowWaters.jl while being as precise as mixed-precision.

Alternatives to floats have been discussed for weather and climate simulations previously
(Klöwer et al., 2020, 2019). Although posit numbers (Gustafson & Yonemoto, 2017) are
more precise in these applications, the improvement from floats to posits is smaller than
using mixed-precision and therefore also smaller than the compensated time integration.
In that sense, algorithms that are low-precision resilient are far more important than the
actual choice of the number format, especially given that only floats are widely
hardware-supported.

The work here shows that a naive translation of the mathematical equations into code will
likely fail with 16-bit arithmetic. However, this does not mean that 16-bit arithmetic is
unsuited for the numerical solution of complex partial differential equations such as the
shallow water equations. But it means that both precision and range issues have to be
addressed in the design of the algorithms used. A compensated time integration is a
low-precision resilient algorithm, and scaling is essential to fit the very limited range of
Float16.

While 16-bit hardware is largely designed for machine learning, its potential to increase
computational efficiency extends to weather and climate applications too. 16-bit
calculations are indeed a competitive way to also accelerate Earth-system simulations on
available hardware.
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Appendix

Model setup The domain of the model setup of ShallowWaters.jl uses periodic
boundary conditions in and no-slip at the Northern and Southern boundary. The
standard depth is = 500m, and several meridional mountain ridges are placed at
irregular distances on the seafloor to trigger instabilities in the flow. The layer thickness at
rest is

(6)

for with four relative -positions between 0 and
. The height of the mountain ridges is = 100m and the characteristic width =

300km. The fluid density is = 1000 kgm-3, which influences the wind forcing coefficient

with = 0.12Pa. The biharmonic viscosity is derived from
the harmonic viscosity , which itself scales with the squared grid spacing , and uses

= 500m2s-1 at = 30km.

(7)

The linear bottom drag is disabled . The time step is chosen to resolve gravity

waves, which propagate approximately at phase speed 2.2ms-1. With the
Courant-Friedrichs-Lewy number (Courant et al., 1967) , we use approximately

= 17.9min for = 2.7km. To reduce the diffusion in the tracer advection
and for computational efficiency we increase the time step for the semi-Lagrangian scheme
to . For more details see Klöwer, 2021.

Floating-point numbers and subnormals The 16-bit floating-point number format
Float16 is with 1 sign bit, exponent bits and mantissa bits defined as

(8)
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The 5 exponent bits are interpreted as an unsigned integer and the
subtraction with converts them effectively into signed integers,

representing positive or negative exponents. The mantissa bits form the fraction

(9)

such that the state ( or ) of the first mantissa bit determines whether is added to

the sum, the second mantissa bit determines whether is added, etc. The smallest
subnormal number, which is also the smallest representable number, often called minpos,
occurs for all bits being 0 except the last mantissa bit , then

. The 1023 positive subnormal numbers are linearly
distributed between 0 and the smallest normal number, also called floatmin,

. The subnormals therefore fill the range between 0 and floatmin and
were introduced to avoid underflows in some arithmetic operations with the smallest
normal numbers. However, as they are an exception to the definition of normal floats (line
1 in Eq. 8), they also require special treatment on hardware, which reduces performance
compared to the normal floats on some processors, e.g. on ARM-based A64FX. The
precision of Float16 throughout the range of representable numbers can be analysed with
the decimal precision (Gustafson & Yonemoto, 2017; Klöwer et al., 2020, 2019)

(10)

Where is the exact result of an arithmetic operation and the closest
representable number in a given format. An arithmetic result that lies halfway between two
representable numbers experiences the worst-case rounding error, which determines the
worst-case decimal precision for that number. An overview of decimal precisions for
Float16 and Float32 is given in Figure 1.
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Supplementary Figures

Figure S1 | Mass and tracer conservation with Float16 arithmetic. a Mass conservation relative
to Float64. b Tracer conservation relative to Float64 in units of tracer concentration with initial
conditions in (-1,1), see Fig. 5. Both mass and tracer are well conserved with Float16 arithmetic. Best
conservations are obtained with compensated time integration or mixed-precision.


