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Abstract

Free alternate bars are large-scale, downstream-migrating bedforms characterized by an alternating sequence of three-dimensional

depositional fronts and scour holes that frequently develop in rivers as the result of an intrinsic instability of the erodible bed.

Theoretical models based on two-dimensional shallow water and Exner equations have been successfully employed to capture

the bar instability phenomenon, and to estimate bar properties such as height, wavelength and migration rate. However, the

mathematical complexity of the problem hampered the understanding of the key physical mechanisms that sustain bar forma-

tion. To fill this gap, we considered a simplified version of the equations, based on neglecting the deformation of the free surface,

which allows us to: (i) provide the first complete explanation of the bar formation mechanism as the result of a simple bond

between variations of the water weight and flow acceleration; (ii) derive a simplified, physically based formula for predicting bar

formation in a river reach, depending on channel width-to-depth ratio, Shields number and relative submergence. Comparison

with an unprecedented large set of laboratory experiments reveals that our simplified formula appropriately predicts alternate

bar formation in a wide range of conditions. Noteworthy, the hypothesis of negligible free surface effect also implies that bar

formation is fully independent of the Froude number. We show that this intriguing property is intimately related to the three-

dimensional nature of river bars, which allows for a gentle lateral deviation of the flow without significant deformation of the

water surface.
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Key Points:

• Essential features of alternate bars can be captured by neglecting the water
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Abstract

Free alternate bars are large-scale, downstream-migrating bedforms characterized
by an alternating sequence of three-dimensional depositional fronts and scour holes
that frequently develop in rivers as the result of an intrinsic instability of the erodible
bed. Theoretical models based on two-dimensional shallow water and Exner equations
have been successfully employed to capture the bar instability phenomenon, and to
estimate bar properties such as height, wavelength and migration rate. However,
the mathematical complexity of the problem hampered the understanding of the key
physical mechanisms that sustain bar formation. To fill this gap, we considered a
simplified version of the equations, based on neglecting the deformation of the free
surface, which allows us to: (i) provide the first complete explanation of the bar
formation mechanism as the result of a simple bond between variations of the water
weight and flow acceleration; (ii) derive a simplified, physically based formula for
predicting bar formation in a river reach, depending on channel width-to-depth ratio,
Shields number and relative submergence. Comparison with an unprecedented large
set of laboratory experiments reveals that our simplified formula appropriately predicts
alternate bar formation in a wide range of conditions. Noteworthy, the hypothesis of
negligible free surface effect also implies that bar formation is fully independent of the
Froude number. We show that this intriguing property is intimately related to the
three-dimensional nature of river bars, which allows for a gentle lateral deviation of
the flow without significant deformation of the water surface.

1 Introduction

Alternate bars are characterized by a sequence of large-scale deposition bumps
and scour holes that occupy alternate sides of the channel, showing diagonal fronts as
in the example of Figure 1. The formation of alternate bars in rivers is important from
an engineering perspective, as they can affect navigability, enhance bank erosion and
interact with instream engineering structures [e.g. Claude et al., 2014]. Moreover, bar
formation represents a fascinating example of self-sustained morphodynamic process,
which has been considered a precursor for the formation of river meandering and
braiding [e.g., Fredsoe, 1978], and a main driver for channel widening [e.g. Repetto
et al., 2002] and for the formation of channel bifurcations [e.g, Redolfi et al., 2016].

A large number of laboratory experiments demonstrated that downstream-migrating
alternate bars tends to spontaneously form in straight channels of constant width [e.g.
Jaeggi , 1984; Fujita and Muramoto, 1982; Ikeda, 1984; Lanzoni , 2000; Crosato et al.,
2012; Nelson and Morgan, 2018; Redolfi et al., 2020]. This kind of bars, often referred
to as “free alternate bars”, are frequently observed in rivers [e.g. Jaballah et al., 2015;
Rodrigues et al., 2015; Adami et al., 2016; Serlet et al., 2018; Church and Rice, 2009;
Ferguson et al., 2011], especially in channelized, gravel-bed rivers.

Two- and three-dimensional mathematical models have been employed to in-
vestigate different morphodynamic characteristics of free alternate bars, including:
the effect of sediment heterogeneity [Lanzoni and Tubino, 1999; Rodrigues et al., 2015;
Qian et al., 2017; Cordier et al., 2019]; the effect of flow variability Tubino [1991]; Hall
[2004]; the interaction between free and forced (or hybrid) bars [Tubino and Seminara,
1990; Duró et al., 2016]; the effect of suspended sediment load [Tubino et al., 1999;
Federici and Seminara, 2006; Bertagni and Camporeale, 2018]; the transition from al-
ternate bars to to three-dimensional oblique dunes [Colombini and Stocchino, 2012];
the morphodynamic effect of vegetation [Bertagni et al., 2018; Jourdain et al., 2020;
Caponi et al., 2019].

Mathematical modelling allowed for the identification of the essential processes
needed to reproduce free bar formation. They revealed that three-dimensional effects
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such as helical motion or flow separation are of secondary importance, so that the
process of bar formation can be effectively predicted by means of depth-averaged, two-
dimensional shallow water and Exner equations. Specifically, linear stability analyses
[Callander , 1969; Parker , 1976; Fredsoe, 1978; Colombini et al., 1987] demonstrated
that even for a straight channel of constant width the basic, uniform-flow solution
is inherently unstable, which leads from the spontaneous formation of long, three-
dimensional bed deformations representing free alternate bars. Moreover, these theo-
retical analyses provided an useful criterion to determine marginal stability conditions,
which are mainly controlled by the channel width-to-depth ratio. Specifically, bars are
expected to form when the width-to-depth ratio exceeds a critical threshold that de-
pends on other river characteristics (primarily relative roughness and Shields number).

Nevertheless, the mathematical complexity of the problem limited the derivation
of explicit, physically based expressions for the critical aspect ratio as a function of
the controlling parameters, as also recently highlighted by [Crosato and Mosselman,
2020]. As a consequence, application of the theory currently requires either to numer-
ically solve a dispersion relation involving complex numbers, or to rely on plots made
available by different authors, with limited possibility to explore the space of parame-
ters and the effect of different transport and friction formulae. A possible alternative
is based on empirical criteria proposed in the literature [e.g., Muramoto and Fujita,
1978; Jaeggi , 1984; Yalin and Da Silva, 2001; Ahmari and Da Silva, 2011]. Despite
being originally formulated in different ways, empirical relations can be re-expressed
in terms of the threshold value of the width-to-depth ratio that needs to be exceeded
to enable the formation of bars. However, the empirical nature of these criteria makes
it difficult to extend predictions out of the set of conditions for which they are derived.
Moreover, empirical relations do not allow for isolating the effect of the individual
physical parameters, and to assimilate information that may come from site-specific
estimations of hydraulic roughness or sediment transport relations.

More fundamentally, the mathematical complexity highly limited the possibility
to provide a satisfactory physical explanation of the mechanism of bar instability. A
first tentative explanation was proposed by [Einstein and Shen, 1964], who suggested
that bars may form as a consequence of helical motion, possibly reinforced by the
presence of rough banks. However, subsequent models have conclusively demonstrated
that neither three-dimensional flow nor rough banks are essential for capturing the bar
instability mechanism. More recent explanations [Nelson, 1990; Tubino et al., 1999]
are given in terms of the divergence of the flow field around bars, due to a sort of
topographic steering. However, the mechanism that produces this flow field has not
been clarified. Therefore, a complete physical description of the instability process is
essentially missing.

In this work, we consider a simplified version of the governing equations, in order
to: (i) derive a simple, explicit expression for predicting bar stability conditions and
validate it by means of existing laboratory experiments; (ii) provide a physically based
explanation of the bar formation mechanism.

The paper is organized as follows: in Section 2 we define the governing equations
and we specify the fundamental assumptions; in the Results Section 3 we introduce the
simple criterion for predicting the formation of free alternate bars, we test it against
existing laboratory data, and we provide a physical explanation of the bar formation
mechanism; in Section 4 we discuss model hypotheses and associated limitations. Fi-
nally, details about the derivation of the explicit expression for the critical aspect ratio
are reported in Appendix A .
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N500 m

Flow

Figure 1: Example: downstream-migrating alternate bars in the Alpine Rhine River in
Switzerland, 47◦02′N , 09◦29′E, 02-Apr-2012. From Google Earth, Digital Globe (2021).
Flow is from left to right.

2 Mathematical formulation

2.1 The governing equations

We consider an infinitely-long channel, with straight, fixed banks and rectangu-
lar cross-section of width W , whose bottom is formed by cohesionless particles with
representative (e.g., median) grain size d. We adopt a two-dimensional, mobile-bed,
depth-averaged shallow water model [e.g., Parker , 1976; Colombini et al., 1987; Siviglia
et al., 2013], which can be written as a nonlinear differential system of four equations
in the four dependent variables U , V , D and H (longitudinal and transverse velocity,
water depth and water surface elevation), in the independent variables x, y (planimet-
ric coordinates) and t (time). As sketched in Figure 2, the origin of the cartesian
system of reference is positioned at the right bank, and elevations are calculated with
respect to a sloping plane having longitudinal gradient S0. Under quasi-steady ap-
proximation (i.e. assuming that the flow field adapts instantaneously to variations of
the bed topography), the depth-averaged equations that express the conservation of
momentum, liquid and solid mass read:

U
∂U

∂x
+ V

∂U

∂y
− gS0 + g

∂H

∂x
+

τx
ρD

= 0, (1a)

U
∂V

∂x
+ V

∂V

∂y
+ g

∂H

∂y
+

τy
ρD

= 0, (1b)

∂UD

∂x
+
∂V D

∂y
= 0, (1c)

(1− p)∂η
∂t

+
∂qsx
∂x

+
∂qsy
∂y

= 0, (1d)

where p is the sediment porosity, g is the gravitational acceleration, η = H −D is the
bed elevation, and the couples {τx, τy} and {qsx, qsy} indicate the components of the
shear stress and the sediment transport, respectively.

The set of four differential equations is then completed by specifying closure
relationships. Specifically, the two components of bed shear stress are estimated as
follows:

{τx, τy} = ρ
U2

c2
{sin γq, cos γq}, tan γq =

V

U
, (2)
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Figure 2: View of the channel of width W , showing the system of reference, {x, y, z}, and
the two components of the velocity vector, {U, V }. The water surface elevation H is given
by the sum of the bed elevation η and the water depth D. All the elevations are calcu-
lated with respect to the reference, z = 0, plane having a constant downstream gradient
S0.

where c is the dimensionless Chézy coefficient (a function of the relative submergence
D/d) and γq is the angle of the velocity vector ~U . The components of sediment
transport are expressed as:

{qsx, qsy} =
√
g∆d3Φ(θ){sin γs, cos γs}, (3)

where ∆ is the relative submerged weight of the sediment and Φ is the dimensionless
sediment flux, which is considered to be a function of the Shields number θ [e.g. Meyer-
Peter and Muller , 1948; Parker , 1990]. The angle of the sediment transport vector,
γs, is computed by taking into account the deflection exerted by the lateral bed slope,
by means of the following expression [e.g., Engelund , 1981; Blondeaux and Seminara,
1985]:

sin γs =
qsy
|~qs|

= sin γq −
r√
θ

∂η

∂y
, (4)

where r is a dimensionless empirical coefficient [see Baar et al., 2018].

Despite neglecting three-dimensional flow structures, this model has been proven
to be able to capture the essential characteristics of river alternate bars, at least
in conditions where most of the sediment is transported as bedload [e.g., Blondeaux
and Seminara, 1985]. Specifically, linear solutions allow for calculating bar formation
conditions, while weakly-nonlinear and fully nonlinear theories enable for reproducing
bar height and to estimate other bar properties.

2.2 The key hypothesis

The present manuscript is founded on the key hypothesis that the deformation of
the free surface due to the incipient formation of bars is negligible. More precisely, we
assume that: (i) the pressure term g ∂H/∂x in the Equation of longitudinal momentum
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(1a), and (ii) the variation of H when computing the bed elevation as η = H − D
in Equations (1d) and (4), are both negligible. It is worth noticing, however, that
variations of the free surface elevation are still considered in the Equation of transverse
momentum (1b), in which the pressure term g ∂H/∂y can not be disregarded.

This hypothesis has been used to model the formation of forced steady bars in
rivers [e.g. Struiksma et al., 1985; Crosato and Mosselman, 2009], and constitutes the
basis for the so-called second order models for the evolution of meandering channels
[see Camporeale et al., 2007]. The appropriateness of adopting this hypothesis for
modelling the evolution of free migrating bars is suggested by visual inspection of
experimental data, where fluctuations are usually small, even at relatively high values
of the Froude number Garćıa and Niño [1993]. Moreover, it is indirectly indicated by
the weak dependence of alternate bars on Froude number [Wilkinson et al., 2008], as
characteristic of processes where the influence of free surface variations is small.

In the following Section 3, the comparison with the complete model and the
validation against experimental data are used to demonstrate the suitability of this
key hypothesis for predicting bar stability conditions. Moreover, in Section 4, we will
discuss about the physical reasoning of why water surface deformation is negligible for
typical hydrodynamic conditions on river bars.

2.3 Expression for the critical width-to-depth ratio

Neglecting the deformation of the free surface elevation allows for deriving an
explicit formula for determining the possibility of migrating alternate bars to form,
depending on channel characteristics and flow conditions. To this aim, we first need
to specify a reference depth D0 and the associated reference Shields number θ0, which
is given by the following uniform-flow relationship:

θ0 =
S0D0

∆ d
. (5)

Bars formation primarily depends on the channel aspect ratio, which for historical
reasons is here defined as half the width-to-depth ratio, namely:

β =
W

2D0
. (6)

Specifically, when the aspect ratio exceeds a critical threshold value (βC) the initial,
plane-bed configuration is unstable, and alternate bars are expected to spontaneously
form [Colombini et al., 1987].

A very simple formula for this critical aspect ratio can be obtained by: (i) lineariz-
ing the governing equations, (ii) considering the first mode of the Fourier expansion of
the solution, (iii) analysing the time development of an initially-small bed perturba-
tion, (iv) determining the set of parameters for which this initial perturbation tends
to grow, eventually leading to finite-amplitude alternate bars. Considering that these
mathematical procedure is rather standard and straightforward, we prefer avoid clut-
tering this section with a large number of equations. Therefore, we reported all the all
the mathematical details in Appendix A , here providing only the final result of the
linear stability analysis, which gives the following expression:

βC =
c0
2

[
ξ(θ0)

r
(1 + 2cD)− 1

c20λ
2

]−1/2
, (7)

where the empirical coefficient r can be assumed equal to 0.3 and λ is the dimensionless
wavenumber, defined as λ = πW/L, with L indicating the bar wavelength. Differently
from the complete model of Colombini et al. [1987] our approach does not allow for
estimating the bar wavenumber, which needs to be given as an input. However, con-
sidering a constant value λ = 0.45 is sufficient to produce accurate results for a range
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of conditions. The symbol ξ indicates a function on the reference value of the Shields
number (see Equation A.14b), which depends on the choice of the sediment transport
formula. Specifically, considering the sediment transport formula of Parker [1978] it
reads:

ξ(θ0) =

√
θ0
π2

(
9

θcr
θ0 − θcr

+ 2

)
, θcr = 0.03. (8a,b)

Similarly, the reference dimensionless Chézy coefficient c0 and the associated cD co-
efficient (Equation A.6b) depend on the choice of the friction formula. Adopting the
widely-used logarithmic expression [Engelund and Hansen, 1967] gives:

c0 = 6 + 2.5 log

(
1

2.5

D0

d

)
, cD =

2.5

c0
, (9a,b)

where the ratio D0/d represents the relative submergence. Alternatively, the friction
coefficients can be calculated from the Manning formula as follows:

c0 =
D

1/6
0

n
√
g
, cD = 1/6, (10)

where the Manning coefficient n needs to be estimated on the basis of the bed rough-
ness.

3 Results

3.1 Why do free bars form? A physical explanation

The hypothesis of negligible variations of the water surface elevation allows for a
great simplification of the problem, as needed to physically understand the mechanisms
that drive the formation and suppression of free alternate bars.

The bar-forming mechanism

We consider the depth-averaged Equation of the streamwise momentum (1a),
where we neglect the transverse flux of longitudinal momentum (second term), as
appropriate when studying the initial stages of bar development (see Appendix A ):

U
∂U

∂x
= gS0 − g

∂H

∂x
− τx
ρD

. (11)

By discarding the term related to the water surface deformation (i.e. according to our
fundamental hypothesis), the above Equation (11), once multiplied by ρD, reads:

ρUD
∂U

∂x︸ ︷︷ ︸
Inertia

= ρgDS0︸ ︷︷ ︸
Weight

− τx︸︷︷︸
Friction

, (12)

which simply states that any imbalance between the longitudinal component of the
water weight and the bottom friction necessarily produces a flow acceleration or de-
celeration.

In plane-bed conditions the flow is uniform, weight and friction keep in balance
(i.e. τx = ρgDS0) and no acceleration/deceleration occur. In this case, the sediment
transport is also uniform, so that neither erosion nor deposition appear. Conversely,
if a three-dimensional perturbation of the bed is introduced, the flow is no longer
uniform. Let us consider for example a deposition bump at one side of the channel
(i.e. a three-dimensional bed disturbance), having a length of several times the channel
width and an initially-small height (Figure 3). Since the free surface deformation is
negligible, the depth over the deposition bump does clearly reduce, and the weight of
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the water column decreases. Considering that the friction term does not substantially
change until the flow velocity varies (it is actually possible to assume τx to be constant,
as discussed later), the decrease of weight does necessarily produce a flow deceleration
(∂U/∂x < 0). This implies a spatial decrease in the sediment flux and an associated
deposition, which increases the height of the initial bed disturbance. Similarly, a scour
hole would produce an increase of depth and water weight, which in turn would lead to
flow acceleration, spatial increase of sediment flux and further erosion. This represents
a self-sustained instability mechanism, which ultimately leads to the formation of the
large-scale, finite-amplitude bedforms called free bars.

Flow deceleration Further depositionDeposition

Deposition bump

(b) Side view

(a) Plan view 

Flow

Figure 3: Illustration of the physical mechanism that sustains the bar growth. The
generic, initially-small, three-dimensional deposition bump located near the right bank
(see contour lines in the plan view) produces a decrease of the local water depth (D) and
an associated reduction of tracting force due to the weight of the water column (ρgDS0).
The imbalance between the reduced water weight and the bed friction τx necessarily
produces a flow deceleration (UOUT < UIN ), which induces further deposition, thus
producing a self-sustained bar growth.

It is worth highlighting that the above-described mechanism is only valid for a
three-dimensional bed perturbation, where the flow has enough space to move laterally
around the obstacle without significant deformation of the free surface. Conversely,
if the bed perturbation was purely two-dimensional, the flow would be obliged to
entirely transit over the bedform, and the momentum balance would be affected by the
pressure terms associated with the variations of the free surface. In these conditions,
the shallow-water-Exner model invariably gives a suppression of the perturbation,
which indicates that the basic uniform flow is always stable.

The bar-suppressing mechanism

The main contrasting mechanism is due to the gravitational effect on the direction
of the bedload transport: the sediment tends to be deviated by an angle γs that
depends on the lateral slope according to Equation (4). As illustrated in Figure 4
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this deviation produces a transverse sediment flux towards the lower part of the cross-
section (bar pools). This mechanism tends to suppress three-dimensional bedforms,
eventually leading to flat-bed conditions if no other, constructive forces exist.

Specifically, the transverse flux of sediment (qsy) predicted by Equation (4) is
proportional to the lateral slope ∂η/∂y. This represents the characteristic relation of
diffusive processes, where the mass flux depends on the gradient, and is directed in the
opposite direction [e.g., Crank , 1979]. As any diffusive process, the bed adaptation
follows a timescale that is proportional to the square of the domain size (i.e. T ∝W 2).
For example, considering a purely transverse bed deformation (no variations along
the longitudinal direction - no constructive forces) the time needed to attain flat-
bed conditions is proportional to the square of the channel width. This indicates
that the bar-suppressing mechanism is more intense in relatively narrow channels,
which justifies the presence of a lower threshold of the channel aspect ratio (βC).
More precisely, this explains why an exponent −1/2 appears in the expression for the
critical aspect ratio (7) (i.e. the stability condition depends on the square of β, see
also Equation (A.14a)).

In physical terms, this quadratic dependence can be easily understood by consid-
ering that channel width has a twofold effect. First, transverse bed gradient and the
associated transverse flux of sediment are inversely proportional to the channel width.
Second, the volume of sediments that needs to be laterally transferred is proportional
to the width itself. Consequently, bed flattening in wider channel needs a larger mass
transfer with a lower flux, therefore requiring a much longer time.

(a) Plan view (b) Cross-sectional view

Bar suppressionStrong gravitational pull

Gravitational
pull

Figure 4: Effect of the gravitational pull on a laterally-sloping bed, which produces a
downward deviation of the sediment flux ~qs with respect to the flow velocity vector Û
as illustrated in the plan view (a). As a result, the sediment flux tends to laterally move
towards the most depressed areas, as illustrated in the cross-sectional view (b), which
tends to flatten the bed. The timescale of the bed adaptation (T ) is proportional to the
square of the channel width (W ) as typical of diffusive processes, which makes the bar-
suppressing mechanism much more effective in relatively narrow channels.

3.2 When do free bars form? Results from the simplified criterion

The explicit expression for the critical aspect ratio (7) derived above provides a
simple criterion for bar formation. Specifically, migrating alternate bars are predicted
to form when the aspect ratio β exceeds the critical threshold βC , while in the opposite
case plane-bed conditions are expected, despite the possible development of low-relief
oblique dunes [e.g., Redolfi et al., 2020] or other kind of small-scale bedform.
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As illustrated in Figure 5, the critical aspect ratio initially increases with the
Shields number while it tends to slightly decrease when θ0 exceeds 0.21, value at
which the function ξ(θ0) is minimum. Moreover, βC significantly increases for higher
values of the relative submergence, which according to Equation (9a) are associated
with higher values of the Chézy coefficient c0. In general, predictions by our simplified
expression are very similar to those resulting from the complete model of Colombini
et al. [1987]. Specifically, the critical aspect ratio shows a maximum relative error
of 2.8% (for relatively high θ0 and the low D0/d), which seems acceptable for most
applications.

0.05 0.1 0.15 0.2 0.25 0.3
4

6

8

10

12

14

Figure 5: Critical aspect ratio resulting from the complete model of Colombini et al.
[1987] (dashed lines) and by Equation (7) (solid lines), depending on Shields parameter
(θ0) and relative submergence (D0/d). Migrating alternate bars are expected to form
when the channel aspect ratio β = W/(2D0) exceeds the critical threshold βC . The max-
imum relative error of the simplified model is 2.8%, which reduces to 1.6% when limiting
the space of parameters to cases where the Froude number is lower than 1.

A further simplification can be obtained by neglecting the term 1/(c20λ
2) in Equa-

tion (7), which gives a wavelength-independent stability condition. From a physical
point of view, this means discarding the effect of velocity variations on the bed shear
stress τx. If compared with the complete model of Colombini et al. [1987] this fur-
ther reduced model leads to a maximum relative error of 4.5% within the range of
parameters of Figure 5, which reduces to 3.2% when focussing on Fr < 1 cases only.
Ultimately, a maximal simplification arises when considering also cD = 0, which im-
plies assuming spatially invariant bed shear stress (i.e. τx = const). Though this may
appear as an extreme hypothesis, it actually leads to an maximum relative error of
about 16% with respect to the complete model, which indicates that variations of the
shear stress play a secondary role in the above-described bar instability mechanism.
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Comparison against experimental data

Comparison between our formula and experimental data is performed by con-
sidering the dataset reported by Colombini et al. [1987], encompassing experimental
data from Kinoshita [1961]; Ashida and Shiomi [1966]; Chang et al. [1971]; Sukegawa
[1971]; Muramoto and Fujita [1978]; Ikeda [1982]; Jäggi [1983] here expanded by in-
cluding the more recent laboratory experiments by Garćıa and Niño [1993]; Lanzoni
[2000]; Ahmari and Da Silva [2011]; Crosato et al. [2011]; Garcia Lugo et al. [2015];
Redolfi et al. [2020], for a total of 416 experiments. The formation of alternate bars
was observed in 288 cases, where in the remaining 128 either plane bed or other bed-
forms (dunes, antidunes or diagonal bars) were observed.

As illustrated in Figure 6 our simple formula is able to correctly classify most
of the experimental outcomes, as most of the experiments with alternate bars fall in
the region β > βC while the remaining cases are often characterized by β < βC . More
specifically, 364 experiments (87.5%) are correctly classified, 35 (8.4%) can be desig-
nated as “false negative” (bars are observed to form, despite β < βC) and 17 (4.1%)
“false positive” (bars do not develop, despite β > βC). It is worth highlighting that
this result is obtained without any specific calibration of the empirical coefficient r or
distinct choice of the sediment transport formula. In this sense, additional information
about the sediment transport (e.g., measured transport rate) would enable for specif-
ically calibrating the model parameters for each set of experiments, which is expected
to improve the overall accuracy of the predictions.

The capability of Equation 7 to reproduce experimental results is then compared
with analogue results from the application of the complete model and of the empirical
criteria by Muramoto and Fujita [1978], Jaeggi [1984], Yalin and Da Silva [2001] and
Ahmari and Da Silva [2011], whose expressions are reported in Appendix B . To this
aim we first consider classic indicators of classification performance, namely the accu-
racy (ACC) and the balanced accuracy (BA) [see Tharwat , 2018], which are defined
as follows:

ACC =
NTP +NTN

Ntot
, BA =

1

2

(
NTP

NTP +NFN
+

NTN
NTN +NFP

)
, (13a,b)

where N indicates the number of true positive (TP), true negative (TN), false positive
(FP) and false negative (FN) cases, whose sum equals the total number of cases Ntot.
We considered all the experimental data, except those having a severely limited bed
mobility, due to low Shields number (θ0 < 0.03) or bed armouring. Results reported
in Table 1 suggest that our formula gives essentially the same performance as the
complete model of Colombini et al. [1987], which is overall better with respect to the
other empirical criteria.

The above accuracy indicators are merely based on a binary (bars-no bars) classi-
fication but do not take into account the “degree of stability” predicted by the different
cases. For example, experiments that are very close to the threshold are expected to
be easily misclassified, so that an error in this case is less important that an error
occurring in highly stable or unstable conditions. To overcome this limitation, we
propose an indicator that accounts for the (logarithmic) distance of the incorrectly
classified measurements from the critical threshold:

Dev =

∑
{FP,FN} | log(β/βC)|∑
| log(β/βC)|

, (14)

where FP and FN indicate the set of false positive and false negative results, so that the
parameter dev ranges from zero to one, with lower values indicating a good prediction.
The observed values reported in Table 1 show that our formula provides similar results
as the complete model of Colombini et al. [1987], with significantly less deviation than
the other existing criteria.

–11–



Confidential manuscript submitted to Water Resources Research

0.1

1

10

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150 0 50 100

Figure 6: Comparison between our bar formation criterion and the dataset of laboratory
experimental observations. Red triangles indicate conditions at which alternate bars were
observed, while blue circles refers to other bed configurations, including plane-bed, diago-
nal bars, dunes and antidunes. Free alternate bars are expected to form when points fall
above the dashed line that indicates the critical aspect ratio βC . The histograms represent
the frequency distribution of the experiments depending on Shields number (lower plot)
and scaled width-to-depth ratio β/βC (right plot).

Table 1: Classification performance of different bar predictors. ACC and BA indicate
accuracy and balanced accuracy (Equations (13)a,b), while Dev is the indicator defined
by Equation (14).

ACC BA Dev

Muramoto and Fujita [1978] 83.2% 86.1% 8.1%
Jaeggi [1984] 80.3% 82.3% 15.8%
Yalin and Da Silva [2001] 77.4% 64.6% 11.8%
Ahmari and Da Silva [2011] 75.2% 61.3% 11.7%
Colombini et al. [1987] 87.0% 87.2% 5.2%
Present formula (7) 87.5% 87.3% 5.0%
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4 Discussion

In this work we provide a novel explanation of the physical mechanism that
leads to the spontaneous formation of free alternate bars in rivers. Surprisingly, this
mechanism turns out to be extremely simple, to the point that it can be described
as an imbalance between water weight and bottom friction, which causes deceleration
near the top of bars and consequent further deposition. Specifically, the analysis of
the two-dimensional solution of the shallow water model is to some extent simpler
than its one-dimensional counterpart, as in the latter pressure terms due to the water
surface deformation are rarely negligible. The bar formation is clearly counteracted by
the effect of the lateral slope on the sediment transport, which tends to suppress bars
[Fredsoe, 1978; Seminara, 2010]. In this perspective, our analysis highlights the strong
(i.e. quadratic) dependence of this effect on the channel width, which represents the
hallmark of diffusive processes.

Neglecting variations of the free surface elevation allows for obtaining an ex-
plicit expression for calculating the critical width-to-depth ratio with an error of a few
percent with respect to the complete model of Colombini et al. [1987]. Comparison
with an unprecedented number of laboratory experiments, encompassing more than
400 experimental runs from the existing literature, reveals that our explicit formula
enables prediction of the bar formation in the vast majority of cases. Specifically, the
resulting accuracy is comparable to that of the complete model and better with respect
to existing empirical criteria. It is not our intention here to discuss what is the best
criteria, as the answer is likely to depend on the specific objective of the analysis, on
the availability of data and on the field of application. However, we find relevant to
here highlight the main strengths of physically based expressions, which are directly
derived from the equations of Newtonian mechanics through well-defined and testable
assumptions. Following this reductionist approach [see Seminara and Bolla Pittaluga,
2012], the effect of all the essential parameters, including those that are normally fixed
(e.g., the gravitational acceleration) is embodied, and can be directly associated with
the underlying physical processes. In particular, our derivation allows for clarifying
the following effects:

• the decrease of the critical aspect ratio for lower values of the relative submer-
gence D0/d (i.e. for low values of the Chézy parameter c0) can be mechanically
explained by considering that to maintain comparable values of Shields num-
ber and water depth on a rougher bed, weight and bottom friction need to
be higher (i.e. the slope must be higher). In such conditions, any imbalance
between the two terms on the right hand side of Equation (12) is expected to
produce a stronger accelerations/decelerations, which reinforces the bar-forming
mechanism;

• the Shields number shows two distinct and opposite effects. On the one side,
increasing θ0 makes the bar-forming mechanism less effective, as it reduces the
sensitivity of the sediment transport to variations of velocity (i.e. the coef-
ficient ΦT , see Appendix A ). On the other side, increasing θ0 weakens the
bar-suppressing mechanism, as it reduces the deflection of the sediment trans-
port predicted by Equation 4. While the former effect dominates at moderate
values of the Shields number, the latter prevails when θ0 > 0.21, which explains
the non-monotonic trend of βC appearing in Figure 5;

• higher values of the empirical parameter r enhance the bar-suppressing mecha-
nism, as they are associated with a stronger deflection of the sediment transport
(see again Equation (4)). Therefore, the critical aspect ratio clearly increases
with r.

Knowing the effect of all the individual parameters allows for adapting the formula to
the specific sediment transport and flow friction conditions, by assimilating information
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from measurements or antecedent studies. For example, if field calibrated values of the
Manning coefficient are available it is possible to bypass Equation (9a), and to directly
compute c0 from the Manning coefficient. This may be particularly important for the
design and the interpretation of numerical simulations, as in this case our formula can
be adapted to consider the same friction and sediment transport formulas, and exactly
the same value of the parameter r.

4.1 The key hypothesis: physical reasoning and limitations

The appropriateness of neglecting free surface deformation is evident from the
comparison between results of the simplified and the complete model illustrated above.
However, here we would like to analyse the reason for which this hypothesis can be
accepted, depending on the characteristic scales of the problem. A reader who is not
interested to deepen this topic can directly jump to Section 4.2.

The validity of this hypothesis for modelling forced bars has been justified by
Struiksma et al. [1985] by considering that when the Froude number is small, variations
of the free surface elevation are small with respect to variations of the bed elevation.
In these conditions it is possible to introduce the so-called rigid-lid assumption, which
allows for computing variations of water depth on the basis of variations of the bed
topography. However, this does not explain why variations of the free surface elevation
can be neglected from the longitudinal momentum balance (1a), as the term g ∂H/∂x
generally remains finite when Fr → 0, representing the pressure gradient that appears
under the rigid-lid assumption. For this reason, we found important to further discuss
the possibility to neglect this term when modelling both free migrating bars (present
paper) and forced (or hybrid) bars [Crosato and Mosselman, 2009; Camporeale et al.,
2007].

Here we show that this simplification is generally valid for the case of three-
dimensional bed deformations having a longitudinal scale of several channel widths,
as typically the case of all river alternate bars. Though this can be demonstrated by
a mathematically rigorous perturbation approach, an analogous result can be found
by simply evaluating the order of magnitude of the main terms of the fundamental
conservation equations. Specifically, if we denote with D̃ and (Ũ , Ṽ ) the order of
magnitude of the depth and velocity components, the continuity Equation (1c) gives:

Ṽ D̃

∆ỹ
∼ ŨD̃

∆x̃
, (15)

where ∆x̃ and ∆ỹ are the longitudinal and the transverse scales of variation. Indicating
with Λ the ratio ∆x/∆y, Equation (15) can be expressed as:

Ṽ ∼ Ũ

Λ
, (16)

which reveals that the magnitude of the transverse velocity decreases with the longi-
tudinal scale.

The Equation of transverse momentum (1b) suggests that transverse acceleration
and lateral inclination of the free surface have the same order magnitude, namely:

g
∆H̃

∆ỹ
∼ Ũ Ṽ

∆x̃
, (17)

where ∆H̃ indicates the order of magnitude of the free surface variations. Combining
Equations (17) and (16) gives:

g
∆H̃

∆x̃
∼ Ũ Ṽ

∆x̃

1

Λ
∼ Ũ Ũ

∆x̃

1

Λ2
, (18)
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which implies that the gravitational term in the Equation of longitudinal momen-
tum (1a) is negligible when Λ is sufficiently large. The above condition (18) can be
equivalently expressed in the Froude number as follows:

∆H̃
˜Fr2D̃

∼ 1

Λ2
, F̃ r

2
=
Ũ2

gD̃
, (19a,b)

To test this conclusion we consider a periodic, double-sinusoidal bed deformation
of amplitude A and wavelength L (Figure 7a). In this case the longitudinal and
transverse scales of variations (∆x̃ and ∆ỹ) can be quantified as the distance between
wave crest and trough (L/2 and W ), so that their ratio Λ is given by L/(2W ) = π/(2λ).
We then computed the two-dimensional flow field by analytically solving Equations
(1a,b,c) under the hypothesis of small perturbations (linear analysis), by varying the
wavelength of the bed oscillation (L) and the Froude number Fr, keeping all the other
flow parameters invariant. Results illustrated in Figure 7 confirm that when increasing
the value L/W (i.e. the value of Λ) transverse velocity and variations of the water
surface elevation decrease, as predicted by Equations (16) and (19a). Moreover, for
characteristic wavelengths of free migrating bars (L/W from 5 to 12, with typical
value around 7, corresponding to λ = 0.45) and forced bars (L/W > 12) the complete
solution is nearly independent of the Froude number, and is correctly reproduced
by the simplified model, which corroborates the hypothesis of negligible free surface
deformation.

This explains why alternate bars are essentially independent of the Froude num-
ber, to the point that they are weakly sensitive to the transition from sub- to super-
critical flow regimes [Wilkinson et al., 2008]. In this perspective, it is interesting
to notice that this property has been recently observed by Ragno et al. [2021] for
bifurcation-confluence loops, where the river splits in two anabranches than then re-
join downstream. This suggests that the weak dependence on the Froude number may
represent a rather general, remarkable property of three-dimensional morphodynamic
systems, such as multi-thread braided rivers, where the water flow is free to laterally
move across bars and among different anabranches.

Similarly, the present analysis justifies why shorter three-dimensional bedforms
like oblique dunes or diagonal bars [see Colombini and Stocchino, 2012] are instead
significantly influenced by the Froude number. This is also the case of two-dimensional
bed deformations, for which the independence of the Froude number is achieved only
when the length scale of the bed slope variations is longer than the length of the
backwater profiles (i.e. the so-called backwater length), so that the flow inertia is
negligible and the morphological evolution is essentially diffusive [e.g., Paola, 2000;
Redolfi and Tubino, 2014; Shaw and McElroy , 2016].

Ultimately, this analysis reveals that the model simplification adopted in this
manuscript is possible thanks to the peculiar characteristic of bars being long, three
dimensional bedforms, which allows the flow to deflect around bars without produc-
ing significant deformation of the water surface, even at moderate Froude numbers.
For this reason, this hypothesis is usually not satisfied for two-dimensional bed de-
formations, for which the flow is obliged to surmount the bedforms, thus producing
mechanically significant variations of the free surface.

4.2 Limitations and future perspectives

This work demonstrates that neglecting variations of the free surface elevation
allows for a satisfactory prediction of the formation of free bars. However, it is worth
highlighting that, differently from the complete linear theories [e.g. Colombini et al.,
1987], our model does not enable to determine the bar wavelength, because it predicts
a monotonically-increasing instability for decreasing bar wavelength. This is clearly

–15–



Confidential manuscript submitted to Water Resources Research

(a)

(b) (c)

4 8 12 16 20
0

0.2

0.4

0.6

0.8

1

4 8 12 16 20
0

0.2

0.4

0.6

0.8

1

Figure 7: Effect of the bar wavelength on transverse velocity (V ) and water surface defor-
mation (∆H), obtained by imposing a double-sinusoidal bed deformation of dimensionless
amplitude A and wavelength L (a), and solving the linearized shallow water equations.
Specifically, panels (b) and (c) report maximum values of V/U and ∆H/(Fr2D) for in-
creasing values of L/W , considering an unitary dimensionless amplitude and two extreme
values of the reference Froude number Fr. The solid lines refer to the complete linear
solution, while the dashed line indicates the (Froude-independent) solution from our sim-
plified model. For the typical wavelength of both free and forced/hybrid bars (shaded
areas) the three lines tend to converge, which indicates the appropriateness of the funda-
mental hypothesis. The dotted line indicates the typical wavenumber λ = 0.45 we adopted
when applying Equation (7). Example with β = 12 and D0/d = 100.
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related to the fact that, as demonstrated in Section 4.1, the key assumption is not
valid for relatively short wavelengths. However, this limitation does not prevent for
an accurate prediction of the critical aspect ratio, for two reasons: (i) the wavenum-
ber resulting from complete theories is relatively constant, so that its average value
λ = 0.45 can be considered representative; (ii) the critical aspect ratio resulting from
Equation (7) is weakly sensitive to variations of the wavenumber, to the point that
even setting λ→∞ (i.e. neglecting the term 1/(c20λ

2)) gives an error of a few percent
only.

Our expression for the marginal stability condition is meant for predicting the
formation of alternate (i.e first mode) bars only, and does not provide indications about
the transition to higher bar modes (i.e. central or multiple-row bars) that is expected
in wider channels [Fredsoe, 1978; Crosato and Mosselman, 2009]. Our approach could
be easily extended to predict the growth rate of higher modes, which would allow us
to determine the most unstable bar mode depending on conditions [see Tubino et al.,
1999]. However, this clearly goes beyond the purpose of the paper.

When applying our formula to rivers, the following question arises: “how to se-
lect an appropriate value of dominant, formative discharge that can be adopted to
represent the bar response?”. Previous works usually rely on either the bankfull dis-
charge [e.g., Crosato and Mosselman, 2009; Ahmari and Da Silva, 2011; Crosato and
Mosselman, 2020] or on the discharge with 2-year return period [e.g., Adami et al.,
2016], as commonly suggested for reproducing river morphodynamic processes. How-
ever, a specific methodology to derive formative conditions for migrating bars has been
recently proposed by Carlin et al. [2021], who suggested that free bars are expected to
form when the average growth rate, calculated over all the possible discharge states,
is positive, namely:

Ω =

∫ ∞
0

Ω fQ dQ > 0, (20)

where fQ indicates the probability density function of the flow events. In this perspec-
tive, our analysis provides all the necessary information for directly computing the bar
growth rate Ω as a function of discharge by means of Equation (A.13).

Finally, the present analysis is limited to conditions where most of the sediment
is transported as bedload, as reproducing the effect of suspended load on bar stability
requires a more sophisticated model, based on either a non-equilibrium stress-transport
relation [Federici and Seminara, 2006; Bertagni and Camporeale, 2018] or on a fully
three-dimensional approach [Tubino et al., 1999]. However, our model allows for qual-
itatively explaining the increase of bar instability observed in suspension-dominated
channels: since the suspended load is substantially not affected by the gravitational pull
predicted by Equation (4), the bar-suppressing mechanism is expected to be weaker,
which promotes bar formation.

5 Conclusions

Neglecting the deformation of the water surface in the classic two-dimensional
shallow water and Exner model allowed for a considerable simplification of the math-
ematical description of the process of bar formation, which facilitated the physical
understanding of the phenomenon. This led to the following conclusions:

• The physical mechanism that leads to a self-sustained development of free mi-
grating bars is surprisingly simple, as it results from an imbalance between water
weight and bottom friction. Specifically, if a relatively long, three-dimensional,
deposition bump is introduced, water depth and associated weight reduce, which
produces a flow deceleration and further deposition. The same but reversed
mechanism occurs in three-dimensional pools, where the increase of water depth
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produces acceleration and further scour. This bar-forming instability process
tends to be counteracted by the effect of the gravitational pull on the bed par-
ticle transported as bed load. The importance of this bar-suppressing effect
increases quadratically when reducing the channel width, which explains why
bar formation is strongly discouraged when the channel width-to-depth ratio is
low.

• An explicit, physically based formula for predicting conditions for the formation
of free alternate bars can be derived. Testing based on a very large number
of laboratory experiments, suggests that the formula we propose is on aver-
age more accurate than existing empirical predictors. Moreover, the physically
based derivation of the formula allows for assessing the effect of all the essential
parameters that concur in determining bar stability, and it is therefore suitable
to be adapted and extended to a wide range of conditions.

• The hypothesis of negligible deformation of the water surface is intimately re-
lated to two essential characteristics of bars: (i) the three-dimensional structure;
(ii) the long longitudinal extension, which allow for a gentle deviation of the flow,
without significant variations of the water surface elevation. For this reason it
does not apply to two-dimensional or comparatively short three-dimensional
bedforms, such as two-dimensional dunes or oblique dunes. Ultimately, this
hypothesis implies a that the Froude number plays a negligible role in the for-
mation of bars. This suggests that a substantial independence of the Froude
parameter may be a general, remarkable property of all morphodynamics sys-
tems characterized by a three-dimensional bed topography, such as multi-thread
braided rivers.

Appendix A Derivation of an explicit expression for the critical as-
pect ratio

The linear stability analysis of the system of partial differential Equations (1) is
obtained by considering small perturbations with respect to a reference, undisturbed
flow, here denoted with the subscript 0. Specifically, we consider an expansion of the
dependent variables in the form:

U = U0 [1 + U∗1 ], (A.1a)

V = U0 [0 + V ∗1 ], (A.1b)

D = D0 [1 +D∗1 ], (A.1c)

H = D0 [0 +H∗1 ], (A.1d)

where U∗1 , V
∗
1 , D

∗
1 , H

∗
1 represent the dimensionless perturbations.

Moreover, it is convenient to express also the independent variables in dimen-
sionless form. Specifically, planimetric coordinates are scaled with half the channel
width [Colombini et al., 1987], namely:

x∗ =
x

W/2
, y∗ =

y

W/2
, (A.2a,b)

while time is made dimensionless by means of the Exner timescale (i.e. that naturally
arising from the sediment continuity equation), namely:

t∗ = t
qs0

(1− p)D0W/2
. (A.3)

Substituting the above expressions in the system of four differential Equations
(1), considering the closure relations (2-4), and neglecting the nonlinear terms, gives

–18–



Confidential manuscript submitted to Water Resources Research

the following linear system:

∂U∗1
∂x∗

+
�
��

��HH
HHH

1

Fr2
∂H∗1
∂x∗

+
β

c20
[2U∗1 −D∗1 (1 + 2cD)] = 0, (A.4a)

∂V ∗1
∂x∗

+
1

Fr2
∂H∗1
∂y∗

+
β

c20
V1 = 0, (A.4b)

∂D∗1
∂x∗

+
∂U∗1
∂x∗

+
∂V ∗1
∂y∗

= 0, (A.4c)

∂(��ZZH
∗
1 −D∗1)

∂t∗
+
∂V ∗1
∂y∗

− r

β
√
θ0

∂2(��ZZH
∗
1 −D∗1)

∂y∗2
+ 2ΦT

∂U∗1
∂x∗

− 2ΦT cD
∂D∗1
∂x∗

= 0, (A.4d)

where the reference Froude number and aspect ratio are given by:

Fr =
U0√
gD0

, β =
W/2

D0
. (A.5a,b)

The dimensionless coefficients ΦT and cD, which measure the nonlinearity of the re-
sponse of bedload and flow friction to variations of Shields number and water depth,
are defined as:

ΦT =
θ0
Φ0

∂Φ

∂θ

∣∣∣
θ=θ0

, cD =
D0

c0

∂c

∂D

∣∣∣
D=D0

, (A.6a,b)

and their explicit expression depends on the choice of the sediment transport and
friction formulae.

The spatial variations of the free surface elevations can be neglected from the
water and sediment continuity equations, and from the longitudinal momentum equa-
tions (red-crossed terms). Conversely, they are still important to satisfy the equation
of transverse momentum, as the water surface deformation is needed to guide the lat-
eral flow movement. However, this simplification allows for decoupling the problem, as
Equations (A.4a,c,d) can be resolved independently from Equation (A.4b). Moreover,
isolating the term ∂V1/∂y from the water continuity Equation (A.4c) and substituting
it into the Exner Equation (A.4d) allows for reducing Equations (A.4a,c,d) into the
following differential system of two equations in the two unknowns U1 and D1:

∂U∗1
∂x∗

+
β

c20
[2U∗1 −D∗1 (1 + 2cD)] = 0, (A.7a)

−∂D
∗
1

∂t∗
− ∂D∗1
∂x∗

− ∂U∗1
∂x∗

+
r

β
√
θ0

∂2D∗1
∂y∗2

+ 2ΦT
∂U∗1
∂x∗

− 2ΦT cD
∂D∗1
∂x∗

= 0. (A.7b)

Considering the simplified shallow water equations, we look for a wavelike so-
lution where spatial variations assume the form of a double sinusoid as illustrated in
Figure 7a. Specifically:

U∗1 = û exp [iλx∗ + (Ω− iω)t∗] cos(πy∗/2) + c.c., (A.8a)

D∗1 = d̂ exp [iλx∗ + (Ω− iω)t∗] cos(πy∗/2) + c.c., (A.8b)

where û and d̂ are complex coefficients, i =
√
−1 denotes the imaginary unit, c.c.

indicates the complex conjugate. The real coefficients Ω and ω represent the dimen-
sionless growth rate and angular frequency, while λ is the dimensionless longitudinal
wavenumber, defined as λ = πW/L, where L is the bar wavelength.

Substituting Equations (A.8) into the system of linear Equations A.7 leads to a
system of algebraic equations in the unknowns û and d̂ that can be expressed in the
following matrix form:[

iλ+ a1 a2
iλ(1− a4) iλ(1− a5) + π2/4 a6 + Ω− iω

]
×
[
û

d̂

]
=

[
0
0

]
, (A.9)
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Figure A.1: Dimensionless growth rate as a function of the dimensionless wavenum-
ber λ according to the complete model of [Colombini et al., 1987] (dashed line) and our
Equation A.13 (solid line). The above scale indicates the corresponding dimensionless
wavelength L/W . The dotted line indicates the typical wavenumber λ = 0.45 we adopted
when applying Equation (7). Example with β = 10, θ0 = 0.1 and D0/d = 200.

where the “a” coefficients are defined as in Camporeale et al. [2007], namely:

a1 = 2β/c20, a2 = −(1 + 2cD)β/c20, a4 = 2ΦT , a5 = −2cDΦT , a6 =
r

β
√
θ0
. (A.10)

A non-trivial solution of the homogeneous linear system (A.9) exists when the deter-
minant of the matrix of coefficients vanishes, which gives:

Ω− iω = −iλ(1− a5)− π2

4
a6 + a2(1− a4)

iλ

a1 + iλ
, (A.11)

whose real part reads:

Ω = −π
2

4
a6 + a2(1− a4)

λ2

a21 + λ2
, (A.12)

which, substituting the coefficients (A.10), provides an expression for the bar growth
rate Ω, namely:

Ω = −π
2

4

r

β
√
θ0

+ (1 + 2cD)
β

c20
(2ΦT − 1)

λ2

4β2/c40 + λ2
. (A.13)

As illustrated in Figure A.1 the resulting growth rate monotonically increases with
the bar wavenumber λ. This prevents the possibility of determining the most unstable
wavenumber, which needs to be provides as an input parameter. Considering the
typical value λ = 0.45 the simplified model gives a growth rate that is similar to the
maximum growth rate given by the complete model, which suggests its capability to
correctly reproduce the formation of free alternate bars.

Marginal stability conditions are found by setting zero growth rate (Ω = 0) in
Equation (A.13), which gives:

4β2
C

c20

[
ξ(θ0)

r
(1 + 2cD)− 1

c20λ
2

]
= 1, ξ(θ0) =

√
θ0
π2

(2ΦT − 1) , (A.14a,b)

from which it is easy to derive an explicit expression for the critical aspect ratio βC .
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Appendix B Critical aspect ratio according to empirical free bars pre-
dictors

In this section, we re-express existing empirical criteria in terms of the critical
width-to-depth ratio, as needed for a direct comparison with our formula (7).

The criterion of Muramoto and Fujita [1978]

This criterion for the formation of free alternate bars can be written as [see
Jaeggi , 1984]:

D0/d

(W/d)
0.67 < 0.45. (B.1)

Once expressed in terms of the channel aspect ratio, Equation (B.1) reads:

β > βC =
1

2
0.45−1/0.67

(
D0

d

)1/0.67−1

= 1.647

(
D0

d

)0.493

, (B.2)

which depends on the relative submergence D0/d as illustrated in Figure B.1.

The criterion of Jaeggi [1984]

The bar formation criterion provided Jaeggi [1984] (see their Equation (8)), trans-
lated in our notation, reads:

θ

θi
< 2.93 log

(
θ

θi

W

D

)
− 3.13

(
W

d

)0.15

, (B.3)

which can be also rewritten in terms of the channel aspect ratio β as:

2.93 log

(
θ

θi
2β

)
− 3.13

(
D0

d
2β

)0.15

− θ

θi
> 0. (B.4)

Despite not allowing for deriving an explicit expression, Equation B.4 can be numeri-
cally solved to obtain the critical aspect ratio βC .

However, it is worth highlighting that a critical aspect ratio does not always exist.
This can be noticed by analyzing the left hand side of the inequality (B.4), which does
not increase monotonically with β but it shows a maximum when:

β = k
d

D0
, k =

1

2

(
2.93

3.13 · 0.15

)1/0.15

= 1.00 · 105. (B.5a,b)

A critical value of the aspect ratio exists only if the maximum value is positive, as
given by substituting (B.5a) into (B.4):

2.93 log

(
θ

θi
2k

d

D0

)
− 2.93

0.15
− θ

θi
> 0, (B.6)

which can be expressed in terms of the relative submergence as follows:

D0

d
<

θ

θi
k2 exp

(
− 1

2.93

θ

θi

)
, k2 = 2k exp

(
− 1

0.15

)
= 254.5. (B.7a,b)

For Shields numbers in the range 1−6 times θi, as usually the case of gravel bed rivers at
bankfull conditions [Parker et al., 2007], Equations (B.7) give minimum values of D0/d
between 181 and 274. For higher relative submergence D/d, Equation (B.4) is never
satisfied, which implies that bars are not expected to form regardless of the value of β
(see Figure B.1). It is worth noticing, however, that this prediction seems essentially
a mathematical artifact, as the empirical formula was derived from observations in
conditions of relatively low submergence (D0/d < 30).
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Figure B.1: Critical aspect ratio for the formation of free migrating bars according to the
empirical criteria of Muramoto and Fujita [1978] (dotted line), Jaeggi [1984] (solid lines,
depending on the Shields number θ0), Yalin and Da Silva [2001] (dashed line) and Ahmari
and Da Silva [2011] (dashed-dotted line). For all the criteria, bars are expected to form
when the width-to-depth ratio exceeds the critical threshold.

The criterion of Yalin and Da Silva [2001]

This criterion is based on the empirical definition of a threshold value of the chan-
nel aspect ratio that only depends on the relative submergence (D0/d). Specifically,
it can be expressed by means on the following piecewise-linear function:

βC =

{
1
8
D0

d if D0

d < 100

12.5 if D0

d >= 100
, (B.8)

with alternate bars expected to form when β > βC .

The criterion of Ahmari and Da Silva [2011]

This criterion can be regarded as an updated version of Yalin and Da Silva
[2001], where the constant aspect ratio for high values of D0/d is slightly reduced,
and where a third branch of the solution is introduce to consider a decrease of the
critical width-to-depth ratio for small values of the relative submergence. Specifically,
the authors proposed the following piecewise-linear function:

βC =


12.5

(
D0

d

)−0.55
if D0

d < 26.69
1
13

D0

d if 26.69 <= D0

d < 130

10 if D0

d >= 130

. (B.9)

A comparison among the different expressions is illustrated in Figure B.1.
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