
P
os
te
d
on

30
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
74
41
/v

3
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Rainfall stable water isotope variability in coastal southwestern

Western Australia and its relationship to climate on multiple

timescales

Alan David Griffiths1,1,1, Pauline Treble1,1,1, Pandora Hope2,2,2, and Irina Rudeva2,2,2

1Australian Nuclear Science and Technology Organisation
2Bureau of Meteorology

November 30, 2022

Abstract

The factors driving variability in rainfall stable water isotopes (specifically δ¹8O and deuterium excess, d = δ²H - 8 δ¹8O)

were studied in a 13-year dataset of daily rainfall samples from coastal southwestern Western Australia (SWWA). Backwards

dispersion modelling, automatic synoptic type classification, and a statistical model were used to establish causes of variability

on a daily scale; and predictions from the model were aggregated to longer temporal scales to discover the cause of variability

on multiple timescales. Factors differ between δ¹8O and d and differ according to temporal scale. Rainfall intensity, both at the

observation site and upwind, was most important for determining δ¹8O and this relationship was robust across all time scales

(daily, seasonal, and interannual) as well as generalizing to a second observation site. The sensitivity of δ¹8O to rainfall intensity

makes annual mean values particularly sensitive to the year’s largest events. Projecting the rainfall intensity relationship back

through 100 years of precipitation observations can explain 0.2-0.4δ¹8O. Twentieth century speleothem records from the region

exhibit signals of a similar magnitude, indicating that rainfall intensity should be taken into account during the interpretation

of regional climate archives. For d, humidity during evaporation from the ocean was the most important driver of variability

at the daily scale, as well as explaining the seasonal cycle, but source humidity failed to explain the longer-term interannual

variability.
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Abstract17

The factors driving variability in rainfall stable water isotopes (specifically δ18O18

and deuterium excess, d = δ2H−8 δ18O) were studied in a 13-year dataset of daily rain-19

fall samples from coastal southwestern Western Australia (SWWA). Backwards disper-20

sion modelling, automatic synoptic type classification, and a statistical model were used21

to establish causes of variability on a daily scale; and predictions from the model were22

aggregated to longer temporal scales to discover the cause of variability on multiple timescales.23

Factors differ between δ18O and d and differ according to temporal scale. Rainfall in-24

tensity, both at the observation site and upwind, was most important for determining25

δ18O and this relationship was robust across all time scales (daily, seasonal, and inter-26

annual) as well as generalizing to a second observation site. The sensitivity of δ18O to27

rainfall intensity makes annual mean values particularly sensitive to the year’s largest28

events. Projecting the rainfall intensity relationship back through ∼ 100 years of pre-29

cipitation observations can explain ∼ 0.2–0.4h shifts in rainfall δ18O. Twentieth cen-30

tury speleothem records from the region exhibit signals of a similar magnitude, indicat-31

ing that rainfall intensity should be taken into account during the interpretation of re-32

gional climate archives. For d, humidity during evaporation from the ocean was the most33

important driver of variability at the daily scale, as well as explaining the seasonal cy-34

cle, but source humidity failed to explain the longer-term interannual variability.35

Plain Language Summary36

In cave deposits, as with several other natural systems, the relative abundance of37

the heavy isotopes oxygen-18 and deuterium can be used to determine past changes in38

climate. This is because the isotopic composition of these systems is linked to that of39

rainfall, while the abundance of heavy isotopes in rainfall is driven by climate param-40

eters such as temperature and rainfall characteristics. For this to be possible, the fac-41

tors which drive rainfall isotopic variability need to be well known. This study uses a42

13-year data set of daily rainfall samples from coastal southwestern Western Australia43

to better understand isotopic variability for this region. Oxygen-18 variations here are44

driven mainly by rainfall intensity (the amount of rain each day) both according to mea-45

surements at the site and upwind simulations. Deuterium excess, a second order param-46

eter which is often linked to conditions in the evaporation source region, was well-predicted47

by source region humidity at the daily scale but not when aggregated to annual totals.48

The relationship between rainfall intensity and oxygen-18 appears to be important over49

the 20th century, based on a comparison between observed rainfall and a cave record.50

1 Introduction51

In systems where material is sequestered from the environment, for instance dur-52

ing speleothem growth or groundwater infiltration, the stable isotope ratios δ18O and53

δ2H act as markers of environmental change. Speleothems, that is cave decorations such54

as stalagmites and flowstones, record changes in the oxygen isotopic composition as they55

grow, and these changes can in turn be linked to changes in rainfall isotopic composi-56

tion (Lachniet, 2009; Orland et al., 2009; Z. Zhang et al., 2018). Karst regions occur through-57

out the midlatitudes (Chen et al., 2017) meaning that cave records can be used to in-58

fer past changes in certain aspects of the hydrological cycle, in areas where this is not59

achievable using materials such as coral and ice (Treble, Chappell, et al., 2005; Lorrey60

et al., 2008; Fohlmeister et al., 2012; McCabe-Glynn et al., 2013; H. Zhang et al., 2018).61

Speleothem use is widespread, with the SISALv2 database alone containing 691 time-62

series of δ18O in speleothem calcite (Comas-Bru et al., 2020).63

The ratio of deuterium to hydrogen, δ2H, also reflects changes in hydrological pro-64

cesses. Even though it is not directly preserved in speleothem carbonite, calcareous speleothems65
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nevertheless record the history of δ2H in infiltrating water because of the formation of66

fluid inclusions within the speleothem which trap enough water for isotopic analysis (Vonhof67

et al., 2006; van Breukelen et al., 2008). Alternatively, groundwater can be sampled and68

dated to obtain a low-resolution record of both δ18O and δ2H (Priestley et al., 2020).69

Interpreting these records, of oxygen-18 in calcite and deuterium in fluid inclusions,70

relies on an understanding of how climatic and atmosphere processes drive isotope vari-71

ability in rainfall. At the laboratory scale, this is well understood. In a closed system,72

heavier isotopes are concentrated in the more condensed phase according to the temperature-73

dependent equilibrium fraction factor (Majoube, 1971; Horita & Wesolowski, 1994). In74

well-controlled conditions where diffusive transport is important, the difference in molec-75

ular diffusivity between isotopologues (Merlivat, 1978b) leads to quantitatively-predictable76

kinetic fractionation. In the climate system, however, precisely which climatic and at-77

mospheric processes emerge with the strongest link to isotopic variations is less clear and78

differs between regions.79

Towards the poles, over long time scales, oxygen and hydrogen isotopes in ice have80

been used as an indicator of temperature (Brook & Buizert, 2018; Jouzel et al., 2007);81

whereas tropical rainfall isotopes have classically been thought of as being controlled by82

precipitation amount (Dansgaard, 1964). Other factors are also important, though, some83

of which are location-dependent. In the tropics, these factors include the degree of con-84

vective organization (Moerman et al., 2013) or monsoon activity (Okazaki et al., 2015).85

In both the tropics and midlatitudes, the type of precipitation (Aggarwal et al., 2016)86

and atmospheric residence time (Aggarwal et al., 2012) are important. In studies from87

the midlatitudes, the moisture source (Krklec & Domı́nguez-Villar, 2014) and, more gen-88

erally, the airmass history (Deininger et al., 2016; Good et al., 2014) have been identi-89

fied as drivers of isotopic variability.90

One way to simplify the analysis of many individual factors, and potentially mak-91

ing interpretation more robust or straightforward, is to examine the link between the type92

of synoptic-scale weather system and water isotopes in precipitation. Using this approach93

in Southern Australia (Barras & Simmonds, 2008, 2009; Treble, Budd, et al., 2005; Guan94

et al., 2013), and elsewhere (Lykoudis et al., 2010; Farlin et al., 2013; Tyler et al., 2016;95

Wang et al., 2017; Schlosser et al., 2017), has indeed revealed that an association exists.96

It arises because several of the factors mentioned above systematically differ between syn-97

optic types.98

This study is concerned with southwestern Western Australia (SWWA) in the South-99

ern Hemisphere midlatitudes. Here, δ18O values in speleothem records (Treble, Chap-100

pell, et al., 2005) have low frequency variations that are likely to be linked to climate,101

but a robust understanding of the mechanism is incomplete. Treble, Chappell, et al. (2005)102

showed that the stable water isotopes measured in SWWA daily rainfall samples, over103

a one-year study period, are associated with rainfall intensity, but other drivers may also104

play a role. It is also unclear whether the intensity dependence holds over longer time105

periods. An understanding of these drivers is particularly important for this region; win-106

ter rainfall here has dropped significantly since the 1970s (Bates et al., 2008) and plac-107

ing this in the context of the region’s long-term natural variability is important for fully108

understanding the change. This is a challenging task because of the region’s strong in-109

ternal variability, demonstrated in climate models (Cai et al., 2005; England et al., 2006),110

combined with a short (∼100 yr) instrumental record (Haylock & Nicholls, 2000).111

There are several approaches for determining climate variability using paleoclimate112

records or reconstructions. Changes in rainfall have been inferred from distant measure-113

ments of snow accumulation (Zheng et al., 2021), which is possible because of an anti-114

correlation between SWWA May–October rainfall and snowfall at Law Dome, Antarc-115

tica (van Ommen & Morgan, 2010). Speleothem records, an in situ climate proxy, are116

found in caves which develop in Tamala Limestone (Geoscience Australia & Australian117
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Stratigraphy Commission, 2017), an eolian carbonate deposited in the Middle to Late118

Pleistocene, ∼10–250 ka before present (Smith et al., 2012). Tamala Limestone is exten-119

sively distributed along several hundred kilometers of the Western Australian coastline120

(Fig. 1). Meanwhile, groundwater from the confined aquifers of the Perth Basin (Priestley121

et al., 2020) has been interpreted as a low-resolution record of infiltration. Both speleothem122

and groundwater records would benefit from a better understanding of the climate drivers123

of stable water isotopes.124

The purpose of this paper, then, is to investigate the factors which influence the125

abundance of stable water isotopes (2HHO, H18
2 O) in a modern 13 yr record of SWWA126

rainfall, taking into account day-to-day variations in synoptic types, upstream conditions,127

and site parameters. In particular, our goal is to identify factors which are important128

both at the daily, seasonal, and annual scales. This is most relevant to understanding129

speleothem records from the region, although we expect the measurements to be more130

widely useful.131

The remainder of this paper is organized as follows: Sect. 2 describes the charac-132

teristics of the study region; Sect. 3 introduces the methods used in this study, includ-133

ing a Lagrangian trajectory model and statistical methods; Sect. 4 describes the main134

results and illustrates links between water isotopes and their drivers; and Sect. 5 com-135

pares our results with the literature, tests the ability of our interpretation to general-136

ize to another site, as well as summarizing implications for speleothem record interpre-137

tation.138

2 Regional setting139

The coastal region of southwestern Western Australia (SWWA, Fig. 1), has an an-140

nual rainfall of more than 750 mm making it a wet and productive region in compari-141

son to the arid inland. The region is too warm for snow, so precipitation falls as rain and142

this is mostly during the cooler months of May–October (Bates et al., 2008, Fig. S1). The143

total cool-season rainfall is closely related to the number of fronts which cross the coast,144

which in turn is coupled to the strength and extent of the Hadley-Walker circulation (Rudeva145

et al., 2019). Along the coastline south of Perth, about 50% of winter rainfall is asso-146

ciated with fronts, which can be accompanied by thunderstorms (Pepler et al., 2020),147

20% with cutoff lows (low pressure systems formed at upper tropospheric levels), and148

the remainder with warm troughs and other synoptic systems (Pook et al., 2012). Fur-149

ther inland, the proportion of frontal rainfall is lower, and the climate is dryer. Other150

studies, although differing in how synoptic systems are defined (Hope et al., 2014), have151

generally classified rainfall-bearing systems into similar synoptic types (Hope et al., 2006;152

Raut et al., 2014) and agree on the importance of frontal rainfall during the rainy win-153

ter season. In summer, when the subtropical ridge lies over the region, monthly rainfall154

of 20 mm or less is typical and frontal rainfall makes up a smaller proportion of the to-155

tal. Instead, rainfall comes from a mixture of thunderstorms, extratropical cyclones, (Pepler156

et al., 2020) and warm troughs (Raut et al., 2014). Also more likely during summer are157

the rare, but potentially extreme, events from ex-tropical cyclones (Foley & Hanstrum,158

1994).159

As well as having a pronounced seasonal cycle, the region’s rainfall has changed160

on interannual to decadal timescales. Since 1970, the water inflow to Perth’s dams has161

decreased by half (Power et al., 2005), due to the combined effect of reduced winter rain-162

fall and increased evaporation. The rainfall intensity distribution has also changed over163

the instrumental period, but with differences between stations within SWWA (Philip &164

Yu, 2020). A number of studies, reviewed by Dey et al. (2019), show the rainfall decrease,165

in winter, is associated with a change in regional circulation including a poleward shift166

in westerly winds. The resulting decrease in the frequency of strong fronts (Raut et al.,167

2014) has been related to a significant warming of the Southern Hemisphere troposphere168
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Figure 1. Southwestern Western Australia (SWWA) and locations referenced in the text

with: the distribution of Tamala Limestone (a karstic eolianite that occurs along the coast; Geo-

science Australia, 2012); land cover (Paget, 2008); and annual mean rainfall (Australian Bureau

of Meteorology product IDCJCM004).

south of 30◦S followed by a decrease in the strength of the jetstream, which, in turn, de-169

creases the instability and makes the formation of synoptic disturbances less likely (Frederiksen170

& Frederiksen, 2007). This is in agreement with a recent study by Lucas et al. (2021),171

who described a reduction in the intensity of the upward midlatitude circulation branch172

in the Southern Hemisphere at 30◦S. Climate model projections indicate that the dry-173

ing trend will continue (Bates et al., 2008; Raut et al., 2016).174
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3 Methods and data175

3.1 Rainfall sampling176

Rainfall samples were collected from the Calgardup Cave visitors center within a177

forested nature reserve 23 km from the coast (34.0499◦S, 115.0246◦E, 70 m ASL, Fig. 1).178

Samples were collected in a rain gauge consisting of a 203 mm diameter circular funnel179

draining into a graduated cylinder. The top of the rain gauge was approximately 0.3 m180

above the ground and within a small clearing; nearby vegetation was kept clear of the181

gauge. The gauge was checked daily at 0900 local time (0100 UTC for most of the record,182

however Western Australia observed daylight saving time during the summers of 2006–183

2009) and on days with at least 2 mm of rainfall a sample was collected by filling a 12 ml184

amber glass bottle completely to the rim. The sample bottle was sealed using a polypropy-185

lene lid with Teflon tape placed around the thread to improve the seal. Samples were186

kept refrigerated at 3 ◦C until analysis. For this study, measurements were included from187

the years 2006–2018 to avoid including partial years. Occasionally, observers sampled188

rainfall on days with < 2 mm of rainfall, and these samples were excluded from anal-189

ysis. In addition, one outlier was excluded. This was recorded on 21 April 2010 with an190

anomalously high δ18O of −1.2h with 52 mm of rainfall, compared to an expected value191

of about −5h for this amount of rainfall. Three rain-days later a sample was anoma-192

lously low (−5.0h with 4.1 mm of rainfall), so it is possible that samples were mislabeled.193

Isotopes are reported in terms of the isotopologue ratios, R, of oxygen–18 (H18
2 O/H2O)194

and deuterium (2HHO/H2O) relative to Vienna Standard Mean Ocean Water (VSMOW;195

IAEA, 2006) in rainwater. We use delta notation where δ = R/RVSMOW−1, with δ18O196

and δ2H representing the two isotopologues. Data up to March 2012 were previously pub-197

lished (Treble et al., 2013). New data reported here were obtained using a Picarro L2120-198

I cavity ring-down spectroscopy analyzer at ANSTO (reported accuracy of ±1.0 h for199

δ2H and ±0.1 h for δ18O). All samples were filtered prior to analysis and data were re-200

ported against in-house standards calibrated to VSMOW/VSMOW2 and SLAP/SLAP2.201

Because δ18O and δ2H are strongly correlated, we present δ18O results along with202

deuterium excess, d, a second-order parameter which characterizes the departure of δ2H203

from a linear relationship with δ18O. We follow the most common definition (Dansgaard,204

1964) where205

d = δ2H− 8 δ18O. (1)

Defined this way, d is approximately conserved during Rayleigh distillation, provided that206

the ambient temperature is close to 31◦C and that Rayleigh distillation does not pro-207

ceed too far. Although this is a conventional approach, making our results simple to com-208

pare with other studies, it is nevertheless possible for equilibrium processes to change209

d and other definitions have been proposed, as discussed by Dütsch et al. (2017). At colder210

temperatures, Rayleigh distillation tends to decrease d as it proceeds because the equi-211

librium fraction factors depend on temperature (Horita & Wesolowski, 1994). Since the212

heavy isotopes are depleted by Rayleigh distillation, the effect is to produce a positive213

correlation between d and δ18O at cool temperatures. This trend reverses, however, once214

Rayleigh distillation proceeds far enough (less than about 10% of vapor remaining) mean-215

ing that Rayleigh theory predicts that dry mid-tropospheric air has low δ18O and high216

d, in general agreement with observations (Sodemann et al., 2017).217

Rainfall isotope data are also presented from the Perth Airport Global Network218

of Isotopes in Precipitation (GNIP) sampling point, 250 km north of Calgardup Cave,219

where rainfall is accumulated monthly for isotopic analysis (Hollins et al., 2018). Ap-220

proximately 7 km further inland from Calgardup Cave, there are two automatic weather221

stations operated by the Australian Bureau of Meteorology (BoM) at sites 9746 (Witch-222

cliffe) and 9547 (Forest Grove). Rainfall measurements are taken from these sites, as well223

as the more distant sites: 9503 (Boyanup) and 9519 (Cape Naturaliste).224
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In this paper, the amount of rainfall collected each day is called the ‘rainfall inten-225

sity’, in contrast to ‘rainfall total’ which is the accumulated rainfall over a longer period.226

Where averages of δ18O and d are computed, these are weighted by rainfall amount un-227

less noted otherwise.228

3.2 Source region diagnostic229

Several upstream parameters, chosen because of their potential to affect δ18O and230

d, were diagnosed using Lagrangian dispersion models. Models were used to compute231

a backwards plume, or retroplume, from Calgardup Cave on each day with > 2 mm of232

rainfall. Backwards plumes are a more realistic generalization of backwards trajectories,233

with advantages discussed by Stohl et al. (2002). Lagrangian diagnostics have been widely234

and successfully used in studies of water isotopes (Pfahl & Wernli, 2008, 2009; Sodemann235

et al., 2008, e.g.) including the use of backwards dispersion models (Good et al., 2014).236

Quantities related to the evaporation source region were diagnosed from the source-receptor237

matrix (Seibert & Frank, 2004) weighted by the instantaneous evaporation rate.238

In this study, two sets of backwards plumes were generated. The primary set used239

FLEXPART version 9.0 (Stohl et al., 2002) with subgrid convective mixing (Forster et240

al., 2007) and wind fields from the ERA-Interim reanalysis (Dee et al., 2011). A second241

set of backwards plumes was generated using FLEXPART-WRF version 3.1 (Brioude242

et al., 2013), forced with a regional atmospheric simulation generated by the Weather243

Research and Forecasting model version 3.5.1 (WRF Skamarock & Klemp, 2008). The244

WRF model was forced by the CFSR reanalysis (Saha et al., 2010), and configured with245

an outer domain which was large enough to contain the backwards plume for approx-246

imately 120 h. The second set of plumes was used to verify that the main findings could247

be replicated and are not discussed further.248

Three of the uncertainties in the approach are that: the time of rainfall is only known249

to within a 24 h sampling window; the appropriate height for beginning the backwards250

plume has to be estimated; and the error in the plume grows as the model is integrated251

further back in time. After some experimentation, the beginning time was taken from252

the time in the WRF simulation with the largest rain rate, and the starting height was253

taken to be the cloud base in WRF, estimated at the height when relative humidity reaches254

80%. Then, to verify that the model indeed produces a useful diagnostic, we checked the255

correlation between d and humidity relative to saturation at the sea surface tempera-256

ture, hs, as a function of back trajectory length. This is a useful diagnostic because d,257

in vapor, and hs, at the evaporation site, are strongly correlated (Pfahl & Wernli, 2008),258

and we assume that d will be approximately conserved during the conversion of water259

vapor into clouds and then rainfall.260

The correlation between d and hs grows as the backwards plume increases in du-261

ration up to about 48 h, but with no further improvement beyond this point (Fig. S2).262

This indicates that both dispersion models have some skill at determining the evapora-263

tion conditions at the moisture source, at least up to 48 h before rainfall.264

3.3 Synoptic classifications265

On each day, the synoptic type was classified with a Self Organizing Map (SOM),266

using SOM-PAK (Kohonen et al., 1996), following the approach described by Hope et267

al. (2006). Synoptic types were derived from the 1200 UTC mean sea level pressure (MSLP)268

anomaly fields of the ERA-Interim reanalysis on a 0.75◦ latitude/longitude grid in the269

region 90–130◦E, 50–15◦S. The SOM is an unsupervised classification method, produc-270

ing synoptic types that are arranged in a two-dimensional grid. The arrangement of types271

into a grid, where similar synoptic types are arranged close to each other, is the main272

way in which the SOM differs from other statistical classification techniques (Philipp et273
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al., 2016). Synoptic classification was only applied to the rainy months (April–October),274

due to the presence of seasonally persistent features in the surface pressure field asso-275

ciated with the meridional movement of the subtropical high pressure ridge. Training276

was performed using data from the years 1979–2018 and grid cells were weighted by area.277

In addition to the SOM classifications, fronts were detected in the reanalysis fields278

and used as an aid to interpret the SOM classifications. The position of fronts was found279

using the wind shift method (Simmonds et al., 2011) based on ERA-Interim 3-hourly 10 m280

wind fields. This is a straightforward method which is applicable to SWWA (Hope et281

al., 2014). It does not produce spurious fronts along the coastline, that are often found282

by a more commonly used methods based on the temperature gradients (Pepler et al.,283

2020). The wind-based method works well to define meridionally elongated fronts, that284

are mainly cold fronts, and is particularly well suited for the Southern Hemisphere (Schemm285

et al., 2015).286

3.4 Generalized additive models287

To combine information from site measurements, backwards plume, and synoptic288

type we used Generalized Additive Models (GAMs; Wood, 2017). Separate models were289

constructed to predict δ18O and d in daily rainfall samples. GAMs, a generalization of290

linear regression models, allow the relationships between predictor variables and the re-291

sponse variable to be modelled as smooth curves rather than straight lines. In contrast292

to many nonlinear machine learning techniques, a benefit of using GAMs is that the re-293

lationship between predictor and response variables is simple to visualize, making the294

models readily interpretable.295

The GAM implementation was provided by mgcv, a package for R (R Core Team,296

2014). Relationships between predictor and response variables are modelled with penal-297

ized regression splines in which the smoothness is estimated during the fitting process298

using restricted maximum likelihood (REML; Wood, 2011), and models used the iden-299

tity link function. In this implementation, predictors which can be modelled with a lin-300

ear response are modelled that way, and predictors with insufficient explanatory power301

are dropped from the model. The mgcv models can also incorporate categorical variables,302

allowing the synoptic classification to be included within the same framework.303

In this study, we also assessed the importance of terms for explaining the obser-304

vations on different timescales. As well as allowing the models to drop unimportant terms305

(using REML) we followed a procedure where models were constructed term-by-term.306

Beginning with an empty model, each candidate term was tested, and the term result-307

ing in the best performing model retained. The search for the best term was then repeated308

by adding a second term to the model, and so on.309

The metric for assessing model performance was the 13-fold cross-validated mean-310

square error (MSE) applied to daily predictions of δ18O or d. To score a model, one year311

is held out, and the other years are used to train the model, then the MSE computed312

on the held-out year, defined as313

MSE =
1

N

N∑
i=1

(ŷi − yi)2 (2)

where N is the number of observations, yi is the ith day’s observation and ŷi is the ith314

day’s model prediction. This is repeated for all years in the data set, and the MSE is taken315

as the average from all the hold-out sets. During model building, terms are added in the316

order of the greatest reduction in daily cross-validated MSE.317

Once the set of models has been obtained, the cross-validated MSE is then recorded318

for three groupings: 1. the original, daily, data 2. the mean seasonal cycle during the319

rainy months (April–October); and 3. the annual precipitation-weighted means.320
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Figure 2. Rainfall δ18O and δ2H measured in daily samples from Calgardup Cave visitors

centre colored by the daily rainfall intensity. For comparison, the global average d in precipita-

tion is about 10h.

3.5 Modelled precipitation isotopes321

In addition to the diagnostic and statistical models described above, we also use322

output from a prognostic model: a 40 year simulation of IsoGSM (Yoshimura et al., 2008).323

This is one of several atmosphere general circulation models with water isotope tracers324

(Risi et al., 2010; Sturm et al., 2005; Schmidt et al., 2007; Lee et al., 2007, e.g.). IsoGSM325

is forced with the NCEP/DOE Reanalysis and output from the model is available with326

a horizontal resolution of 2.5◦.327

At other sites, IsoGSM reproduces daily, monthly, and seasonal variability in wa-328

ter isotope ratios, with more skill at simulating δ18O than d (Yoshimura et al., 2008).329

At the daily scale, the low accuracy of the model-produced precipitation (that is, the model330

may not necessarily produce rain on a rainy day) limits the accuracy of predicted wa-331

ter isotopes.332

4 Results333

Our results include a description of the stable water isotopes in Sect. 4.1–4.3 be-334

fore moving onto the more interpretive results from statistical and dispersion models in335

the later sections.336

4.1 Daily δ18O, δ2H, and precipitation337

Over the 13-year monitoring period (2006-18 inclusive, days with ≥2 mm day−1 of338

rainfall) the precipitation-weighted mean (the mean weighted by the daily precipitation339

amount) δ18O was −4.45h, d was 15.4h, and δ2H was −20.2h. More than 2 mm of340

rain fell on an average of 90 days each year, and the mean annual precipitation from these341

events was 839 mm. The daily isotope samples, when plotted in δ18O ∼ δ2H space, are342

strongly correlated and lie about the so-called local meteoric water line (LMWL; Fig. 2).343

There is a tendency for intense rainfall to have lower δ2H and δ18O and for low in-344

tensity rainfall to both have high δ18O and, above −2h, depart from the straight line345

trend. Deuterium excess for these high δ18O samples tends towards the d = 0 h line,346
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contrasting to the overall mean d. For comparison, the global meteoric water line (GMWL)347

of Craig (1961) lies on the d = 10h line. In common with many Australian sites (Hollins348

et al., 2018), the slope of the LMWL when calculated with ordinary least-squares (OLS)349

is lower than the GMWL. The parameters for straight-line fits to the daily rainfall sam-350

ples are shown in Tab. S1, with both ordinary least-squares and precipitation weighted351

least squares (WLS, Hughes & Crawford, 2012), although these are not the only options352

for characterizing the LWML and the slope is dependent on the regression method (Crawford353

et al., 2014). Taking uncertainty into account, the slope of the LMWL at Calgardup Cave354

is indistinguishable from the Perth Airport LMWL, but the there is an offset between355

the two sites since the intercept differs by about two standard deviations. The cause of356

this offset is explained in Sect. 5.3.357

As noted in Sect. 3.1, the temperature-dependence of equilibrium fractionation would358

lead to an increase in d with δ18O. Here we see the opposite trend, which is indicative359

of non-equilibrium processes, such as sub-cloud raindrop re-evaporation (Lee & Fung,360

2008), becoming relatively more important during light rainfall.361

4.2 Seasonal cycle362

The composite seasonal cycle of δ18O, d, and rainfall has been published previously363

for Perth (Hollins et al., 2018; Liu et al., 2010) and the seasonal cycle at Calgardup is364

broadly similar (shown later in Fig. 8, but also in Fig. S1). The similarity is consistent365

with isotopes at the two sites being driven by similar factors. As shown in these figures,366

the δ18O minimum occurs in May or June, which is earlier than the July peak in rain-367

fall. January stands out as an exception with anomalously low–and variable–rainfall δ18O368

when compared with the surrounding months, likely because of the occurrence of rare,369

but intense, rainfall events. The seasonal cycle of d also has a large amplitude, but mir-370

rors δ18O with a peak in the rainy months. Unlike δ18O, summer variability is not es-371

pecially pronounced.372

4.3 Annual mean time series373

Rainfall δ18O, aggregated to annual precipitation-weighted averages, follows an over-374

all decreasing trend, which is present at both Calgardup Cave and Perth as well as in375

IsoGSM model output (Fig. 3). From 2009 onwards, however, there is no statistically376

significant trend. Comparison with longer term model output, and earlier data from Perth,377

(Hollins et al., 2018) indicates that 2006-08 were anomalously high, compared to the long-378

term average. The annual-mean d (Fig. 3b) shows similar trends at Perth and Calgardup379

Cave, but the IsoGSM simulations are unable to reproduce the observed trends. There380

is no consistent trend in d if the first three years are excluded.381

On average, annual δ18O values are 0.61h higher at Perth implying a meridional382

gradient in δ18O of 0.29 h per degree of latitude. This agrees with a persistent feature383

of isotope enabled GCMs which simulate a δ18O maximum over the Indian Ocean north384

of Perth, near 30◦S and under the descending branch of the Hadley Cell, with decreas-385

ing values towards the pole (Werner et al., 2011; Lee et al., 2007; Noone & Simmonds,386

2002; Risi et al., 2012). The offset between mean values for Perth and Calgardup Cave387

shows no trend through time, implying that the meridional gradient has remained con-388

sistent over the monitoring period.389

Annual mean departures from the trend are not consistent between sites (Fig. 3a),390

suggesting that δ18O anomalies are related to local processes. At least in part, the low391

correlation between sites is because annual mean δ18O is particularly sensitive to the heav-392

iest events of the year, shown by plotting four similar time series in which the heaviest393

1–4 rainfall events from each year are excluded. Excluding the heavy events shifts the394

mean δ18O higher and, in years like 2015 and 2018, can change annual means from anoma-395
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Figure 3. Annual precipitation-weighted mean A δ18O and B d from Calgardup Cave and

Perth. As well as showing the entire dataset, the annual mean values for Calgardup are also com-

puted after incrementally leaving out the four largest daily rainfall accumulations, illustrating the

sensitivity of interannual δ18O variations, but not d variations, to a few events. Results from the

IsoGSM isotope-enabled general circulation model are also shown.

lously low to high. As with any rainfall event, these heavy events will be sampled dif-396

ferently by the two monitoring sites (Good et al., 2014), so stochastic variability is a ma-397

jor contributor to the annual precipitation-weighted mean δ18O. In contrast to δ18O, the398

interannual variability in d is not as strongly affected by these intense rainfall events (Fig. 3b),399

so the annual-mean difference between Perth and Calgardup Cave time-series are not400

as sensitive to stochastic variability.401

To examine the factors which drive these long-term changes, and the seasonal cy-402

cle, we analyze the conditions on each rainy day in the following sections.403

4.4 Synoptic systems404

Self organizing maps (SOMs) were used to classify synoptic regimes. We identified405

35 synoptic types using MSLP fields from ERA-Interim, and each day was associated406

with one of types shown in Fig. 4. Supplementary interpretation is provided by the frontal407

density and 500 hPa height fields in Fig. S3, and Fig 5 summarizes several observations408

according to synoptic type.409

Although the SOM is not derived directly from frontal information, the location410

of fronts is related to the surface pressure field and the synoptic types are therefore as-411

sociated with front positions. The top two rows in the SOM are most strongly associ-412

ated with the presence of rain-bearing cold fronts directly over SWWA, while the sequence413

around the outside edge of the SOM, A4· · ·A1· · ·E1, tracks the progress of cold fronts414

beginning offshore to the west and moving east across the region. This is a common oc-415

currence, and appears as a path with high transition probabilities in Fig. 5a. Types in416

the top left are more representative of pre-frontal rainfall, while types in the top right417

are post-frontal.418

Synoptic types away from the top rows are not as strongly associated with frontal419

rainfall (Fig. S3); although fronts are detected they are generally away from SWWA. No-420

tably, the pressure pattern for classes A5, A6 resembles a trough, associated with mois-421
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Figure 4. SOM–derived synoptic types, with mean-sea-level pressure and vertically-integrated

water vapor transport.

–12–



manuscript submitted to JGR: Atmospheres

A B C D E

1

2

3

4

5

6

7

A SOM transitions

A B C D E

1

2

3

4

5

6

7

342 376 336 214 211

558 272 181 175 255

415 158 165 91.9 167

146 80.8 125 153 110

366 43.7 77.3 56.8 56.7

691 144 92.9 35.3 74

561 320 240 139 37.9

B Total rainfall (mm)

A B C D E

1

2

3

4

5

6

7

8.78 8.36 10.5 8.57 7.27

15.1 7.77 6.48 8.75 11.6

11.9 7.91 7.84 4.84 7.24

12.1 7.35 10.9 6.84

17.4 5.15

16.9 12

13.4 11 9.62 13.9

C Rainfall intensity (mm/day)

A B C D E

1

2

3

4

5

6

7

 66  63  36  37  51

 52  46  33  29  30

 48  29  21  20  23

 22  14  10  15  16

 30   8   7   8  17

 59  20   9   5   9

 43  36  28  17   7

D Probability of rain (%)

A B C D E

1

2

3

4

5

6

7

-3.06 -3.54 -3.45 -3.75 -4.13

-3.56 -3.14 -2.83 -3.86 -5.14

-3.33 -2.89 -2.98 -2.73 -3.15

-3.11 -3.3 -3.58 -3.47

-4.78 -3.02

-4.67 -3.45

-4.33 -4.23 -4.38 -4.5

E 18O ( )

A B C D E

1

2

3

4

5

6

7

13.5 14.9 14.9 16.4 16.7

14.4 14.1 14.1 15.6 16.6

14.6 14.7 14 13.7 15.9

11.7 15.9 15.8 18.4

16.4 15.9

14.5 16.2

14.9 13.5 12.1 14.6

F d ( )

Figure 5. Rainfall, isotope, and SOM properties, 2006-18, by synoptic type. Panels show:

A relative transition probability (longer arrows show more likely transitions); B accumulated

precipitation; C rainfall intensity (mean rainfall per day); D probability of rainfall; E arithmetic

mean δ18O; F arithmetic mean deuterium excess, d. Colors are used to highlight patterns in

the data, the number of days in each class ranges from 51 to 101, and cells with less than 10

observations are left blank in panels C, E, and F.
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ture transport from the northwest, and A7 is a blend between a trough and cutoff low.422

These three classes, in general, are related to upper-tropospheric processes with fronts423

being detected too far to the west to be responsible for rainfall.424

As shown in Fig. 5 synoptic types are a reasonable predictor of rainfall properties,425

several of which show a strong dependence on SOM classification. In particular, the wettest426

class (A1) has a rainfall probability of 66%, much higher than the driest class with 5%427

probability of rain (Fig. 5d). Rainfall intensity (Fig. 5c) is also sensitive to synoptic type,428

with column A showing the most intense rainfall, especially for classes A5 and A6. Al-429

though these non-frontal classes are associated with heavy rain, and A6 accounts for the430

highest total precipitation, frontal events are responsible for more rainfall overall as they431

occupy a larger number of classes. Based on manual classifications, Pook et al. (2012)432

also found that fronts were responsible for most winter rainfall.433

Water isotopes show a weaker dependence on synoptic type than precipitation it-434

self, but a relationship nevertheless exists (Fig. 5e and 5f). For δ18O, frontal rainfall shows435

a trend towards lower δ18O and higher d after the passage of the front, seen in the top436

row of these figures. Another pattern revealed by the SOM is that non-frontal rainfall437

is lower in δ18O. Trends in d (Fig. 5f) are in the opposite direction, with the non-frontal438

class A5 having higher d than the frontal rainfall classes A1-A3.439

These observations are consistent with other studies (Treble, Budd, et al., 2005;440

Barras & Simmonds, 2008) which have demonstrated, in the Australian region, that dif-441

ferent types of synoptic systems can have distinct isotopic signatures, an effect which is442

replicated at sites elsewhere in the world (Baldini et al., 2010; Scholl et al., 2009). In par-443

ticular, the anomalously low rainfall δ18O observed from intense low pressure systems444

lying off the eastern coast of Australia (Crawford et al., 2017) is a similar finding to the445

low δ18O and intense rainfall seen in classes A6 and A7.446

The SOM analysis, while showing an association between synoptic types and iso-447

topes, does not by itself identify the reasons behind the association. Furthermore, although448

there is a relatively large difference between frontal and non-frontal rainfall, δ18O dif-449

fering by 1–1.7h, this difference is not large enough to explain the year-by-year variabil-450

ity (Fig. 3). Year-by-year changes can reach 1h, meaning that rainfall would need to451

switch from almost exclusively frontal rainfall to non-frontal to explain the changes in452

annual mean δ18O, and this is not something which is observed. In the next section, up-453

stream conditions, diagnosed from dispersion modelling, are combined with site-based454

observations and synoptic types to gain more insight into the underlying processes.455

4.5 Generalized additive model for δ18O456

Generalized additive models (GAMs) trained to predict daily rainfall δ18O are shown457

in Fig. 6. These curves are the model’s ‘smooth terms’, that is the smooth functions ex-458

pressing the relationship between predictor variables and the response variable. Two mod-459

els are shown, one with synoptic types (trained on data from the wet months, April–October)460

and another without synoptic types (trained on data from the entire year). In this fig-461

ure, smooth terms are ordered according to how much they improve the daily mean-square462

error. This, and other metrics for judging the importance of terms, is shown in Fig. 7.463

For predictions of daily δ18O, the most important smooth terms in this model are:464

the locally-recorded rainfall intensity, P ; the mean rainfall intensity along the backwards465

plume, P ; then source humidity, hs relative to the sea surface temperature. Local rain-466

fall intensity is the best predictor of daily δ18O, the seasonal cycle, and year-to-year vari-467

ability (Fig. 7), it follows a relationship which is close to δ18O ∝ log (P ). Adding the468

rainfall intensity, along the backwards plume, improves the model’s fit to interannual vari-469

ability, by almost as much as P , but does not affect its fit to the seasonal cycle. The third470

term, hs is defined as the humidity in the evaporation region relative to the sea surface471
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Figure 6. Categorical and smooth terms for a GAM predicting daily δ18O. The categorical

term is shown first, then smooth terms are shown in order of importance. Error bars or shading

indicate the 95% confidence interval. Upward ticks on the x-axis of each plot indicate mea-

surements and black dashed lines show other relationships: B logP , an empirical fit; D kinetic

fractionation (Merlivat & Jouzel, 1979; Benetti et al., 2014); E δ18O latitudinal variation in In-

dian Ocean surface waters (LeGrande & Schmidt, 2006); F, G equilibrium fractionation factor

dependence on temperature (Horita & Wesolowski, 1994).
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Figure 7. Prediction accuracy of GAM: A δ18O predictions; B like A, but the additional

‘synoptic type’ predictor; C d predictions; D like C, but with synoptic types. Plots show the

improvement in the cross-validated mean squared error (MSE) due to the addition of a predic-

tor, compared with a simpler model which does not include that predictor. The simplest model,

which begins the sequence, is a model which predicts the mean. MSE is normalized the by MSE

of the ‘constant value’ model. In each category, three precipitation-weighted groupings are con-

sidered: 1. the ungrouped daily data; 2. monthly groups for a composite year; and 3. annual

totals.
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temperature. It is calculated from atmospheric properties within the lowest model level472

and weighted by evaporation rate. Source humidity is important for the δ18O seasonal473

cycle, but not interannual variability. Even more than that, the inclusion of hs increases474

the model error for the prediction of interannual variability.475

Remaining terms do not make a major difference to the model’s predictive abil-476

ity at interannual scales (Fig. 7). Nevertheless, the starting latitude and longitude of the477

plume, along with the source temperature and backwards-plume overland fraction, are478

detected in the model as having an influence on δ18O, and are discussed further in Sect. 5.479

Despite being statistically-significant, including synoptic types as a predictor vari-480

able does not appreciably improve the overall model performance (Fig. 7), suggesting481

that synoptic types contain redundant information already contained in the smooth terms.482

The shape of the smooth terms is also insensitive to the presence of synoptic types, as483

seen in Fig. 6 where the GAM with synoptic types has similar smooth terms to the GAM484

without. There are also similarities in the patterns of Fig. 6a, which show the effect of485

synoptic type marginalized for the effect of other variables, to the patterns in Fig. 5e which486

showed the mean δ18O in each synoptic type.487

A comparison of GAM predicted δ18O with observed timeseries is shown in Fig. 8a488

and 8b showing that the GAM successfully tracks δ18O interannual variability and the489

seasonal cycle.490

In summary, the combination of the GAM analysis with synoptic types supports491

the conclusions of earlier studies which have found that isotopic composition is related492

to synoptic types, but it also shows that there are underlying continuous variables which493

explain the isotopic composition, for this region, without needing to incorporate synop-494

tic types. The continuous predictor variables have the advantages that they can be used495

in all months of the year and are less likely to cause over-fitting.496

4.6 Generalized additive model for deuterium excess497

Rainfall d differs from δ18O both in terms of which predictors are important, and498

how well a GAM trained on daily data is able to predict interannual variability. As with499

δ18O, a GAM was trained using daily data and then used to predict aggregate values over500

longer periods. This process was repeated with another GAM which included synoptic501

types.502

The leading predictor of daily d is source humidity relative to saturation at the sea503

surface, hs. This is followed by source temperature, Ts, site temperature (daily maxi-504

mum temperature at Calgardup Cave from a gridded data set; Jones et al., 2009), and505

rainfall intensity, P . Compared with hs, the remaining terms only weakly improve the506

MSE at the daily scale (Fig. 7c), but only the inclusion of P is able to improve the annual-507

mean predictions, relative to a prediction of constant d.508

The effect of adding synoptic types to the d model, which also means restricting509

the model to rainy months, is shown in Fig. 7d. Synoptic types, although statistically510

important according to the REML test, fail to improve the cross-validated MSE at the511

daily or interannual time scales. As with δ18O, the information introduced to the model512

by the synoptic types is redundant, and reduces the cross-validated performance of the513

model, possibly because the large number of categories promotes over-fitting.514

Of all the factors in this analysis, however, it is the source humidity which stands515

out. It is strongly linked to d at the daily scale, it is apparently the main driver of the516

observed seasonal cycle, but using it to predict interannual variability produces a very517

poor model—one which has a larger error than a model without hs. When plotted along-518

side observations, the annual mean predictions of d (Fig. 8c) show that, in contrast to519

the case of δ18O, the GAM is unable to follow the overall increasing trend in observed520
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Figure 8. Precipitation-weighted GAM predictions versus observations: A annual δ18O; B

seasonal δ18O; C annual d; and D seasonal d. Error bars show the 95% confidence interval from

bootstrapping daily values.

rainfall d, even though it is largely successful at reproducing the seasonal cycle. The GAM521

predictions start above the observations and then are biased low by the end of the ob-522

servation period (model residuals are shown more clearly in Fig. S4). An explanation523

for this apparent contradiction is that there is a missing term which is correlated with524

both hs and d at the annual-mean timescale.525

5 Discussion526

5.1 Physical processes driving δ18O527

The predictor variables with the strongest link to rainfall δ18O were rainfall inten-528

sity, observed at the site, P , and rainfall intensity modelled along the backwards plume,529

P . These two predictors are only moderately correlated (R = 0.30, 95% CI [0.25, 0.35])530

meaning that they are statistically different enough to represent different underlying pro-531

cesses, and yet they are conceptually similar enough to be driven by a single process. If532

both P and P are driven by the same process, this is likely a modified version of Rayleigh533

distillation (Eriksson, 1965).534

During idealized Rayleigh distillation, an airmass is continually cooled, condensate535

forms in isotopic equilibrium with the vapor, this condensate is immediately removed536

from the system by rainout, and δ18O of the remaining vapor can be expressed as func-537

tion of the fraction of remaining moisture. But in the case of coastal rainfall, the sys-538

tem departs from the ideal in several ways. It is possible for moisture to be continually539

renewed by evaporation from the ocean (Moore et al., 2014), rainfall is not instantaneously540

removed allowing for partial evaporation of rainfall below the cloud base and recycling541

of moisture (Lee & Fung, 2008), and there is three-dimensional transport within synop-542

tic systems which differs from the idealized model (Dütsch et al., 2016). Although the543
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Figure 9. Smooth terms for GAM predicting daily d. Other relationships shown are: B em-

pirical hs relationship (Pfahl & Sodemann, 2014); C empirical Ts relationship (Bonne et al.,

2019, dashes) and the effect of the temperature dependence of equilibrium fractionation factors

(Horita et al., 2008, dots); D the effect of the temperature dependence of equilibrium fraction-

ation factors applied to raindrops (Horita et al., 2008); E Xia and Winnick (2021) subcloud

evaporation model with raindrop diameter at cloud base of 0.6 mm and 2.6 mm (surface tem-

perature 18 ◦C, surface humidity 60%); F Xia and Winnick (2021) subcloud evaporation model

humidity dependence (raindrop diameter 2.1 mm, surface temperature 18 ◦C); H indicative range

of d observed in surface waters in the Atlantic Ocean (Bonne et al., 2019) and modelled in the

Indian Ocean (Xu et al., 2012); I parameterization from Merlivat and Jouzel (1979) at hs = 0.6

(Benetti et al., 2014).
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observations are not comprehensive enough to draw strong conclusions, they are consis-544

tent with the interpretation that P is correlated with past rainout, and hence Rayleigh-545

type processes, as well as being directly indicative of the importance of local post-condensation546

processes. The preferential rainout of heavy isotopes upstream of Calgardup Cave is closely547

related to P , but this parameter is only available via model output and therefore has a548

large error. The fact that P has predictive power, almost as much as P at the interan-549

nual timescale despite being derived from model output, indicates that past rainfall is550

important.551

Another way of considering the role of Rayleigh distillation is through the so-called552

continental effect (Winnick et al., 2014) which often appears as an important term driv-553

ing δ18O (Good et al., 2014, e.g.). Here, the fraction of the backwards plume over land,554

fl (calculated after 3 h of travel), shows that airmasses which have spent more time over555

land have lower δ18O, meaning that the trend in our results is consistent with isotopic556

depletion driven by rainout. On the whole, fl is of only minor importance because the557

vast majority of trajectories do not pass over land before arriving at the rainfall site. Just558

over 90% of backwards plumes spend less than 0.1% of their time over land within 12 h559

of arrival. Because of the lack of overland trajectories in the data, it is unlikely that the560

GAM has been able to learn an accurate relationship, or be able to generalize well to in-561

land sites, but the presence of a relationship between δ18O and fl indicates that rain-562

out is able to drive depletion, making it likely that this process plays a role in the sen-563

sitivity of δ18O to rainfall intensity.564

This sensitivity to rainfall intensity acts on a timescale of individual storms. When565

aggregated from daily to monthly precipitation-weighted values, rainfall intensity has a566

stronger association with δ18O than does total monthly precipitation. This is in agree-567

ment with Fischer and Treble (2008) who studied monthly δ18O data from Perth and568

a short record of daily measurements from Cape Leeuwin. Also similar is that Fischer569

and Treble (2008) found a nonlinear relationship between precipitation and δ18O, using570

δ18O ∝ P
1
2 . In our data set, due to scatter, δ18O ∝ P

1
2 fits the data almost as well571

as δ18O ∝ log(P ), and we plot the log form mainly out of preference because of its ap-572

pearance in Rayleigh distillation and also the use of a log transformation when δ18O is573

regressed against moisture residence time, τ . Aggarwal et al. (2012) found that δ18O ∝574

τ = log(Q/P ) where Q is the total column water vapor and P is the long-term mean575

precipitation rate. In our data, variability in Q is small enough that log(P/P0) is strongly576

correlated with τ so there is no advantage in changing variables to τ (R = −0.94, 95%577

CI [−0.95,−0.93], Q from ERA-Interim).578

Besides processes which happen during rainfall or in-transit, the properties of source579

moisture are also potential drivers of variability, and some of these are identified by the580

GAM. Source humidity, hs affects δ18O through kinetic fractionation. The relationship581

determined by the GAM is similar to the expression for kinetic fraction used by Benetti582

et al. (2014), as shown by the dashed line in Fig. 6d. In contrast, the relationship be-583

tween latitude and δ18O (Fig. 6e) does not follow the meridional variation in Indian Ocean584

surface water δ18O (LeGrande & Schmidt, 2006). Fischer and Treble (2008) also reported585

a difference in δ18O between airmasses travelling equatorward or poleward, but our re-586

sults suggest that isotopic differences in the source waters are not responsible, meaning587

that perhaps it is the atmospheric δ18O values at the beginning of the backwards plume588

which is important. This is plausible because of a strong and persistent meridional gra-589

dient in mean atmospheric δ18O, with higher values towards the pole, which is a large590

driver of isotopic variability in idealized simulations (Dütsch et al., 2016). There are also591

several co-varying parameters which may obfuscate the direct effect of source water δ18O;592

latitude is strongly correlated with the oceanic source temperature (R = 0.91 95% CI593

[0.9, 0.92]), wind speed (R = −0.61 95% CI [−0.64,−0.57]), and humidity (R = 0.34594

95% CI [0.28, 0.39]).595
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Also present in the GAM is the evaporation-weighted sea surface temperature, Ts.596

As indicated by the dashed line in Fig. 6g, this term is consistent with the temperature597

dependence of equilibrium fractionation of water vapor from the ocean surface (Majoube,598

1971; Horita & Wesolowski, 1994). Fortuitously, and despite the presence of latitude in599

the model, the smooth term in the GAM matches the slope of the theoretical relation-600

ship very well.601

5.2 Physical processes driving deuterium excess602

The strongest predictor of daily d is the source humidity, hs, although the relation-603

ship between d and hs shows a lower slope (−30 h) than seen in studies of water vapor;604

the dashed line in Fig. 9b shows a typical slope of −54 h (Pfahl & Sodemann, 2014).605

There are three potential explanations for this. First, this difference may be due to un-606

certainty in the hs estimate. The standard deviation of the difference between FLEX-607

PART and FLEXPART-WRF derived values, accounting for part of the uncertainty, is608

0.04 which is large enough, based on tests with synthetic data, to reduce the slope of the609

line of best fit. Second, low humidity air during rainfall (small h) causes strong re-evaporation610

of rainfall (Risi et al., 2008). At this coastal site, h is moderately correlated with hs (us-611

ing modelled h, since hs is model-derived, R = 0.31 95% CI [0.26, 0.36]), so the two ef-612

fects together act to reduce the observed slope between hs and d. Third, the slope be-613

tween d and hs may be a genuine trait of the source region. Steen-Larsen et al. (2014)614

report a flatter slope for the d ∼ hs relationship, with a slope of −42.6 h, and Aemisegger615

and Sjolte (2018) demonstrate the d ∼ hs slope varies by region. Even accounting for616

regional variation however, −30 h is sufficiently outside the range of other observations617

that a combination of the other factors too, hs uncertainty or h ∼ hs correlation, is likely618

to be important.619

The effect of other sea surface parameters, temperature, Ts, and wind speed, u10,620

have been investigated in the past and their importance is still debated. Uemura et al.621

(2008) reported a positive correlation between d and Ts in field measurements, in agree-622

ment with Bonne et al. (2019), whereas Pfahl and Sodemann (2014) argue that the Ts623

is of minor importance compared with hs. Figure 9d shows that our data do indicate a624

positive correlation between d and Ts for Ts < 20◦C. The relationship between u10 and625

d is weak in the GAM (Fig. 9i), and arguably inconsistent with the Merlivat (1978a) re-626

lationship, in which kinetic fractionation, and hence d in evaporation, is lower at high627

wind speeds. In their parameterization, low wind speeds below about 7 ms−1 correspond628

to a smooth regime (and higher d) whereas high wind speeds are modelled by a rough629

regime (with lower d) (Merlivat & Jouzel, 1979). The u10 relationship here is too weak630

to match the parameterization, and it weakens further when synoptic types are included.631

These findings are in agreement with other recent studies which have found that the Merlivat632

(1978a) parameterization is not directly applicable to field observations. Benetti et al.633

(2014) present data which lies between the rough and smooth regimes, Steen-Larsen et634

al. (2014) find no statistical difference in d in low versus high winds, and Bonne et al.635

(2019) also find there to be no effect on d from wind speed, with their data being best636

explained by the rough regime of the Merlivat and Jouzel (1979) model. Considered in637

the context of these other studies, then, the existence of a strong relationship between638

d and u10 seems unlikely.639

Variability in d is also driven by the latitude of origin, which may either be linked640

to meridional variations in oceanic d or meridional variations in atmospheric d. Figure 9h641

shows that the change in d with latitude is much larger than observed and modelled vari-642

ations in surface waters, meaning that atmospheric processes are more likely to be re-643

sponsible.644

Besides the conditions at the moisture source, a second driver of d is the post-condensation645

re-evaporation of droplets in the subcloud layer. The re-evaporation model of Xia and646
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Winnick (2021) is used for comparison with the GAM smooth terms, showing that the647

increase in d as a function of rainfall intensity is consistent with subcloud reevaporation.648

The model is a reasonable match to the smooth term when physically reasonable rain-649

drop diameters of 0.6 and 2.6 mm are assumed for rain rates of 2 and 50 mm day−1 (Fig. 9e).650

In contrast, a calculation using the same model of the relationship between d and sur-651

face humidity (based on humidity at the surface measured at 1500 local time) does not652

even match the sign of the relationship between d and (Fig. 9g). This is likely to be the653

result of the predictor variable, based on dewpoint temperature at 1500 local time, be-654

ing a poor stand in for the humidity which is actually experienced during rainfall, which655

happens at an unknown time each day and over a relatively deep atmospheric layer be-656

tween the cloud base and surface.657

5.3 Generalizability of the model658

As a test of the model’s performance away from the observation site, predictions659

of δ18O for Perth Airport were computed based on observed daily rainfall and FLEX-660

PART backwards plumes terminating at Perth Airport on each rain day. Only δ18O was661

analyzed in detail, since the model was unable to reproduce interannual variations in d662

over the monitoring period at Calgardup Cave. GAM predictions were clipped to the663

range of observations to prevent extrapolation errors. In particular, on days with less664

than 2 mm of rainfall δ18O was set to the same value as if 2 mm of rainfall was observed.665

This was necessary because many of the monthly accumulations included a nontrivial666

contribution from days with light rainfall.667

When compared with monthly δ18O observations, the GAM performed well dur-668

ing the wet months but had large errors during the dry months (Fig. S5). On some oc-669

casions, this was because of highly depleted rainfall sourced from the ocean off the north-670

west coast of Western Australia which had made a long transit over land. In general, the671

failure of the model to perform well during the summer months can be attributed to a672

lack of summer rainfall in the training data. The stronger influence of tropical processes673

in summer, on Perth rainfall, may also play a role.674

When aggregated to annual data, the poor performance during dry months becomes675

inconsequential and the model generalizes well; performance in Perth shows a similar pre-676

dictive skill to Calgardup Cave (Fig. S6). Furthermore, the GAM is able to reproduce677

the offset in mean δ18O observed between Perth and Calgardup Cave. To reproduce the678

offset, the model needs to include rainfall intensity, rainfall along the backwards plume,679

source humidity, and source latitude. In particular, the difference in rainfall intensity be-680

tween Perth and Calgardup Cave is only responsible for about 10% of the offset. The681

good performance of the model for the Perth observations makes it likely to be suitable682

for the interpretation of longer-term data from the coastal zone between Calgardup Cave683

and Perth.684

For deuterium excess, GAM predictions at Perth Airport show a similar error to685

the Calgardup Cave timeseries tending to have a low bias at the start of the observation686

period and a high bias towards the end.687

5.4 Interpretation of water isotopes in paleoclimate studies688

Based on data from the 13 year observing period, this study confirms that rain-689

fall intensity is a primary driver of δ18O in precipitation. The nonlinear relationship can690

be approximated as691

δ18O =

{
α log (P/P0) + β, P ≥ 2 mm day−1

−2.05h, P < 2 mm day−1,
(3)

where P0 = 1 mm day−1, α = −2.85h, and β = −1.19h. Importantly, years with692

more intense rainfall are not necessarily wetter overall. In our data, rainfall intensity (pre-693
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Figure 10. Speleothem MND-S1 from Moondyne Cave δ18O (Treble, Chappell, et al., 2005)

compared with A rainfall δ18O inferred from Boyanup rainfall intensity, B Boyanup annual rain-

fall, C rainfall δ18O inferred from Cape Naturaliste rainfall intensity, D Cape Naturaliste annual

rainfall. A lag of 7 yr and smoothing with a 5 yr rolling mean has been applied to the inferred

δ18O timeseries for comparison with the lower resolution speleothem record which contains both

analytical smoothing and attenuation due to karst flow paths. The y-axis for annual total rainfall

is inverted to facilitate comparison with the speleothem δ18O values.

cipitation weighted) has no significant correlation with annual rainfall (R = 0.23, 95%694

CI [−0.37, 0.69]).695

In Fig. 10 we use 100 yr records of daily rainfall, along with Eq. (3), to hindcast696

the δ18O timeseries at Boyanup and Cape Naturaliste and compare the δ18O hindcast697

to a speleothem record from Moondyne Cave to the south (Treble, Chappell, et al., 2005).698

Although not the closest observation stations to the cave where the speleothem was col-699

lected, these are high quality stations (Lavery et al., 1997) in the Australian network (lo-700

cations shown in Fig. 1) meaning they are sites with long observation records and have701

been screened for spurious trends. To generate the hindcast, we used only days marked702

in the record as single-day accumulations, and checked for a weekday dependence to avoid703

some known quality problems in the Australian record (Viney & Bates, 2004).704

Although taking only the leading predictor into account, rainfall δ18O inferred from705

the Boyanup record displays an intriguing similarity to the Moondyne Cave record, par-706

ticularly the period of relatively higher speleothem δ18O from 1930–55 and the upwards707

shift from the mid 1970s. There is also a marked similarity when rainfall intensity is taken708

from the Cape Naturaliste record, although with a divergence during the 1930–55 pe-709

riod. The disagreement which remains may be the result of nonlinear filtering caused by710

karst hydrological processes, which has only been accounted for crudely here by a com-711

bination of temporal averaging and introducing a time lag. Indeed, the time lag, of 7 years,712

is longer than suggested by the field evidence which perhaps indicates that uncertain-713

–23–



manuscript submitted to JGR: Atmospheres

ties in the chronology play a role (Nagra et al., 2016, approx. 5 yr). Another complica-714

tion is that changes in rainfall intensity, inferred from the instrumental record (Philip715

& Yu, 2020), are not spatially smooth and, as demonstrated in Fig. 3, even at the an-716

nual scale the δ18O timeseries is sensitive to the heaviest events which would impact sites717

differently, even over short spatial scales.718

Supporting the interpretation that rainfall intensity is key to determining δ18O, on719

daily through to decadal timescales, the trends in annual rainfall accumulations show720

a weaker relationship with δ18O (Fig. 10c and 10d). Post 1970, for the Boyanup hind-721

cast, a drying trend coincides with an upwards shift in speleothem δ18O. This may be722

a sign that the interaction between karst hydrology and δ18O changes as the system dries723

out, but needs detailed investigation before making firm conclusions. A sustained change724

in intense rainfall events could be further amplified by karst flowpaths as intense rain-725

fall events are likely to be more effective at initiating recharge of karst stores (Treble et726

al., 2013).727

In the case of deuterium excess, the interpretation of multidecadal records in this728

region continues to be hampered by an incomplete understanding of governing processes.729

The strongest predictor on a daily scale, source humidity, makes model predictions worse730

on an interannual scale. Out of the predictors that we considered, rainfall intensity, mea-731

sured at the collection site but not along the backwards plume, has the strongest effect732

on d. This driver is consistent with subcloud re-evaporation being important for driv-733

ing interannual variability and, if this relationship holds over longer timeseries, it would734

drive an anticorrelation between d and δ18O. Such an anticorrelation was indeed reported735

by Priestley et al. (2020), in a 35 ka groundwater record, which indicates that the ob-736

served relationships between δ18O, d, and P may also be present over much longer time737

scales.738

6 Conclusions739

Water isotopes in precipitation were measured daily over thirteen years (2006–2018).740

Daily variability was found to be superimposed on weaker low-frequency trends which741

were driven by anomalous conditions in the first three years of monitoring: δ18O decreases742

by 0.06±0.03 hyr−1 and d increases by 0.24±0.07 hyr−1, and trends tend to weaken743

or reverse in the second half of the monitoring period. The factors which drive δ18O and744

d variability, on a range of timescales, were investigated using generalized additive mod-745

els (GAMs), with upstream conditions diagnosed with backwards dispersion modelling746

and synoptic types determined using a statistical method. Although water isotopes demon-747

strated an association with synoptic types, these were ultimately not a strong driver of748

variability because, we infer, the synoptic types contained redundant information which749

was better expressed by continuous values derived from backwards-plume diagnostics.750

Daily variability in δ18O was driven primarily by rainfall intensity, both at the mea-751

surement site and upstream, in agreement with the main finding of Fischer and Treble752

(2008), which was based on a smaller data set. The δ18O seasonal cycle was driven by753

seasonal changes in both rainfall intensity and source humidity. The relationship between754

rainfall intensity, at a daily scale, and δ18O was robust. It applied at both the primary755

measurement station, Calgardup Cave, and to monthly accumulations from Perth Air-756

port. The relationship also appears to be robust over longer time periods, as shown by757

projecting the δ18O ∝ log(P/P0) relationship back through the ∼ 100 yr period with758

rainfall observations and comparing to a speleothem record. Because of the relationship759

between rainfall intensity and δ18O, annual accumulations of δ18O are more sensitive to760

the heaviest rainfall events each year than annual accumulated rainfall is, which has im-761

plications both for the interpretation of δ18O records and for how much nearby sites can762

be expected to agree with each other.763
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The behavior of d differed from δ18O in several ways. On a daily scale, variabil-764

ity was driven primarily by hs, although with a flatter slope than reported in studies of765

water vapor. The d seasonal cycle was also well explained mainly by hs, with a weaker766

contribution from rainfall intensity. In contrast, year-to-year changes in hs failed to ex-767

plain the interannual signal in precipitation-weighted annual mean d, with the implica-768

tion that multidecadal, or longer, records of d should not be interpreted as a straight-769

forward proxy record of hs in this region. Furthermore, the link between rainfall inten-770

sity and d was too weak to drive the observed changes in d, meaning that the driver for771

low-frequency changes in d was not fully explained. Further investigation of d is warranted772

because d has other desirable properties; d is not as sensitive as δ18O to extreme events,773

and there is a low-frequency signal in the observations at both Calgardup Caves and Perth774

which may be climate-related; meaning that the d signal carries information which sup-775

plements δ18O.776
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