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Abstract

Few studies have utilized machine learning techniques to predict or understand the Madden-Julian oscillation (MJO), a key

source of subseasonal variability and predictability. Here we present a simple framework for real-time MJO prediction using

shallow artificial neural networks (ANNs). We construct two ANN architectures, one deterministic and one probabilistic,

that predict a real-time MJO index using maps of tropical variables. These ANNs make skillful MJO predictions out to ˜17

days in October-March and ˜10 days in April-September, outperforming conventional linear models and efficiently capturing

aspects of MJO predictability found in more complex, dynamical models. The flexibility and explainability of simple ANN

frameworks is highlighted through varying model input and applying ANN explainability techniques that reveal sources and

regions important for ANN prediction skill. The accessibility, performance, and efficiency of this simple machine learning

framework is more broadly applicable to predict and understand other Earth system phenomena.
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Key points 16 

1. Simple machine learning models are an efficient, flexible tool to predict and study the 17 

Madden-Julian oscillation (MJO) 18 

2. Shallow neural networks skillfully predict an MJO index out to ~17 days in winter and ~10 19 

days in summer, outperforming linear models 20 

3. Varying ANN input and using explainable artificial intelligence methods offer insights into 21 

the MJO and key regions for prediction skill  22 
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Abstract: Few studies have utilized machine learning techniques to predict or understand the 23 

Madden-Julian oscillation (MJO), a key source of subseasonal variability and predictability. Here 24 

we present a simple framework for real-time MJO prediction using shallow artificial neural 25 

networks (ANNs). We construct two ANN architectures, one deterministic and one probabilistic, 26 

that predict a real-time MJO index using maps of tropical variables. These ANNs make skillful 27 

MJO predictions out to ~17 days in October-March and ~10 days in April-September, 28 

outperforming conventional linear models and efficiently capturing aspects of MJO predictability 29 

found in more complex, dynamical models. The flexibility and explainability of simple ANN 30 

frameworks is highlighted through varying model input and applying ANN explainability 31 

techniques that reveal sources and regions important for ANN prediction skill. The accessibility, 32 

performance, and efficiency of this simple machine learning framework is more broadly applicable 33 

to predict and understand other Earth system phenomena.  34 
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Plain Language Summary: The Madden-Julian oscillation (MJO) – a large-scale, organized 35 

pattern of wind and rain in the tropics – is important for making weather and climate predictions 36 

weeks to months into the future. Many different numerical models have been used to study the 37 

MJO, but few works have examined how machine learning and artificial intelligence methods can 38 

predict and understand the oscillation. In this work, we show how two different types of machine 39 

learning models, called artificial neural networks, perform at predicting the MJO. We demonstrate 40 

that simple artificial neural networks make skillful MJO predictions beyond 1-2 weeks into the 41 

future, and perform better than other statistical methods. We also highlight how neural networks 42 

can be used to explore sources of prediction skill, via changing what variables the model uses and 43 

applying techniques that identify important regions important for skillful predictions. Because our 44 

neural networks perform relatively well, are simple to implement, are computationally affordable, 45 

and can be used to inform scientific understanding, we believe these methods are more broadly 46 

applicable to study other important climate phenomena aside from just the MJO.  47 
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1. Introduction 48 

 The Madden-Julian oscillation (MJO), a planetary-scale, eastward-propagating coupling of 49 

tropical circulation and convection (Madden and Julian 1971, 1972; Zhang 2005), is a key source 50 

of subseasonal-to-seasonal (S2S) predictability (Vitart et al. 2017; Kim et al. 2018). Skillful MJO 51 

prediction has important societal implications (Meehl et al. 2021; Vitart et al. 2017; Kim et al. 52 

2018), and extensive research has explored using both statistical models and initialized dynamical 53 

forecast models to predict the MJO (e.g. Waliser 2012; Vitart et al. 2017; Kim et al. 2018; Meehl 54 

et al. 2021; and references therein). Before the late 2000s, statistical models showed superior MJO 55 

prediction skill (~2 weeks; Waliser 2012; Kang and Kim 2010) compared to dynamical models, 56 

but S2S forecast models have continually improved and several now skillfully predict the MJO 57 

beyond one month (Vitart 2014; Vitart 2017; Kim et al. 2018).  58 

In contrast, statistical MJO modeling has stagnated in recent years. Compared to dynamical 59 

models, statistical MJO models have the advantage of being computationally and are often much 60 

simpler to formulate and in some cases understand. To date, the most common statistical MJO 61 

models use linear methods (e.g. Maharaj and Wheeler 2005; Jiang et al. 2008; Seo et al. 2009; 62 

Kang and Kim 2010; Marshall et al. 2016; Kim et al. 2018), and applying new statistical tools to 63 

study or predict the MJO, including especially non-linear machine learning (ML) techniques, 64 

remains a nascent research topic. ML techniques have proven skillful at predicting a variety of 65 

other climate and weather phenomena (Gagne et al. 2014; Lagerquist et al.2017; McGovern et al. 66 

2017; Weyn et al. 2019; Rasp et al. 2020; Ham et al. 2019; Mayer and Barnes 2021), and 67 

application of ML methods to study the MJO may thus improve the ability to forecast the 68 

oscillation or related S2S processes (e.g. Mayer and Barnes 2021).  69 
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Studies using machine learning to study the MJO have identified the MJO (Toms et al. 70 

2019), reconstructed past MJO behavior (Dasgupta et al. 2020), or bias-corrected dynamical model 71 

output of MJO indices (Kim et al. 2021), but only one study to our knowledge has examined MJO 72 

prediction solely using ML (Love and Matthews 2009). It is thus timely to establish ML 73 

frameworks for predicting the MJO and quantify ML model performance compared to other 74 

statistical and dynamical models. This work further helps demonstrate how simple ML models 75 

may be used for more than just prediction. While prediction skill is an undeniably important metric 76 

for model performance, simple ML models are also flexible tools that invite experimentation and 77 

can inform physical understanding of climate processes like the MJO. We highlight this under-78 

appreciated aspect of ML modeling here through experiments changing model input, the 79 

exploration of both deterministic and probabilistic ML model architectures, and the application of 80 

tools from the field of explainable AI (XAI; McGovern et al. 2019; Toms et al. 2020; Mamalakis 81 

et al. 2021).  82 

This paper thus addresses three aspects of using machine learning to study the MJO: (1) 83 

developing ML frameworks, (2) analyzing ML model performance, and (3) demonstrating how 84 

ML can inform scientific understanding. We prioritize simple techniques (i.e. shallow, fully-85 

connected artificial neural networks; ANNs) to establish a benchmark for future ML modeling, to 86 

ensure our approach is broadly accessible to the climate community, and to facilitate applying XAI 87 

tools. We view this work as a starting point upon which future machine learning studies focused 88 

on the MJO may build. Further, the concept and methods we describe are widely transferable to 89 

other areas in Earth science, and may help inform simple ML modeling of other climate 90 

phenomena. Section 2 describes the data used in this study. Section 3 describes the ANN models, 91 
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an ANN explainability method, the linear models we compare the ANN to, and how model skill 92 

is assessed. Section 4 describes our results, and Section 5 provides a summary and conclusion. 93 

2. Data 94 

 The predictors of our ANN models are latitude-longitude maps of processed tropical 95 

variables from 20°N-20°S. The predictand is the observed Real-time Multivariate MJO index 96 

(“RMM”; Wheeler and Hendon 2004) which tracks the MJO using an empirical orthogonal 97 

function analysis of outgoing longwave radiation (OLR), and zonal wind at 850 and 200 hPa. The 98 

index consists of two time series (“RMM1” and “RMM2”) that represent the strength and location 99 

of the MJO. Plotted on a 2-D plane, the RMM phase angle describes the location, or “phase”, of 100 

the MJO (e.g. Figure 1), while the RMM amplitude (√𝑅𝑀𝑀1! 	+ 	𝑅𝑀𝑀2!) measures MJO 101 

strength. RMM has known limitations (Roundy et al. 2009; Straub 2013) and other MJO indices 102 

exist (e.g. Kikuchi et al. 2012; Ventrice et al. 2013; Kiladis et al. 2014), but RMM represents a 103 

logical starting point in this work as it is a widely-used, benchmark MJO index suitable for real-104 

time forecasts. 105 

The tropical input data are from three sources: OLR is from the NOAA Interpolated OLR 106 

dataset (Liebmann and Smith 1996), sea-surface temperature (SST) is from the NOAA OI SST V2 107 

High Resolution dataset (Reynolds et al. 2007), and all other variables are from ERA-5 reanalysis 108 

(Hersbach et al. 2020). Additional data from the ERA-20C dataset (Poli et al. 2016) is used in the 109 

Supplemental Material, as described therein. We use daily mean data from January 1, 1979 (1982 110 

for SST) to December 31, 2019 that are interpolated onto a common 2.5° x 2.5° grid.  111 

ANN input data are pre-processed in a similar way to that of the RMM input variables 112 

(Wheeler and Hendon 2004). We subtract the daily climatological mean, first three seasonal-cycle 113 

harmonics, and a previous 120-day mean from each point. Variables are not averaged latitudinally 114 
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because we are interested in how the 2-D structure is utilized by the ANNs (sensitivity tests 115 

exploring latitudinal averaging are discussed in Supplemental Material). We also normalize each 116 

variable by subtracting the tropics-wide, all-time mean and dividing by the tropics-wide, all-time 117 

standard deviation at each grid point. Tests normalizing each grid point individually showed 118 

similar results (not shown). 119 

 The input data are divided into training, validation, and testing periods. Training data is 120 

used to find the weights/coefficients of the statistical models presented below, validation data is 121 

used when tuning model performance, and test data is set aside until the final models are settled 122 

upon. Here the training period is from June 1, 1979 to December 31, 2009; the validation data is 123 

from January 1, 2010 to December 31, 2015; and the testing is from January 1, 2016 to November 124 

30, 2019. Results from the validation and testing period are shown together in the manuscript.  125 

In Section 4, where sensitivity of the model to the phase of the stratospheric quasi-biennial 126 

oscillation (QBO; Ebdon 1960; Reed et al. 1961; Baldwin et al. 2001) is shown, we define the 127 

QBO using the monthly, 10°N/S-mean, zonal-mean zonal wind at 50 hPa (U50). Months where 128 

U50 is less than the mean minus half a standard deviation are defined as QBO easterly phases, and 129 

months greater than half a standard deviation from the mean are QBO westerly phases (e.g. Yoo 130 

and Son 2016; Son et al. 2017). 131 

3. Machine Learning and Linear Statistical MJO Models 132 

 Here we first discuss the two types of artificial neural networks (ANNs) and an ANN 133 

explainability technique used in this study. We then describe three conventional statistical MJO 134 

models used in prior studies (Maharaj and Wheeler 2005; Jiang et al. 2008; Kang and Kim 2010; 135 

Marshall et al. 2016) that we compare to the ANNs. We conclude with a brief discussion of how 136 

model forecasts are evaluated. 137 
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3.1. Artificial Neural Networks 138 

3.1.1. ANN Input, Output, and Architecture 139 

 We explored two ANN architectures to study the MJO: a “regression model” and a 140 

“classification model” (see summary schematic Figure 1). Both ANN architectures input the 141 

processed latitude-longitude maps from a single day, and output information about the RMM index 142 

N days into the future (Figure 1). Note that inputting tropical maps into the ANN is distinct from 143 

the majority of statistical MJO models, which typically input values of the RMM index or a limited 144 

number of principal components (Jiang et al. 2008; Kang and Kim 2010; Waliser 2012). Using the 145 

ANNs in this manner allows the 2-dimensional structure of a range of different combinations of 146 

input variables to be used in the model. In this work we focus on ANNs that input between 1 and 147 

3 different variables. In particular, in this section and Section 4.1 we use ANNs that input three 148 

variables simultaneously: OLR, zonal wind at 850 hPa, and zonal wind at 200 hPa (Fig. 1). This 149 

combination is among the best-performing across the experiments we conducted and uses the 150 

variables that comprise RMM. Exploration of other variables is described in more detail in Section 151 

4.2. 152 

For both regression and classification ANN architectures, a separate ANN is trained for 153 

each lead time N from 0 to 20 days. The difference between the regression and classification ANNs 154 

is the nature of their outputs. The regression ANN (not to be confused with a linear regression 155 

model) outputs RMM1 and RMM2 values (i.e. a vector of two real numbers). An example 156 

regression ANN output is shown in Figures 1a and 2; Figure 1a shows an example prediction in 157 

RMM phase space for a 20-day forecast in the ANN compared to observations. Figure 2 shows 158 

lead 0, 5, and 10-day predictions on each day over a particular winter period for RMM1 and 159 

RMM2. 160 
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In contrast to the regression model, which is deterministic, the classification ANN provides 161 

probabilistic forecasts. The classification ANN outputs the probability that the MJO at a given lead 162 

time is in each of nine classes (e.g. Figures 1b, 3): either active (RMM amplitude ≥ 1) in one of 163 

the eight canonical RMM phases (Wheeler and Hendon 2004) or weak (“phase 0”; RMM 164 

amplitude < 1). The predicted class is the highest probability. An example of the classification 165 

ANN output for one initialization date at four different lead times is shown in Figure 3 alongside 166 

the observed RMM index.  167 

Both the regression and classification ANNs are simple, shallow, fully-connected neural 168 

networks. Both architectures have one layer of 16 nodes that use a rectified linear activation 169 

function (“ReLU”). For the regression ANN, the loss function is the mean-squared error, while the 170 

classification ANN loss function is the categorical cross-entropy, with a softmax operator applied 171 

to the output to normalize class probabilities so predictions sum to 1. To help prevent overfitting, 172 

both ANN architectures use ridge regularization (an 𝐿2	norm penalty) to limit the weights of the 173 

hidden layer. Both architectures also use early-stopping during training, which monitors the loss 174 

on the validation data and stops training once the validation loss plateaus (or increases) for a 175 

specified number of epochs. For the classification ANN, since weak MJO days are the most 176 

common class (~39% of all days) we avoid class imbalance by randomly subsampling weak MJO 177 

days during training so they are 11% of all training days. Weak days are not subsampled over the 178 

validation period. Values of key hyperparameters used in both architectures and additional model 179 

details are listed in Table 1. Sensitivity tests varying ANN parameters and input data were 180 

explored, and while the present configuration was optimal across the tests conducted, results from 181 

a subset of our sensitivity tests are discussed in the Supplemental Material.   182 
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ANN performance is slightly improved if the models are trained separately on different 183 

seasons (Figure S1), which allows the ANNs to learn more season-specific patterns. This is likely 184 

important for the MJO due to its seasonal shifts in behavior, strength, and structure (Hendon and 185 

Salby 1994; Hendon et al. 1999; Zhang and Dong 2004), and we found splitting the data into two 186 

six-month periods (October-March, or herein “winter”, and April-September, or “summer”) 187 

provided a good trade-off between seasonal specificity and number of training samples.  188 

Finally, in some instances we trained multiple ANNs for the same seasons and lead times, 189 

creating an “ANN ensemble”. The ANNs in the ensemble are distinct only in the random initial 190 

training weights; otherwise the training data and architecture is the same across all ANNs. The 191 

ensemble thus ensures convergence of our results and quantifies sensitivity to ANN initialization. 192 

3.1.2. Layer-wise Relevance Propagation (LRP) 193 

 To demonstrate how the classification ANN correctly captures regions of importance for 194 

predicting the MJO, we use an ANN explainability technique called layer-wise relevance 195 

propagation (Bach et al. 2015; Samek et al. 2016; Montavon et al. 2019). LRP has been used in 196 

Earth science as a tool for understanding the decision-making process of ANNs (Toms et al. 2019; 197 

Toms et al. 2020; Barnes et al. 2020; Mayer and Barnes 2021; Mamalakis et al. 2021; 198 

Madakumbura et al. 2021), and here we provide a high-level overview. 199 

Broadly, LRP is an algorithm applied to a trained ANN. After a particular prediction is 200 

made, LRP back-propagates that prediction’s output through the ANN in reverse. Ultimately, LRP 201 

returns a vector of the same size as the input (here a latitude-longitude map), where the returned 202 

quantity, termed the “relevance”, shows which input points were most important in determining 203 

that prediction. By construction, LRP relevance maps are unique to each input sample, not each 204 

output class.  205 
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We use LRP to analyze output from the classification ANN. There are several different 206 

implementation rules for LRP, which differ in the details of how they back-propagate information 207 

(see Bach et al. 2015; Samek et al. 2016; Montavon et al. 2019; Mamalakis et al. 2021). Based on 208 

results in Mamalakis et al. (2021) assessing various implementations of LRP in a synthetic dataset, 209 

we use the “𝐿𝑅𝑃"” method, which in their case performed well compared to other implementations 210 

of LRP. The 𝐿𝑅𝑃" method returns both positive and negative relevance values, but because we are 211 

interested in regions that positively contribute to correct predictions, we take only regions of 212 

positive relevance in each sample. Overall conclusions are not changed if negative relevance is 213 

included (not shown). To ensure each sample contributes equally to the composite plots in Section 214 

4.2, we normalize each LRP heat map by dividing by its maximum.  215 

3.2. Traditional Linear MJO Models 216 

 We compare ANN performance to three established, statistical MJO models: a persistence 217 

model, a vector autoregressive (VAR) model, and a multi-linear regression (MLR) model.  218 

 The persistence model is often used as a minimal benchmark for statistical MJO model 219 

performance, and forecasts RMM1 and RMM2 values by persisting the initial condition. For a 220 

forecast beginning at time 𝑡#, at each lead time 𝜏 the persistence model forecasts: 221 

 [𝑅𝑀𝑀1(𝑡0 + 𝜏), 𝑅𝑀𝑀2(𝑡# + 𝜏)] 	= 		 [𝑅𝑀𝑀1(𝑡#), 𝑅𝑀𝑀2(𝑡#)] 222 

The VAR model (Maharaj and Wheeler 2005; Marshall et al. 2016) is a linear model which 223 

inputs RMM values for a given day and predicts RMM values one day into the future. Following 224 

Maharaj and Wheeler (2005), this is formulated as: 225 

 [𝑅𝑀𝑀1(𝑡# + 1), 𝑅𝑀𝑀2(𝑡# + 1)] = 	𝐿$%& 	[𝑅𝑀𝑀1(𝑡#), 𝑅𝑀𝑀2(𝑡#)] 226 

	𝐿$%& is a matrix calculated using a multiple linear regression fit from the training data. As with 227 

the ANNs, and following Maharaj and Wheeler (2005), we compute 𝐿$%& separately for winter and 228 
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summer periods using the same training period as the ANNs. Coefficients of	𝐿$%& 	match closely 229 

with those described in the literature (Maharaj and Wheeler 2005; Marshall et al. 2016), differing 230 

slightly due to our different training period and definition of winter and summer. VAR model 231 

forecasts are initialized with the observed RMM1/2 values, and then the initial conditions are 232 

stepped forward one day at a time out to a lead time of 20 days. 233 

 Our third simple model, the MLR model (Jiang et al. 2008; Kang and Kim 2010; Wang et 234 

al. 2019), generally follows Kang and Kim (2010), who showed across several statistical models 235 

that the MLR model performed best at predicting RMM. The model can be written as:  236 

[𝑅𝑀𝑀1(𝑡! + 𝜏), 𝑅𝑀𝑀2(𝑡! + 𝜏)] = 	𝐿"#$,&[𝑅𝑀𝑀1(𝑡!), 𝑅𝑀𝑀2(𝑡!), 𝑅𝑀𝑀1(𝑡! − 1), 𝑅𝑀𝑀2(𝑡! − 1)]	237 

𝐿'(),+ is a matrix of coefficients calculated using a multiple linear regression fit from the training 238 

data. The main differences from the VAR model are the MLR model inputs RMM values on the 239 

initial day and one day prior, and predicts the RMM1/2 values at a specified lead time of 𝜏. As 240 

with the ANNs, we train separate MLR models for each lead time and in winter and summer.  241 

3.3. Model Assessment Metrics 242 

To assess model skill in the regression ANN, we utilize the bivariate correlation coefficient 243 

(BCC; e.g. Vitart et al. 2017; Kim et al. 2018), with a value greater than 0.5 used to denote skill. 244 

In the classification ANN, skill is measured using the model’s accuracy as well as probability-245 

based skill scores. Following Marshall et al. (2016), who examined probabilistic MJO forecasting 246 

in a dynamical model framework, we assess skill at predicting MJO phase using the ranked 247 

probability skill score (RPSS). We first calculate the ranked probability score (RPS) for a given 248 

statistical model for each lead time as: 249 

 250 
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Here N is the number of forecast, M is the number of MJO classes (9), 𝑝,is the forecast probability 251 

in a given MJO class, and 𝑜, is the observed probability (i.e. 1 for the observed phase and 0 for all 252 

other phases). Following Marshall et. al (2016), we order the m categories from phase 0 to 8, which 253 

captures the canonical MJO phase evolution. When the RPS is calculated for the classification 254 

ANN, 𝑝, is the model confidence for each phase. For the MLR or VAR model, 𝑝, is 1 for the 255 

predicted phase and 0 otherwise.  256 

We compute a climatological reference RPS, denoted 𝑅𝑃𝑆&-., by calculating the 257 

percentage of days the observed MJO is in phases 0-8 across the training data, and using those 258 

percentages as 𝑝,values across all N forecasts. The RPSS for a given model is then computed as: 259 

𝑅𝑃𝑆𝑆	 = 	1	 − 	
	𝑅𝑃𝑆/01-2
	𝑅𝑃𝑆&-.

	260 

An RPSS greater than 0 indicates a given model shows better skill than climatology. 261 

 262 

4. Results 263 

4.1. Overall model performance 264 

 In this subsection we use ANNs that input OLR, zonal wind at 850 hPa, and zonal wind at 265 

200 hPa simultaneously (Fig. 1) for forecasts initialized daily over the validation and testing 266 

period.  267 

 Overall, the winter and summer regression ANNs show prediction skill, respectively, of 268 

~17 days and ~11 days (Fig. 4), with small spread across a 10-member ANN ensemble. In both 269 

seasons, regression ANNs outperform all three of the linear statistical models after 3-4 days in 270 

winter and 4-5 days in summer, showing substantially better skill than persistence and modestly 271 

better skill the MLR and VAR models. The ANNs also demonstrate a lower root-mean-square 272 

error than other statistical models (Figure 4) indicating that MJO amplitude in both seasons is 273 
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better captured. This indicates that simple ANNs are at forefront of statistical MJO prediction 274 

techniques, which is impressive given the simplicity of the ANNs and the fact that no explicit 275 

information about the RMM index is passed to the ANN. The improved performance of the ANN 276 

relative to the MLR and VAR model further demonstrates that the ANNs learn not only to identify 277 

the MJO and propagate it east, but also capture more nuanced MJO behavior. The higher skill in 278 

winter versus summer is consistent with results in most dynamical models (e.g. Vitart 2017), and 279 

is one indication that ANNs are able to reproduce aspects of MJO predictability seen in more 280 

complex dynamical models. While linear models also show higher skill in winter than summer, 281 

the relative increase between the two seasons is larger for the ANN.  282 

The regression ANN skill shows relatively small sensitivity to initial MJO phase (Fig. 5a), 283 

with somewhat higher skill (~18-19 days) across MJO events initialized in phases 1-3 and lower 284 

skill (~14-15 days) for phases 6 and 8. In contrast to the initial phase, the regression ANN shows 285 

substantially more sensitivity to initial MJO amplitude: MJO events that are initially strong or very 286 

strong (RMM amplitude > 1.5) are skillfully predicted out to ~20 days in winter, while skill 287 

predicting weak winter events is only ~10 days (Fig. 5c). This is consistent with findings in other 288 

statistical and dynamical models (Kim et al. 2018). ANNs also capture more mysterious aspects 289 

of MJO predictability, such as the sensitivity to the phase of the stratospheric quasi-biennial 290 

oscillation (Marshall et al. 2017; Martin et al. 2021). Studies in both dynamical and statistical 291 

models have found improved MJO prediction skill in QBO easterly months compared to QBO 292 

westerly months during December-February (DJF; Marshall et al. 2017; Lim et al. 2019; Kim et 293 

al. 2019; Wang et al. 2019). Defining the QBO using the U50 index, the wintertime regression 294 

ANN skill during QBO easterly DJF periods is nearly 20 days, whereas during QBO westerly DJF 295 

skill is only 15 days (Fig. 5c). This modulation is quantitatively consistent with findings in 296 
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dynamical models (Lim et al. 2019; Kim et al. 2019), though we note here the number of QBO 297 

cycles is limited since only winters from 2010-2019 are considered. 298 

A strength of the regression ANN is the quantitative information it provides about MJO 299 

phase and strength. Further, the regression ANN may prove an efficient framework in which to 300 

continue to examine aspects of MJO predictability discussed above, like sensitivity to initial MJO 301 

amplitude and phase of the QBO. But a prevalent source of error in the regression ANN is a 302 

decrease in the ANN-predicted MJO amplitude at lead times past a few days, especially in phases 303 

4-7 (Fig. 5b). Amplitude biases are also an issue in the VAR and MLR model, and continuing to 304 

explore ways in which it might be overcome in an ANN model is an open challenge. However, 305 

this amplitude bias was one motivation for exploring a classification ANN architecture that focuses 306 

more directly on MJO phase. Further, the probabilistic nature of the classification ANN makes it 307 

a unique simple statistical tool for MJO forecasting. 308 

Assessed via model accuracy, a 10-member classification ANN ensemble performs well 309 

on active MJO events in RMM phases 1-8 (Figure 6), outperforming the MLR and VAR statistical 310 

models after approximately 2-3 days, with accuracy during days 7-20 approximately 20% higher 311 

(Figure 6; only MLR model is shown as VAR results are similar). At lead 0, where the 312 

classification model is identifying the MJO, the phase of active MJO events are correctly predicted 313 

with an accuracy of ~80% (Fig. 6), an accuracy comparable to (Toms et al. 2019), despite 314 

differences in our input variables, data pre-processing, MJO index, and ANN complexity. Most 315 

incorrectly predicted active MJO events at short leads are near the boundary between two RMM 316 

phases and predictions are often incorrect by only one phase (e.g. Figure 3 at lead 10 and 15).  317 

While classification ANN skill is substantially better at predicting active MJO events, it 318 

struggles to predict weak MJO days, with an accuracy at short leads of only ~40%, which falls to 319 
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near random chance after ~10 days (Figure 6). This is in part due to the strategy used to train the 320 

classification ANN; by subsampling weak days during training to prevent class imbalance, the 321 

classification model learns not to overemphasize the weak phase. This tendency of the 322 

classification ANN to underpredict weak MJO events is in contrast to simple linear models. The 323 

MLR model, for example, has a very high accuracy predicting weak MJO events (Figure 6): at 324 

early leads this is because the initial RMM phase is given to the model, and longer leads the MLR 325 

model simply categorizes all MJO events as weak. 326 

Assessing the ANN only via accuracy fails to take full advantage of this model’s 327 

probabilistic forecasts. This aspect of the classification ANN is distinct from the deterministic 328 

output provided by linear models or even dynamical models, though Marshall et al. (2016) showed 329 

how ensemble runs of dynamical models could be used to provide probabilistic MJO forecasts. 330 

Assessing the ANN and linear models via the RPSS (Figure 7a), the classification model 331 

performance is clearly superior. The ANN skill remains greater than climatology out to 15 days in 332 

winter (comparable to the regression model skill assessed via the BCC), while the deterministic 333 

linear models show skill to about one week. This demonstrates that the classification ANN 334 

provides probabilistic information that is useful and adds to the model skill past what deterministic 335 

schemes can provide.  336 

Model confidence has clear utility for forecasters and could drive future work in 337 

probabilistic MJO prediction (Marshall et al. 2016). It further may be useful in improving 338 

understanding of MJO predictability. For example, the classification ANNs probabilistic forecasts 339 

are reliable -- in the sense that ANN confidence corresponds well with model accuracy -- which 340 

indicates that model confidence is a useful and meaningful output in this work (Figure 7b). 341 

Furthermore, ANN confidence relates to physical aspects of the MJO: we found ANN confidence 342 
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is closely associated with initial MJO amplitude (correlation coefficients of ~0.5-0.7 depending on 343 

lead), with higher confidence associated with higher initial RMM amplitude (Fig. 7b). Research 344 

using ANN confidence to identify predictable states of the atmosphere has recently shown promise 345 

including in the context of MJO teleconnections to the extra-tropics (Barnes et al. 2020; Mayer 346 

and Barnes 2021). 347 

The tradeoffs between the simple classification and regression ANN architectures we 348 

explored here make choosing a “better” model difficult, and in presenting both we illustrate their 349 

respective strengths and limitations. The regression model outputs more precise RMM information 350 

and is more readily comparable to existing models, but struggles to predict strong MJO amplitudes 351 

at long leads. This is true even when the regression model was re-trained using fewer weak MJO 352 

days to emphasize strong MJO events: little change in performance was seen (Fig. S2). The 353 

classification ANN shows the opposite tendency, overestimating the percentage of active MJO 354 

days and struggling to accurately predict weak MJO events. And while the classification ANN 355 

cannot provide precise information about MJO strength and location it provides a unique 356 

probabilistic output compared to other simple statistical models of the MJO.  357 

 Overall, results for both ML architectures show that aspects of the MJO are skillfully  358 

predicted by several metrics beyond two weeks in winter, and the ANNs outperform existing linear 359 

statistical models. A range of sensitivity tests (Supple. Text and Figs. S3, S4, S5), including 360 

increasing the amount of training data using 20th-century reanalysis, showed comparable 361 

performance, though tests were not exhaustive nor explored beyond relatively simple ANN 362 

architectures. Also note that while our primary goal here is to introduce and establish a baseline 363 

for ML modeling of the MJO, the simple ANNs we explored are not yet competitive with most 364 

S2S dynamical forecast models (e.g. Vitart 2017; Kim et al. 2018). State-of-the-art dynamic model 365 
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skill predicting the MJO generally falls between 25-35 days when assessed via the BCC (Vitart 366 

2017; Kim et al. 2018), and probabilistic MJO forecasts formed by running ensembles of 367 

dynamical models showed skill via the RPSS out to approximately 25 days in one S2S model 368 

(Marshall et al. 2016). It remains to be seen whether future ML research might improve to the 369 

point where it is competitive with dynamical models, but as the next section illustrates, even the 370 

simple ANNs introduced here can be used as a tool for more than just prediction, and may help 371 

spur new discoveries or generate new hypotheses. 372 

4.2. Experimentation and explainability of ANN models 373 

A limiting aspect of many standard MJO statistical prediction models, including the 374 

persistence, VAR, and MLR models presented here, is they rely entirely on an MJO index as input. 375 

In contrast, the ANNs we utilize explore the relationships between latitude-longitude maps of one 376 

or more tropical variables and an MJO index, meaning that the statistical relationships they learn 377 

connect the spatial patterns and interrelationships of the input variables to the behavior of the MJO 378 

at various lead times. This flexible framework allows for more experimentation across input 379 

variables and input processing strategies than existing approaches, allowing us to explore the 380 

impact of different variables on MJO prediction skill. In addition, this framework in conjunction 381 

with explainable AI techniques further illuminates what aspects and spatial regions of the input 382 

variables are most important for the model’s predictions.  383 

We first illustrate this through classification ANN experiments inputting various 384 

combinations of one to three different variables, targeting leads 0, 5, and 10 days for brevity. 385 

Overall, model accuracy varies widely depending on input (Fig. 8). For example, across 1-variable 386 

ANNs (Fig 8a) 850 hPa meridional wind and sea-surface temperature (SST) models show much 387 

poorer performance than other inputs. In the case of the SST model, this suggests the ocean state 388 
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alone (when processed to highlight subseasonal variability) does not contain MJO signals the ANN 389 

is able to leverage, consistent with findings that sub-seasonal SST variability does not drive the 390 

MJO (e.g. Newman et al. 2009). In the case of meridional wind, while the MJO possesses signals 391 

in meridional wind associated with Rossby wave gyres (Zhang 2005), we hypothesize that skill 392 

may be low because these signals lack the global-scale coherence seen in variables like zonal wind 393 

and OLR and captured by RMM.  394 

The most accurate models at short leads are those that input 850 hPa and/or 200 hPa zonal 395 

winds (Fig. 8). This is consistent with literature showing that MJO circulation tends to drive the 396 

RMM index (Straub 2013; Ventrice et al. 2013), an aspect of RMM the ANN has organically 397 

learned. Interestingly, skill identifying the MJO at short leads does not necessarily imply similar 398 

performance predicting the MJO at longer leads. For example, at lead 0 the 850hPa and 200 hPa 399 

zonal wind model has the clear highest accuracy among 2-variable models (Fig. 8b), but at lead 5 400 

and 10 its accuracy overlaps with other configurations. Best performing models at longer leads are 401 

those that include information about zonal wind and the large-scale thermodynamic or moisture 402 

signature of the MJO, as measured for example by OLR or column water vapor. Further, RMM 403 

input variables are not always clearly superior at leads 5 and 10: a model with total column water, 404 

200 hPa zonal wind and 200 hPa temperature performs as well as or slightly better than the model 405 

with 200 and 850 hPa zonal wind and OLR (Fig. 8c).  406 

Finally, while more input variables tend to improve model performance (Fig. 8), tests 407 

showed no substantial improvement using 4 or more inputs (Fig. S5), at least among the variables 408 

considered here. Whether this is due to the limited complexity of our ANNs, the amount of training 409 

data, or because new, meaningful information is difficult to leverage with more variables is not 410 
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known. Additional variables (perhaps with different preprocessing) will continue to be explored, 411 

but these initial tests provide a proof-of-concept for the kind of experimentation that ANNs afford.  412 

A second advantage of ANNs versus other MJO modeling frameworks is the ability to 413 

apply XAI tools like LRP (Section 3.1.2), which identifies sources of ANN prediction skill. As a 414 

first example, Figure 9 shows wintertime composite LRP maps using the classification ANN from 415 

Section 4.1. LRP maps are shown for lead times of 0 and 10 days, composited across correct ANN 416 

predictions when the MJO is in phase 5 at the time of verification. Composites are further restricted 417 

to those events when model confidence exceeds the 60th percentile (calculated from the full 418 

distribution of model confidence for each lead, not the distribution only over correct predictions).  419 

The LRP plots confirm that the classification ANN focuses on regions central to the MJO. 420 

At lead 0, OLR relevance highlights suppressed Indian Ocean convection and active conditions 421 

around the Maritime Continent (Fig. 9a,b), whereas wind fields focus on low-level westerly 422 

anomalies around the Maritime Continent (Fig. 9c,d) and upper level signals in the central and east 423 

Pacific (Fig. 9e,f), all of which are hallmark features of a phase 5 MJO. At lead 10, LRP shows 424 

how the ANN accounts for eastward MJO propagation: the maximum relevance for OLR is shifted 425 

west relative to lead 0, highlighting strong convection in the eastern Indian ocean (Fig. 9g,h). The 426 

lead-10 model also focuses on a small dipole region of strong low-level winds near the equatorial 427 

Maritime Continent, and upper-level easterly anomalies in the western Indian Ocean (Figs. 9i-l).  428 

Combining both experimentation across model inputs and LRP allows examination of 429 

sources of predictability across different variables. For example, while the 3-variable model using 430 

total column water vapor, and 200 hPa wind and temperature (grey bar in Figure 8) underperforms 431 

the OLR and zonal winds models at lead 0, at lead 10 their performance is comparable; Figure 10 432 

shows the LRP maps from that model. At short leads, total column water vapor relevance matches 433 
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regions of OLR relevance closely (compare Figs. 9b and 10b), and the 200 hPa winds also focus 434 

on similar very regions. Upper-level temperatures are most relevant around the western Pacific 435 

slightly to the east of enhanced convection, where they show warm anomalies consistent with 436 

convective heating in the upper troposphere. In contrast, at 10 day leads the column water vapor 437 

shows a clearer difference in relevance compared to the OLR: water vapor signals south of the 438 

equator and Maritime Continent, as well as the signals around northern Australia show maxima in 439 

relevance. The focus in particular on southern hemisphere moisture signals may be due to the 440 

tendency of the winter-time MJO to detour south of the Maritime Continent (Kim et al. 2017). 441 

Upper-level temperature signals at lead 10 show highest relevance over the Maritime Continent, 442 

and focus mainly on near-equatorial warm anomalies in that region. It is noteworthy that while the 443 

composite (Fig. 10i) shows equally strong temperature signals on the equator and in the subtropics 444 

to the west, the LRP map (Fig. 10j) indicates the model focuses on the strong equatorial signals. 445 

LRP thus provides information about how the ANN identifies the MJO and what signals 446 

across variables are most associated with future MJO behavior. The unique information LRP 447 

outputs may be useful to continue to explore sources of MJO prediction skill in simple ANNS, for 448 

example under different large-scale states or for case studies of particular events. 449 

5. Discussion & Conclusions 450 

Motivated by a lack of recent progress in statistical MJO modeling and the ability of 451 

machine learning methods to skillfully predict other climate and weather phenomena, here we 452 

demonstrate how simple machine learning frameworks can be used to predict the MJO.  We 453 

established two straightforward neural network architectures (a regression and classification 454 

approach) that use shallow ANNs to predict an MJO index. The regression ANN shows prediction 455 

skill out to ~17 days in winter and ~11 days in summer, which is high skill for a statistical 456 
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approach. The classification ANN shows probabilistic skill better than climatology out to similar 457 

leads of 15 days in winter. Both ANN architectures perform better than traditional statistical 458 

models and set benchmarks for continued ML modeling of the MJO. Note however that ANN 459 

prediction skill is not yet comparable to dynamical models, though continued work may improve 460 

prediction skill perhaps via other ML modeling frameworks, more advanced input processing, or 461 

leveraging larger datasets from climate model simulations. We further emphasize that simple 462 

ANNs are efficiently able to reproduce aspects of MJO predictability found in more complex, 463 

computationally-expensive dynamical models, such as sensitivity to MJO initial amplitude and 464 

phase of the stratospheric QBO, making them affordable tools to continue to study the MJO and 465 

MJO predictability. Explainable AI tools can also help illuminate sources and regions of ANN 466 

model skill. 467 

This work illustrates how simple ANNs can be used not only for prediction, but also as 468 

tools for hypothesis testing and experimentation that might drive new discoveries or scientific 469 

insights. While our focus here is on the MJO, the framework we establish is widely applicable to 470 

a range of different climate phenomena, especially oscillations that can be represented as simple 471 

indices. The performance, affordability, accessibility, and explainability of simple ANNs thus 472 

recommends their continued adoption by the climate community. 473 
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Tables 660 

ANN Model Details & Hyperparameters 
Name Regression ANN value Classification ANN value 
Winter/summer  
training samples 

5,560/5,612 3,990/3,726 

Winter/summer 
validation & test samples 

1,093/1,098 1,093/1,098 

Hidden layer size 16 nodes 16 nodes 
Activation function ReLU ReLU 
Optimizer Stochastic gradient descent Stochastic gradient descent 
Loss function Mean-squared Error Categorical cross-entropy 
Learning rate 0.0005 0.0005 (0.001 for 1-variable models) 
Batch size 32 32 
Ridge penalty 0-5 day leads: 0.25 

6-10 day leads: 1 
11+ day leads: 3 

0.25 (all leads) 

Early-stopping patience  8 epochs 4 epochs 
 661 

Table 1. Regression and classification neural network model architecture details and key 662 

hyperparameters used in this study. Sensitivity tests to various aspects of these and other aspects 663 

of the ANN models are discussed in the Supplemental Material.  664 
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Figures 665 

 666 

Figure 1. ANN model schematics. (a) The regression ANN; leftmost panels show a sample input 667 

of OLR and zonal wind at 850 hPa (u850) and 200 hPa (u200) from November 26, 2011. The input 668 

is passed through a 16-node hidden layer with a rectified linear unit (“ReLU”) activation function. 669 

The regression ANN outputs values of RMM1 and RMM2 at a single lead time, and separate 670 

ANNs are trained for leads from 0-20 days. An example 20-day ANN forecast (purple) versus 671 

observations (black) is shown in the rightmost panel; dots denote days with open circles every five 672 

days. (b) The classification ANN; input is identical to the regression ANN, but the output is the 673 

probability the MJO is active in RMM phase 1-8 or is inactive (“phase 0”). An example forecast 674 

at a 10-day lead from November 26, 2011 is shown on the right. The model correctly identifies the 675 

MJO as in phase 5. 676 
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 677 

Figure 2 Regression ANN example. Example output from the regression ANN during one 678 

extended winter season. The observed RMM1 and RMM2 values are shown in black dashed. The  679 

regression ANN prediction for each day at a lead of 0, 5, and 10 days are shown in shades of 680 

purple.  681 
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 682 

Figure 3. Classification ANN example forecast. Example output from the classification ANN 683 

for lead times of 0, 5, 10, and 15 days. The left panel shows the observed RMM index for 20 days 684 

beginning December 15, 2017. The right four panels show the classification ANN confidence for 685 

each of the 9 MJO phases at the indicated lead time. The predicted class is the one with the highest 686 

probability; in this example predictions are phase 7 (lead 0; correct), phase 7 (lead 5; correct), 687 

phase 8 (lead 10; correct), and phase 1 (lead 15; incorrect).  688 
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 689 

 690 

 691 

Figure 4. Regression ANN overall performance. RMM prediction skill (a/b) and root-mean-692 

square error (c/d) for the regression ANN (purple/gold) and other simple statistical models (grey). 693 

Skill in the top panels is measured via the bivariate correlation coefficient (BCC); a threshold of 694 

0.5 denotes skill.  695 
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 696 

Figure 5. Regression ANN detailed performance. (a) The BCC as a function of initial MJO 697 

phase, without a threshold for MJO activity (i.e. all days are assigned a phase 1-8). Black line 698 

denotes a BCC of 0.5. (b) The average RMM amplitude difference between observations and 699 

ANN-forecasted events: negative values indicate the ANN prediction is weaker than observed. (c) 700 

BCC for winter forecasts binned by observed initial MJO amplitude. Initial RMM amplitude 701 

ranges are 0-1 (weak); 1-1.5 (moderate); 1.5-2; (strong) and greater than 2 (very strong). (d) BCC 702 

for MJO events in December-February separated by phase of the stratospheric quasi-biennial 703 

oscillation, defined using the U50 index. Shading in panels (c/d) denotes the spread across a 10-704 

member ANN ensemble. 705 

 706 
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  707 

Figure 6. Classification model accuracy. Winter classification ANN accuracy forecasting active 708 

MJO days (phase 1-8; red) and accuracy for weak MJO days (phase 0; blue). Dashed line is the 709 

same but for the MLR model. Grey shading indicates random chance (1/9) assuming all classes 710 

are equally likely. Blue/red shading denotes the spread across a 10-member ANN ensemble.   711 
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  712 

Figure 7. Classification model probabilistic forecasting. (a) The ranked probability skill score 713 

in winter for the ANN, MLR, and VAR model predictions relative to climatology; a score greater 714 

than zero denotes skill. (b) Winter classification ANN accuracy (top panel) and initial observed 715 

MJO amplitude (bottom panel) binned by ANN confidence (x-axis, in bins of width 0.05) at leads 716 

of 0, 5, 10, and 15 days. The black x’s in the top panel indicate the one-to-one line.   717 
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 718 

Figure 8 Sensitivity to input variables. Winter classification ANN accuracy predicting active 719 

MJO days at leads of 0, 5, and 10 days given different input variables. 1-variable (panel a), 2-720 

variable (panel b), and 3-variable (panel c) models are shown. For each model, 5 ANNs are trained 721 

with different initial random weights (error lines). The legend indicates which variables are used; 722 

short-hand refers to zonal wind (u), total column water vapor (tcw), specific humidity (q), 723 

temperature (t), and meridional wind (v), with numbers indicating the pressure level where 724 

relevant.   725 
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 726 

Figure 9. Layer-wise relevance propagation example. Composites of normalized input variables 727 

(left column) and LRP relevance (right column) for correct classification ANN predictions of MJO 728 

events in Phase 5 at the time of verification. Only forecasts when model confidence exceeds the 729 

60th percentile are included. Panels (a-f) are the lead-0 model, and (g-l) are the lead-10 model, 730 

both inputting 3 variables: OLR, and 850 hPa zonal wind (u850) and 200 hPa zonal wind (u200).   731 
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 732 

Figure 10. Layer-wise relevance propagation example. As in Figure 9, but for the ANN 733 

inputting a different set of variables: total column water vapor, 200 hPa temperature (t200), and 734 

200 hPa zonal wind.  735 
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Text S1. Sensitivity Tests 24 

In developing both the regression and classification ANN architectures, we conducted 25 

many tests exploring sensitivity to the processing of the input data, the ANN architectures, and the 26 

nature of model output. We show results from some of these sensitivity tests in Figures S1-S5 27 

below: here we provide additional methodological detail regarding those tests. All tests below are 28 

shown for models during winter and, unless noted, for models that input OLR and zonal wind at 29 

850 and 200 hPa. 30 

In Figure S1, we compare the regression and classification ANN skill in a model trained 31 

using all-year data evaluated over winter and summer periods, versus the models trained in winter 32 

and summer respectively. While changes are modest, we found season-specific training to be 33 

somewhat advantageous in improving skill. 34 

In Figure S2, we show the sensitivity to a change in how the regression ANN is trained. 35 

Rather than training the regression ANN on all winter days, we instead train the model on all active 36 

MJO days and a random subset of inactive MJO days such that weak MJO days are 1/9 of the 37 

overall training datasets. This is analogous to how the classification model is trained (see Section 38 

3.1.1), and provides the regression ANN with more strong MJO samples at all lead times. While 39 

it marginally improves the accuracy of the regression model when active MJO days are considered 40 

(Fig. S2), it does not have a large change on the overall accuracy or the BCC; the regression model 41 

still shows poor performance forecasting active MJO events at leads longer than a few days. 42 

In Figure S3 we show accuracy over active MJO days from the classification ANN at lead 43 

times of 0, 2, 5, 10, 15, and 20 days from a range of sensitivity tests. For the “control” test, the 44 

model is the same as that discussed in Section 4.1, with the range across 10-member ANN 45 
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ensemble shown to capture spread due to random initial ANN weights. For the sensitivity tests 46 

only one ANN was trained at each lead time.  47 

The first set of sensitivity tests shown in Figure S3 are slight changes to the ANN 48 

architecture. For the “high_ridge” test the ridge regression penalty was increased from 0.25 to 1, 49 

and for the “low_ridge” test the penalty was decreased from 0.25 to 0.1. For the “wide_net” test 50 

the number of nodes in the hidden layer was increased from 16 to 64, and in the “deep_net” the 51 

single, 16 node single layer was replaced with 2 fully connected layers of 16 nodes each. Note 52 

across these tests, large changes relative to the control are not observed, and typically fall within 53 

the control spread (Fig. S3a). 54 

The second set of tests explore changes to the model input. The “30NS” and “15NS” 55 

experiments alter the latitude bands over which the input data is retained. The “lat_avg” model 56 

takes the 15N-15S average of the input before feeding it into the neural network, such that the 57 

input is a function only of longitude (e.g. a vector of length 144 per variable). Further, in the 58 

“lat_avg” model the learning rate is increased to 0.001 from the 0.0005 value used in the control. 59 

The “prior_days” test includes not only the variables from forecast day 0 in the input, but also 60 

includes forecast day -5, doubling the size of the input vector.  61 

Model performance in all of these tests lies within the range of the control, with the 62 

exception of the latitudinal averaging at lead times of less than 5 days, which shows notably higher 63 

accuracy. Because the RMM index takes 15N-15S averaged variables as input, this increase in 64 

accuracy at short leads is likely due to the fact that the input is more closely associated with the 65 

output (i.e. how the RMM is computed), making it easier for the ANN to learn the relationship 66 

between the latitudinally-averaged input and the RMM phase. The fact that this increase relative 67 

to the control fades at longer lead times suggests, consistent with the discussion in Section 4.2, 68 
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that identifying the MJO at short leads is a different task than predicting MJO behavior. Because 69 

the improvement is only seen at short leads, and because we are interested in how the 2-D structure 70 

of input variables informs the ANN (e.g. for in the LRP plot in Figures 9 and 10), we prioritize the 71 

2-D input approach. Many additional sensitivity tests were performed during model development, 72 

and similar tests were performed for the regression model, but for brevity are not shown here, as 73 

results are comparable to those discussed. 74 

A third sensitivity test, shown in Figure S4, quantifies sensitivity to training the regression 75 

ANN using a longer training dataset than NOAA OLR and ERA5 data allow. For this, we use ERA 76 

20th century reanalysis daily OLR and zonal wind at 850 and 200 hPa data (Poli et al. 2016), which 77 

we obtained over the full period of availability from January 1, 1901 to October 31, 2010. ERA-78 

20C input data is processed identically to the input for ERA-5 described in Section 2.1. The RMM 79 

index is calculated from ERA-20C using the method described in Wheeler and Hendon (2004); 80 

over the period in which the ERA-20C data overlaps with the observed RMM index, we found the 81 

correlation between our calculated ERA-20C RMM1/2 and the observed RMM1/2 values to be 82 

approximately .89, indicating good agreement in how the RMM index is formed. 83 

We train a regression ANN with an architecture identical to that discussed in Section 3.1.1 84 

but using ERA-20C data instead of ERA-5 data. The validation period is January 1, 2001 to 85 

October 31, 2010. We explored varying the training dataset to see whether model performance 86 

improved if much more training data was included. For lead times of 0, 5, 10, and 15 days we 87 

trained separate models for 11 different training periods. All training periods end December 31, 88 

1999, but start dates vary across June 1 of: 1994, 1989, 1984, 1979, 1974, 1969, 1959, 1949, 1929, 89 

1909, and 1901. To facilitate comparison to ERA5, we trained an additional model on 90 
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NOAA/ERA5 data from June 1979 to December 1999, and validated on NOAA/ERA5 data from 91 

January 1, 2001 to October 31, 2010.  92 

Results in Figure S4 show generally comparable performance between ERA5 and ERA20C 93 

when the same period is used for validation and training. For reasons that we did not explore in 94 

depth, the ERA20C model shows higher BCC values at 0 and 5 days than NOAA/ERA5, 95 

comparable performance at 10 days, and worse performance at 15 days. More importantly, Figure 96 

S4 indicates that training the simple ANN on ERA20C with significantly more data does not lead 97 

to substantial improvement in the BCC at any lead time after between 120 and 200 months. Further 98 

tests with wider or deeper ANNs using the full 1901-1999 period of training also did not show 99 

improved performance.  100 

The final sensitivity test, shown in Figure S5, explores sensitivity to including four or more 101 

additional input variables, following the same procedure as described in the manuscript in Section 102 

4.2. Legend conventions in Figure S5 follow Figure 8, except “d” denotes divergence. Overall, no 103 

substantial increase in skill is seen in models with four or more variables.  104 

 105 

 106 

  107 
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Supplemental Figures. 108 

 109 

Figure S1 Regression ANN (panel a) and classification ANN (panel b) performance, similar to 110 

Figures 4 and 6, for ANNs trained specifically on winter and summer seasons (solid lines) versus 111 

a model trained on all seasons and evaluated separately in summer and winter (dashed line). The 112 

shading shows the seasonal model range across 10 ensemble models; for the annual model only 113 

one ensemble is considered. 114 

 115 

  116 
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 117 

Figure S2 Winter regression ANN skill (panel a as in Figure 4) or accuracy of MJO phase (right; 118 

similar to Figure 6) for regression ANNs trained on all MJO days (lines) versus ANNs trained 119 

using fewer weak MJO days (as described in Supplemental Text S1; dots or x’s). In the panel (b), 120 

black curves/dots are regression model accuracy evaluated over all MJO days, and red curves/x’s 121 

are regression model accuracy evaluated only for active MJO days. Note the poor performance for 122 

active days, caused by the inability of the regression model to predict strong amplitude events. 123 

 124 

  125 
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 126 

Figure S3 Model accuracy over active MJO days for sensitivity tests varying the architecture or 127 

hyperparameters of the ANN (panel a) and varying the model input (panel b). Tests are indicated 128 

by the legend as described in Supplemental Text S1. For the control, a 5 ANN ensemble was used. 129 

  130 
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 131 

Figure S4 Winter regression ANN skill at lead times of 0, 5, 10, and 15 days (colors), trained 132 

using ERA-20C data. Models are trained using larger amounts of training data (dots; see 133 

Supplemental Text S1), and the x-axis shows the number of months in the training data period. 134 

Shading shows the range across 5 ANNs with different random starting weights. Stars show results 135 

using ERA5/NOAA winds and OLR data, as described in Supplemental Text S1. 136 

 137 

 138 

 139 

  140 
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  141 

Figure S5 Similar to Figures 8 and S3, but for a series of tests with 4, 5, or 6 input variables. The 142 

blue “olr+u850+200” model is the same as in Figure 8c; other models have only 1 ensemble 143 

member.  144 


