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Abstract

The western United States experienced a record-breaking wildfire season in 2020. This study quantifies the contribution of

wildfire emissions to the exceedances of health-based National Ambient Air Quality Standard (NAAQS) for fine particles

(PM2.5) by comparing two CMAQ simulations, with and without wildfire emissions. During August to October 2020, western

wildfires contributed 23% of surface PM2.5 in the contiguous US (CONUS), with a larger contribution in Pacific Coast (43%)

and Mountain Region (42%). Consequently, wildfires were the primary contributor to the 3,720 observed exceedances. The

wildfire influence peaked on September 14th, 2020, when 273 exceedances were recorded and wildfire emissions contributed 41%,

81%, and 72% to surface PM2.5 concentrations in the CONUS, Pacific Coast, and Mountain regions, respectively. Our finding

highlights the predominating influence of wildfires on air quality, and potentially human health, that is expected to grow with

increasing fire activities, while anthropogenic emissions decrease.
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Key Points:

• Wildfire emissions contribute 42% of surface PM2.5 concentration in the
contiguous United States during the summer of 2020;

• Wildfires were the primary contributor to the 3,720 exceedances of Na-
tional Ambient Air Quality Standard for PM2.5 during the 2020 summer;

• Our finding highlights the predominating influence of wildfires on air qual-
ity during the 2020 wildfire season.

Key words:

Biomass burning; aerosol; emission; air quality; exceedance; CMAQ

Abstract
The western United States experienced a record-breaking wildfire season in 2020.
This study quantifies the contribution of wildfire emissions to the exceedances
of health-based National Ambient Air Quality Standard (NAAQS) for fine par-
ticles (PM2.5) by comparing two CMAQ simulations, with and without wildfire
emissions. During August to October 2020, western wildfires contributed 23%
of surface PM2.5 in the contiguous US (CONUS), with a larger contribution
in Pacific Coast (43%) and Mountain Region (42%). Consequently, wildfires
were the primary contributor to the 3,720 observed exceedances. The wildfire
influence peaked on September 14th, 2020, when 273 exceedances were recorded
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and wildfire emissions contributed 41%, 81%, and 72% to surface PM2.5 concen-
trations in the CONUS, Pacific Coast, and Mountain regions, respectively. Our
finding highlights the predominating influence of wildfires on air quality, and
potentially human health, that is expected to grow with increasing fire activities,
while anthropogenic emissions decrease.

Plain language summary
In the summer of 2020, the western United States experienced a record-breaking
number of wildfires. We looked into the effects of these wildfires on air quality,
through the lens of the exceedances of health-based National Ambient Air Qual-
ity Standards (NAAQS) for fine particles (PM2.5), which are associated with the
bulk of health risks posed by air pollution. We found that in 2020, the western
wildfires contributed 23% of surface PM2.5 pollution during August to October
in the contiguous United States. The contribution is much bigger in the Pacific
Coast (43%) and the Mountain region (42%). Consequently, the wildfires were
the primary contributor to the 3,720 exceedances of PM2.5 NAAQS. Our find-
ing highlights the dominating influence of wildfire emissions on air quality and
potentially on human health.

1 Introduction
Biomass burning (BB) emits a large quantity of aerosols and trace gases into
the atmosphere, often leading to hazardous air quality and health problems
(Koning, et al., 1985). In the summer of 2020, the western United States expe-
rienced a record-breaking wildfire season. A series of large wildfires, fueled by
accumulated biomass, heatwaves, and dry winds, burned more than 10.2 million
acres. These wildfires spread rapidly and destroyed several small towns in Cal-
ifornia, Oregon, and Washington. According to MODIS (Moderate Resolution
Imaging Spectroradiometer) measured FRP (fire radiative power) from 2002 to
2020 (Figure 1a), the monthly total FRP in September 2020 (red star) over the
contiguous United States (CONUS) is the highest in over the past 19 years and
is more than twice as large as the second highest. Dense wildfire smoke also
produced hazardous air quality that affected millions of people in major cities
for weeks. Based on Suomi NPP VIIRS (Visible Infrared Imaging Radiometer
Suit) 550 nm aerosol optical depth (AOD) measurements, the fire smoke was
transported across the continent to the eastern U. S. coast via the westerlies in
the middle of September (Figure 1b).
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Figure 1. a) MODIS measured monthly total FRP (GW) over the US from Jan-
uary 2002 to September 2020; b) VIIRS measured 550 nm AOD on September
15, 2020.

To protect human health and the environment, the National Ambient Air Qual-
ity Standards (NAAQS) have been established for seven criteria air pollutants
(CAPs), which includes carbon monoxide (CO), ozone (O3), particulate matter
(PM), nitrogen dioxide (NO2), and sulfur dioxide (SO2) that can be emitted or
formed by biomass burning. Among these CAPs, PM2.5 (PM with aerodynamic
diameter of 2.5 micrometers or less) is of particular concern. The Global Burden
of Disease comparative risk assessment attributed 3.2 million premature deaths
worldwide to human exposure to ambient PM2.5 in 2010, which is much greater
than other air pollutants or some well-known health threats (e.g., malaria, HIV-
AIDS, etc.) (Lim et al., 2012). Currently, the U.S. Environmental Protection
Agency (EPA) has primary and secondary standards for PM2.5 (annual aver-
age standards with levels of 12.0 µg/m3 and 15.0 µg/m3, respectively; 24-hour
standards with 98th percentile forms and levels of 35 µg/m3) (U.S. EPA, 2021).
The EPA also employs the Exceptional Events Rule for unusual or naturally
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occurring events (i.e., wildfire, high wind dust events, etc.), so that air quality
data influenced by these sources can be excluded to determine exceedances of
NAAQS.

This study aims to assess the air quality impact of the record-breaking wildfires
in 2020, with a focus on exceedances of the NAAQS for PM2.5. We use the
George Mason University (GMU) wildfire forecast system (section 2.2) that re-
lies on satellite estimates of biomass burning emissions and the Community Mul-
tiscale Air Quality Modeling System (CMAQ) to simulate emission, transport,
and transformation of smoke PM2.5 during the 2020 summer wildfire season.
The prediction and evolution of wildfire plumes and their impact on air qual-
ity is very challenging due to large uncertainties in wildfire emissions (Pereira
et al., 2016; Pan et al., 2020), estimation of plume rise (Briggs 1969; Freitas
et al., 2007; Stein et al., 2009; Rio et al., 2010; Sofiev et al., 2012; Paugam
et al., 2016; Vernon et al., 2018; Zhu et al., 2018), meteorological fields, and
chemical transport processes (Li et al., 2019; Li et al., 2020). The BB emissions
product used in this study is the blended Global Biomass Burning Emissions
Product from MODIS and VIIRS (GBBEPx V3, Zhang et al., 2012, 2019). To
enhance the modeling system’s capability to predict wildfire smoke, we have im-
plemented a new plume rise scheme based on the algorithm proposed by Sofiev
et al. (2012) into the CMAQ model. The current plume rise scheme in CMAQ
is based on Briggs (1969), which was originally designed for simulating plumes
from well-defined sources such as power plants in a non-disturbed atmosphere.
The Sofiev scheme utilizes fire radiative power (FRP), planetary boundary layer
(PBL) height, and the Brunt-Vaisala frequency in the free troposphere to esti-
mate fire injection height. Both the Sofiev plume rise scheme and the GBBEPx
emission products have been shown to perform well during large wildfire events
such as the 2018 Camp Fire (Li et al., 2020).

2 Methods and Data
Experiment design
To evaluate the impact of wildfires on air quality, three CMAQ simulations were
conducted. In the first run (ALLF), all emissions from wildfires, prescribed fires,
and other biomass burning sources are accounted for in the model simulation.
In the second run with no fire emissions (NOF), all types of biomass burning
emissions are excluded. The third run (WDF) is the same as the ALLF run,
but only has western (west of 102° W) U.S. wildfire emissions. In the WDF
run, the USGS 24-category land use categories are used to define the location
of forests (i.e., deciduous broadleaf forest, deciduous needleleaf forest, evergreen
broadleaf, evergreen needleleaf, and mixed forest).

Comparing results from these three simulations will elucidate the impacts of
biomass burning, wildfire, and prescribed fires on air quality. The impacts of
biomass burning are generated by subtracting the NOF results from ALLF.
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Wildfire emission impact is represented by the difference between WDF and
NOF, and the impacts from prescribed fires and other burning sources aside
from wildfires are illustrated by the difference between ALLF and WDF.

Description of the modeling system
The CMAQ model is a numerical air quality model that simulates the concen-
tration of airborne gases and particles and the deposition of these pollutants.
CMAQ V5.3.1 (U.S. EPA, 2019) was employed to simulate the 2020 summer
wildfire season from August 1st to October 31st, over the contiguous United
States (CONUS) domain. Details about the system setup are shown in Table
S1. The model resolution is 12 km with 35 vertical layers. The 12 km Weather
Research and Forecasting (WRF; Skamarock et al., 2019) model V4.2 output
was used as the meteorology inputs for the CMAQ model. The initial and
boundary conditions for WRF are from the Global Data Assimilation System
(GDAS) 0.25-degree analysis and forecast. The time step for the simulation
was 60 seconds. The main physics choices were the Grell-Freitas scheme (Grell
and Freitas, 2016) for parameterized cumulus processes, the Mellor-Yamada-
Janjic scheme (Janjic, 1994) for the planetary boundary layer (PBL) processes,
the two-moment Morrison microphysics (Morrison et al., 2009) for cloud physics
processes, the RRTMG scheme (Iacono et al., 2008) for longwave and shortwave
radiation, and the Noah scheme (Koren et al., 1999) for land surface processes.

The initial chemistry conditions on August 1st are from the NOAA operational
air quality forecast (https://airquality.weather.gov/). Anthropogenic emissions
of nitrogen oxides (NOx), volatile organic compounds (VOCs), sulfur dioxide
(SO2), carbon monoxide (CO), ammonia (NH3), and particulate matter were
prepared via the 2016v1 Emissions Modeling Platform (Eyth et al., 2020). The
emission inventories used in this platform originate from the National Emissions
Inventory (NEI) 2014v2 and have been updated to better represent the year 2016.
The model-ready emission files are processed and generated by the Sparse Matrix
Operator Kennel Emissions (SMOKE) model (Houyoux et al., 2000) V4.7. The
CB6 gas-phase chemical mechanism (Luecken et al., 2019), AE07 aerosol scheme,
(Xu et al., 2018; Pye et al., 2015) and aqueous chemistry (Fahey et al., 2017)
are used in the CMAQ system.

Biomass burning emissions and plume rise treatment
The GBBEPx biomass burning emission data (Zhang et al., 2012, 2014, 2019)
are used as the fire emission input for the CMAQ model.

To achieve a better simulation of fire plumes, a new plume rise scheme was added
to the CMAQ model – the Sofiev et al. (2012) scheme that utilizes FRP, PBL
height (𝐻PBL), and the Brunt-Vaisala (BV) frequency in the free troposphere
to estimate the plume injection height (𝐻𝑝) for wild-land fires:

𝐻𝑝 = 𝛼𝐻PBL + 𝛽 ( FRP
FRP0

)𝛾
exp(− 𝛿BV2

FT
BV2

0
) (1)
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Where FRP is the daily fire radiative power provided in NOAA GBBEPx V3,
FRP0 is the reference fire power which equals to 106 W, BVFT is the Brunt-
Vaisala frequency in the free troposphere (FT), BV0 is the reference Brunt-
Vaisala frequency which equals to 2.5×10-4 s-2, and where �, �, �, � are constants.
The �, �, �, � values are based on Sofiev et al. (2012), and Li et al. (2020). For
wildfire simulations, the Sofiev scheme is more stable and accurate (Li et al.,
2020) than the CMAQ default plume rise scheme, which is the Briggs (1969)
scheme designed for chimneys.

Observation data and assessment method
To evaluate the model simulation as well as the wildfire emission impacts, the
simulated results are compared to AirNow ground PM2.5 observations and VI-
IRS measured AOD at 550 nm.

The area hit ratio (Kang et al., 2007) is used to evaluate the surface PM2.5
simulation. The calculation of area hit is based on observed and simulated PM2.5
exceedance. According to EPA NAAAQS (U.S. EPA, 2020), the exceedance level
(E) for PM2.5 is set to 35 𝜇g/m3 for 24-hour PM2.5. Area hit (aH) is defined
as:

𝑎𝐻 = ( 𝐸OM
𝐸OM+𝐸𝑂

) (2)

where EOM is the number of exceedances that are both observed and simulated
in the 5×5 grid cells centered at the monitor location (Kang et al., 2007). EO
is the number of observed exceedances that are not simulated within the 5×5
grid cells centered at the monitor location.

The Contribution Ratio (CR) and Exceedance Impact Ratio (EIR) are used to
discuss the wildfire biomass burning influence:

𝐶𝑅 = 𝑀WDF−𝑀NOF
𝑀WDF

× 100% (3)

𝐸𝐼𝑅 = 𝑁aff
𝑁tot

× 100% (4)

where 𝑀WDF is the simulation results (i.e., PM2.5, AOD) from the WDF (wild-
fire only) run, 𝑀NOF is the result from the NOF (no fire) run, Ntot is the number
of total grid cells within the study region (i.e., CONUS, different time zones),
and Naff is the number of grid cells that are within the unhealthy wildfire-
influenced area in the study region. The unhealthy wildfire-influenced area is
defined as the place where the simulated 24-hour PM2.5 levels from the WDF
run is higher than the exceedance level (35 𝜇g/m3) and the simulated 24-hour
PM2.5 from the NOF run is lower than the exceedance level over the same
location.
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3 Results
3.1 Model evaluation
The first exceedance of the daily PM2.5 NAAQS occurred on August 16th, 2020.
After October 10th, wildfire emissions began to decrease, with less than ten ex-
ceedances after that date. Therefore, the analysis focuses on the period from
August 16th to October 10th, 2020. Figure 2a shows the result of the area hit
ratio (blue line) for the CMAQ ALLF run. A high area hit ratio represents a
good capture of the region impacted by real smoke. The average area hit ratio
during this period is 0.68. During the peak pollution days (from September 12th

- 16th) when over 200 stations observed PM2.5 exceedance (black dash line in
Figure 2), the area hit ratios were higher than 0.96 with a maximum of 1.0 on
September 13th, 2020. This suggests that the model could predict more than
96% of the observed exceedances when the smoke pollution was at its peak. The
minimum area hit ratio was 0 on August 17th, 2020; however, the fire was not
intense and there were only three stations that observed PM2.5 exceedances on
that day. Traditional evaluation metrics are also used to evaluate the model
simulation. The correlation between observed and simulated daily PM2.5 con-
centrations for the ALLF run is shown in Figure 2a (red line) with an average
of 0.55. The spatial plot of ALLF PM2.5 overlaid by AirNow observations on
a peak day is shown in Figure 2b. The contour colors are based on the EPA
Air Quality Index for PM2.5: green for good, yellow for moderate, orange for
unhealthy to sensitive groups, red for unhealthy, purple for very unhealthy, and
maroon for hazardous. In most places, the observations and simulation match
closely with each other, suggesting that the model performs very well. The AOD
results are shown in Figure 2c. Our model reproduced the smoke optical depth
from the west coast to the east coast observed by VIIRS (Figure 1b). Overall,
the model is able to reproduce wildfire smoke dispersion, especially when the
fire is intense.
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Figure 2. a) Correlation (red) and area hit ratio (blue) between observed and
simulated PM2.5 from the ALLF run, with the number of observed exceedances
(black dash line) from August 16th to October 31st, 2020; b) CMAQ ALLF run
for simulated 24-hour PM2.5 and overlaid with the AirNow PM2.5 observation
on September 15th, 2020; c) CMAQ ALLF run for simulated AOD at 550 nm
on September 15th, 2020.

Wildfire contribution to PM2.5 and AOD
The contribution from wildfires to surface PM2.5 concentration is shown Figure
3a. During the analysis period, the West Coast wildfires contributed 23% of
surface PM2.5 pollution nationwide. Specifically, wildfires produced 43% of the
total PM2.5 pollutants in the Pacific time zone, 42% in the Mountain time zone,
11% in the Central time zone, and 4% in the Eastern time zone. The PM2.5
difference between the WDF run and the NOF run and the wildfire PM2.5 CR
on September 15, 2020 (one of the peak days) are shown in Figures 3c and 3e.
During the peak period, the wildfire PM2.5 CRs reached 41% nationwide, 81%
in the Pacific time zone, 72% in the Mountain time zone, 33% in the Central
time zone, and 10% in the Eastern time zone.
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Figure 3. Wildfire PM2.5 (a) and AOD (b) contribution ratios; simulation
differences between WDF and NOF run on September 15th, 2020, for PM2.5
(c, overlaid with observed PM2.5 exceedances) and AOD (d); and the wildfire
PM2.5 (e) and AOD (f) contribution ratio on September 15, 2020.

The thick smoke that originated from California, Oregon, and Washington was
transported across the country by the prevailing westerly wind. During Septem-
ber 14-17th, 2020, the fire smoke from the West Coast was transported to the
northeastern part of the U.S. (Figures 1b and 2c). While the fire smoke trav-
eled east, it passed 19 states, which included California, Nevada, Oregon, Wash-
ington, Idaho, Montana, Wyoming, North Dakota, South Dakota, Minnesota,
Wisconsin, Michigan, Pennsylvania, New York, Connecticut, Rhode Island, Mas-
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sachusetts, Vermont, New Hampshire, and Maine. The smoke plume was still
quite thick when it reached New Hampshire and Maine and had a measured
AOD of over 3.

Figure 3b shows the contribution of wildfire emissions to AOD during the study
period. The western wildfires contributed an average of 32% to nationwide AOD,
45% in the Pacific Coast, 45% in the Mountain region, 26% in the Central U.S.,
and 14% in the Eastern United States. On peak days, the wildfire contributed
more than 60% of the AOD nationwide, 80% in the Pacific Coast, 80% in the
Mountain region, 60% in the Central U.S., and 50% in the Eastern United
States. Although the increased AOD resulting from aloft smoke does not have
the severe health impacts of surface PM2.5, it influences a larger area than
surface PM2.5 and may affect cloud formation and regional radiative budgets,
leading to impacts on regional weather.

Impacts of air quality exceedance caused by wildfires
According to AirNow ground observations, there were 3,720 observed PM2.5
exceedances during the analysis period, with an average of 65 exceedances per
day and a maximum of 273 exceedances on September 14th, 2020. The observed
unhealthy air (PM2.5 exceedances, red circles in Figure 3c) crossed seven states
in the western U.S., including California, Nevada, Oregon, Washington, Idaho,
Montana, and Wyoming. The CMAQ simulations show that the surface smoke
might also have extended to the region without ground measurements, such as
North Dakota and South Dakota (Figure 3c). The PM2.5 exceedances are all
located in the areas with large simulated PM2.5 differences between the WDF
and NOF runs, which indicates that all the observed PM2.5 exceedances are
caused by wildfire emissions rather than other emissions, such as prescribed
burning or other anthropogenic emissions.

The results for wildfire PM2.5 national Exceedance Impact Ratio (EIR, eq 4) are
shown in Figure 4a. During the peak period, over 18% of surface area nationwide
was blanketed in the unhealthy air caused by wildfire smoke. About half of the
affected region was located in the Pacific Coast region, and the other half in
the Mountain region. Only a few areas in the central or eastern time zone were
affected by the surface PM2.5 exceedances. The wildfire PM2.5 regional EIR for
the four time zones are shown in Figure 4b. More than half of the Pacific time
zone and one third of the area in the Mountain time zone experienced surface
PM2.5 exceedances.
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Figure 4. National (a) and Regional (b) wildfire PM2.5 Exceedance Impact
Ratio (%).

4 Conclusion
In the summer of 2020, the Western United States experienced a record-breaking
wildfire season, with the highest FRP in September 2020 in the past 19 years.
The CMAQ system with GBBEPx biomass burning and the newly added Sofiev
plume rise scheme were used to simulate the 2020 record-breaking wildfire season.
The model simulation successfully reproduced the plume dispersion. More than
96% of the polluted area was successfully reproduced during the most polluted
days.

From late August to early October, the West Coast wildfires contributed 23% of
surface PM2.5 pollution nationwide. More than 40% of the PM2.5 pollution came
from the western wildfires (the Pacific and Mountain time zones). During the
peak days, the wildfire contribution to surface PM2.5 reached 81% in the Pacific
coast, 72% in the inter-Mountain region, and 41% across the entire country.
Even in the Eastern time zone, which is far away from the source region, the
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model estimates that there is 10% of the total PM2.5 pollution came from the
West Coast wildfires.

The thick fire smoke that originated in California, Oregon, and Washington was
injected into the free troposphere and transported across the country through
the prevailing wind, which caused hazy days in 19 states. On the peak days,
more than 60% of the nationwide AOD was caused by wildfire emissions. Specif-
ically, 80% in the Pacific and Mountain region, 60% in the Central US, and 50%
AOD in the Eastern U.S. were attributed to wildfire plumes. Although the in-
creased AOD caused by the aloft smoke did not have severe health impacts
compared to surface PM2.5, it influenced a larger area than surface PM2.5 and
might have further influence on cloud formation and earth radiative budget,
which would impact regional weather as well as global climate.

Finally, the West Coast wildfires caused 3,720 observed PM2.5 exceedances dur-
ing the analysis period, with an average of 65 exceedances per day, and a max-
imum of 273 exceedances on September 14, 2020. The observed unhealthy
air (PM2.5 exceedances based on the EPA AirNow observations) crossed seven
states in the western United States. The surface smoke may also extend to
regions where there are no ground measurements in North Dakota and South
Dakota based on our CMAQ simulation. During the peak days, over 18% of the
CONUS was blanketed by the unhealthy air caused by wildfire smoke. Follow-
ing research will be conducted on exploring the impacts of wildfire pollution on
human health.
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