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Abstract

A new analytical model is presented in order to better understand the depth-dependent wave-induced steady current caused by

submerged aquatic canopy-oscillatory flow interaction. The analytical model takes into account the wave and canopy properties.

The model is developed by determining the dominant terms in the momentum equation by means of dimensional analysis and

satisfying the mass conservation. The dimensional analysis reveals that the pressure gradient (due to wave decay) is of the same

order of magnitude as the drag force, wave stress and Reynolds stress terms. In addition, the balance between the pressure

gradient and mass conservation induces a seaward current above the canopy, and the presence of the pressure gradient in the

momentum equation contributes to intensify the skimming flow at the top of the canopy. Finally, given that the model follows

a polynomial function it can be easily implemented in large scale models such as phase average models.
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Key Points:10

• A new analytical model is presented for wave-induced steady current by perform-11

ing a dimensional analysis12

• The model reveals that the wave decay (pressure gradient) contributes to wave-13

induced steady current14

• The steady current is driven by the pressure gradient, wave-steady current inter-15

action drag, and wave and Reynolds stress gradient terms16
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Abstract17

A new analytical model is presented in order to better understand the depth-dependent18

wave-induced steady current caused by submerged aquatic canopy-oscillatory flow in-19

teraction. The analytical model takes into account the wave and canopy properties. The20

model is developed by determining the dominant terms in the momentum equation by21

means of dimensional analysis and satisfying the mass conservation. The dimensional22

analysis reveals that the pressure gradient (due to wave decay) is of the same order of23

magnitude as the drag force, wave stress and Reynolds stress terms. In addition, the bal-24

ance between the pressure gradient and mass conservation induces a seaward current above25

the canopy, and the presence of the pressure gradient in the momentum equation con-26

tributes to intensify the skimming flow at the top of the canopy. Finally, given that the27

model follows a polynomial function it can be easily implemented in large scale models28

such as phase average models.29

Plain Language Summary30

Submerged aquatic canopies are present worldwide modifying the surrounding coastal31

flow (such as mean onshore currents and wave orbital velocities) and dissipating incom-32

ing wave heights. Nonetheless, the mechanism and dominant terms in generating wave-33

induced steady currents under submerged canopies-wave interaction is not well under-34

stood. By applying dimensional analysis to 2-D momentum equation along with parametriza-35

tions to the wave stress gradient and pressure gradient (wave decay) terms, we observed36

that the wave-induced steady current can be split in three regions: above the canopy top37

where the steady current goes seaward, at the canopy top where the current goes shore-38

ward, and inside the canopy where the current is very weak compared to the previous39

regions (less than 10% the above-canopy orbital velocity). This simplified model can give40

us insights about the residence time, horizontal nutrient and sediment transport processes41

in coastal canopies, and can be easy to implement in large scale coastal models.42

1 Introduction43

Aquatic canopies cover large areas in shallow coastal waters are among the most44

biologically diverse and productive components of coastal systems. Canopy meadows are45

net sink for atmospheric CO2 (Duarte et al., 2010) and provide a wide range of ecosys-46

tem services (Chen et al., 2019). From the hydrodynamic perspective, aquatic canopies47

are an efficient system to dissipate energy from waves and surges by increasing damp-48

ing thus protecting and preventing coastal shores from erosion (Maxwell et al., 2017; Foster-49

Martinez et al., 2018). These canopies are exposed to long waves (shallow water wave50

conditions) where the oscillatory flow dominates hydrodynamics and turbulent features51

(Abdolahpour et al., 2020).52

The vegetation-oscillatory flow interaction begins with the dissipation of the incom-53

ing wave due to the work done by the canopy elements (Dalrymple et al., 1984; Kobayashi54

et al., 1993; Losada et al., 2016; Lei & Nepf, 2019), the wave orbital velocity attenua-55

tion inside the canopy due to the drag resistance by the stems against the flow (Lowe56

et al., 2005; Abdolahpour et al., 2016), and the generation of turbulence within the stems57

(wake scale) (Nepf, 2012; Tanino & Nepf, 2008; Zhang et al., 2018).58

The reduction in the wave orbital velocity magnitude by the stems generates a strong59

discontinuity in the horizontal orbital velocity component (a shear layer) at the top of60

the submerged canopy enhancing the vertical mixing across the top of the canopy by a61

Kelvin-Helmholtz-type vortex instability (KH). The KH can occur if the wave excursion62

is much larger than the canopy drag length scale and the inertia of the flow overcomes63

the viscosity (Abdolahpour et al., 2016; Ghisalberti & Nepf, 2002; Ghisalberti & Schlosser,64

2013). This shear layer causes the discrepancy in the Stokes drift velocity at the top of65
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the canopy compared with the non-dissipative linear wave theory (Jacobsen, 2016). Re-66

cently, Abdolahpour et al. (2020) highlighted that the vertical mixing due to the shear67

layer and the advective transport by a steady current shoreward, have serious implica-68

tions on the residence time (i.e., the time scale of water parcels retained within the canopy),69

which in turn have biogeochemical implications.70

To date, few studies have been developed regarding the steady current shoreward71

in aquatic canopy-wave interaction (wave-induced steady current). Experimental and field72

studies reported that the presence of a shear layer near the top of the coastal canopy in-73

duces a streaming flow (analogous to streaming flows in wave boundary layers) as func-74

tion of the drag forces creating a steady current shoreward (Luhar et al., 2010, 2013).75

Luhar et al. (2010) showed both analytically and experimentally that the work done by76

the stems on the flow produces a nonzero time-averaged wave stress at the top of the canopy,77

estimating a depth-integrated steady current. This nonzero wave stress hypothesis was78

later validated using a Reynolds Averaged Navier-Stokes-Volume of Fluid numerical model79

(RANS-VOF) in Chen et al. (2019). Nonetheless, recently, Abdolahpour et al. (2017, 2020)80

demonstrated that the steady current shoreward has a strong gradient along the water81

depth for submerged canopies with a maximum value at the top of the canopy. This max-82

imum value not only depends on the drag forces but also on the wave orbital excursion83

(wave parameter). In addition, van Rooijen et al. (2020), using a shallow water equa-84

tion model (SWASH), determined that along with the wave stress and the drag force,85

the Reynolds stress tensor plays a relevant role in the steady current generation.86

From this background, it is clear that the role of the dominant terms in the mo-87

mentum equation, involved in the wave-induced steady current, is not yet well under-88

stood. A first step towards this goal is the development of an analytical model able to89

represent the main features of the steady current profile along the water column, which90

could be easily applied in large scale coastal models (particularly phase averaged models).91

To take a step forward in our understand of the wave induced steady current by92

canopy vegetation-wave interaction, the aim of this work is to answer two main ques-93

tions: 1) what are the dominant terms in the momentum equation involved in the wave-94

induced steady current under aquatic canopies-wave interaction? and 2) is it possible95

to develop a simplified analytical model capable to estimate the depth-dependent wave-96

induced steady current as a function of the wave parameters and canopy properties?.97

In this work, an analytical model for the long wave induced steady currents is de-98

veloped and compared against experimental data for rigid canopies, and against the nu-99

merical simulations from a RANS-VOF model for flexible canopies. The paper is struc-100

tured as follows: in Section 2 the analytical model is obtained by scaling the 2D Navier-101

Stokes equations, and parameterizing the wave and Reynolds stress terms. In section 3102

the analytical model is validated against experimental data for rigid canopies and nu-103

merical RANS data for flexible elements. In addition, a discussion and general overview104

on wave-induced steady current is presented. Finally, the conclusions and future work105

are highlighted in section 4.106

2 Development of the analytical model107

2.1 Scaling the momentum equation108

In this section, a 1D model for wave-induced steady currents shoreward is going109

to be presented. Following Cáceres-Euse et al. (2020), the model assumptions are sum-110

marized as:111

1. the cross-stream direction is negligible compared to the stream-wise (wave prop-112

agation axis),113
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2. the seagrass-oscillatory flow environment can be assumed horizontal and paral-114

lel, and115

3. the hydrostatic approximation is valid.116

Under these hypothesis, the 2D momentum and mass conservation equations for the hor-117

izontal and vertical velocities and for the pressure are:118

∂u

∂t
+
∂u2

∂x
+
∂wu

∂z
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂z2

)
+ FD, (1)

119

∂p

∂z
= −ρg, (2)

120

∂u

∂x
= −∂w

∂z
, (3)

where ν and g are the kinematic fluid viscosity and the gravitational acceleration, re-121

spectively, FD is the canopy resistance and ρ the density of seawater.122

To determine the dominant terms for the wave-induced steady currents in the mo-123

mentum equation, a scaling analysis is performed to equation (1). The reference vari-124

ables for the scaling are, the wavelength, λ; the local water depth, h; a characteristic time125

scale of several wave periods, β = αT (with α >> 1); the characteristic wave-induced126

horizontal steady current, Û ; and the characteristic vertical velocity, Ŵ . Accordingly,127

the following non-dimensional variables are defined:128

u∗ =
u

Û
, w∗ =

w

Ŵ
, p∗ =

p

ρgh
, x∗ =

x

λ
, z∗ =

z

h
, t∗ =

t

β
. (4)

From the mass conservation equation (3) it follows that: Û
λ ∼

Ŵ
h , and thus, the char-129

acteristic vertical velocity can be defined as Ŵ ∼ Ûh/λ and the momentum equation130

(1) reads:131

Û

β

∂u∗

∂t∗
+
Û2

λ

∂u∗
2

∂x∗
+
Û2

λ

∂w∗u∗

∂z∗
= −gh

λ

∂p∗

∂x∗
+ ν

(
Û

λ2
∂2u∗

∂x∗2
+
Û

h2
∂2u∗

∂z∗2

)
+ F ∗D. (5)

At this point we remark that λ >> h since we are dealing with the shallow water wave132

regime. The last term in equation (5) represents the canopy resistance and will be anal-133

ysed in detail later. From the above, O(β) ∼ 101 to 102, O(λ) ∼ 101 to 102, O(h) ∼134

100, and O(Û) ∼ 10−1 to 100; thus, O(Û/β) ∼ O(Û/λ2) ∼ O(Û/h2) << 1 and the135

momentum equation (5), where the gradients are non-dimensional, reduces to:136

Û2

λ

∂u∗
2

∂x∗
+
Û2

λ

∂w∗u∗

∂z∗
= −gh

λ

∂p∗

∂x∗
+ F ∗D. (6)

Owing to the advective terms on the left hand side of equation (6) have the same order137

of magnitude, they can be grouped as:138

Û2

λ

∂u∗
2

∂x∗
+
Û2

λ

∂w∗u∗

∂z∗
≈ Γ

Û2

λ

∂w∗u∗

∂z∗
, (7)

where Γ = O(1) and consequently the momentum equation is:139

Û2

λ

∂w∗u∗

∂z∗
= −gh

λ

∂p∗

∂x∗
+ F ∗D, (8)

or in dimensional variables as,140

∂wu

∂z
= −1

ρ

∂p

∂x
+ FD. (9)
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The drag and inertial forces included in the canopy resistance FD can be expressed141

by the Morrison equation (Dalrymple et al., 1984), as142

FD =
1

2
CdAvu | u | +AvavCM

∂u

∂t
, (10)

where av is the diameter of the stem, Av = avNv is the frontal canopy area per unit143

volume with Nv the number of canopy elements per unit area and Cd and CM the drag144

and inertial coefficients respectively. The nondimensial form of equation (10) is:145

F ∗D =
1

2
CdAvÛ

2u∗ | u∗ | +CMAvav
Û

β

∂u∗

∂t∗
, (11)

with Û2u∗ | u∗ |>> Û/β(∂u∗/∂t∗) since Cd ∼ CM (see for instance Lowe et al. (2005);146

Etminan et al. (2019)) and the dimensional momentum equation (9) ends,147

∂wu

∂z
= −1

ρ

∂p

∂x
+ FD, FD =

1

2
CdAvu | u | . (12)

Equation (12) represents the dominant terms in the momentum equation involved148

in the steady flow generated by submerged canopies in long wave conditions. Note that149

the pressure gradient is of the same order of magnitude as the vertical component of the150

advection (as well as of the drag force) contradicting previous studies that neglected this151

contribution given its unclear role on the generation of the wave-induced steady currents152

(Luhar et al., 2010, 2013; van Rooijen et al., 2020).153

2.2 Time averaging and analytical solution154

In this section, a time averaging over several wave periods is performed to equa-155

tion (12) to determine the magnitude of the wave-induced steady currents. To calculate156

the wave-induced steady currents we average equation (12) over several wave periods.157

The horizontal and vertical velocities u = (u,w) are decomposed as,158

u(z, t) = um(z, t) + u′(z, t), um(z, t) = u(z, t) + ũ(z, t), (13)

where um are the mean velocity components (waves plus steady currents), u the time-159

independent mean velocity components, ũ the wave orbital velocity components and u′160

the turbulent velocity components. Recall that by definition:161

u =
1

β

∫ t+β

t

u dt and ũ = u′ = 0. (14)

Replacing equation (13) into equation (12), applying the time averaging equation162

(14), and stating that waves and turbulence coexist but do not correlate between each163

other (Bricker & Monismith, 2007), results in wmu′ = w′um = 0. Additionally, given164

that w << u, one obtains w u ≈ 0 and, through equation (14), wũ = w̃u = 0. Thus,165

the time averaged left hand side of equation (12) can be expressed as:166

∂wu

∂z
=
∂w̃ũ

∂z
+
∂w′u′

∂z
, (15)

where w̃ũ is the time-averaged wave stress and w′u′ the time-averaged Reynolds stress.167

Now, the drag force due to the canopy elements is function of the mean flow (wave168

and steady currents) (Finnigan, 2000; Nepf, 2012; Luhar et al., 2013), so the turbulent169

fluctuations can be neglected and the averaging to FD in equation(12) can be defined170

as:171

FD = 1
2CdAv(u+ ũ) | u+ ũ |. (16)

–5–



manuscript submitted to JGR: Oceans

To simplify Eq.(16), by definition,172

| u+ ũ |≤| u | + | ũ | ⇒ (u+ ũ) | u+ ũ |≤ (u+ ũ)(| u | + | ũ |), (17)

and applying the time averaging ũ | u | = ũ | ũ | = 0, so the time-averaged momentum173

equation reduces to174

∂w̃ũ

∂z
+
∂w′u′

∂z
= −1

ρ

∂p

∂x
+

1

2
CdAv

(
u | u |+ u | ũ |

)
, (18)

where u | u | = u | u |∼ O(u2) is negligible compared to the wave-steady current in-175

teraction term u | ũ | ∼ O(uU∞). U∞ is the horizontal wave orbital velocity.176

The first term on the right hand side of equation (18) is formulated based on its177

maximum value, given its relevant role at the wavelength scale λ,178

∂p

∂x
= ρg

∂a

∂x
, (19)

where a is the wave amplitude and can be expressed as a function of x (Dalrymple et179

al., 1984; Losada et al., 2016; Luhar et al., 2017):180

a(x) =
a0

1 + ξ x
, (20)

here ξ is a wave decay parameter (Dalrymple et al., 1984), and Cd is estimated based181

on Maza et al. (2013). Thus, the pressure gradient can be approximated within the meadow182

by using the effective vegetation length scale Le as:183

∂p

∂x
≈ − ρgξa0

(1 + ξLe)2
, (21)

being Le = (V − Vm)/Av, V a control volume, and Vm the volume of vegetation in-184

side the control volume (Mazda et al., 1997). Thus, equation (18) can be finally stated185

as:186

∂w̃ũ

∂z
+
∂w′u′

∂z
=

gξa0
(1 + ξLe)2

+
1

2
CdAvu | ũ |, (22)

which is the time-averaged momentum equation dealing with the dominant terms involved187

in the wave-induced steady current released by aquatic canopy-oscillatory flow environ-188

ments. This analytically developed equation, is similar to the numerical one presented189

by van Rooijen et al. (2020), but including the pressure gradient, the Reynolds stress,190

and the wave-steady current drag force effects. In the next, additional simplifications will191

be performed in order to find an analytical solution.192

2.3 Analytical solution and parameterization193

The Reynolds stress is (Rodi, 1993):194

w′u′ = −νt
∂u

∂z
, (23)

where νt is the eddy viscosity. Regarding the wave stress term, numerical experiments195

demonstrated a maximum value at the top of the canopy and zero elsewhere (Chen et196

al., 2019; van Rooijen et al., 2020). Thus, wave stress gradients at the top of the canopy,197

z=hv, and Reynolds stress can be respectively simplified as:198 (
∂w̃ũ

∂z

)
z=hv

≈ w̃ũ

δ
≈ w̃ũ

0.2Aw
,

∂w′u′

∂z
= −νt

∂2u

∂z2
, (24)
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where δ ≈ 0.2Aw being Aw the horizontal wave orbital excursion and δ is the shear layer199

thickness (Cáceres-Euse et al., 2020). Aw = U∞T/(2π) and U∞ comes from the lin-200

ear wave theory. The definition for νt is presented in the appendix section. Addition-201

ally, applying a skin friction formulation on a rough surface leads (Lowe et al., 2005; Jensen202

et al., 1989; Infantes et al., 2012; Foster-Martinez et al., 2018):203

w̃ũ

δ
≈ −

fwU
2
∞,rms

2δ
≈ −

fwU
2
∞,rms

0.4Aw
, (25)

where U∞,rms is the root mean square of the horizontal wave orbital velocity far from204

the canopy effect and fw the friction factor coefficient (Nielsen, 1992) see appendix). Re-205

placing equation (24) into equation (22) results in:206

∂2u

∂z2
=

1

νt

(
− ga0ξ

(1 + ξLe)2
+

(
∂w̃ũ

∂z

)
z=hv

− 1

2
CdAvu | ũ |

)
. (26)

Integrating vertically twice equation (26), and assuming that the wave-steady cur-207

rent interaction term can be simplified as u << | ũ | (always below the top of the canopy),208

leads to u | ũ | ≈ Uc| ũ | and | ũ | ≤ Urmsh where Urmsh is the root mean square of the209

horizontal wave orbital velocity inside the canopy and Uc the steady current at the bot-210

tom. Additionally, Urmsh = φU∞,rms with φ < 1 is the attenuation parameter (Lowe211

et al., 2005). The time averaged momentum equation (equation 26) can be finally writ-212

ten as:213

u(z) =
z2

2νt

(
− ga0ξ

(1 + ξLe)2
+

(
∂w̃ũ

∂z

)
z=hv

− 1

2
CdAvφUcU∞,rms

)
+ C1z + C2, (27)

with C1 and C2 integration constants and with u(z) satisfying the mass conservation:214 ∫ h

0

u(z)dz ≈ 0. (28)

Finally, applying the boundary condition at the bottom, i.e. u(0) = Uc we can write:215

u(z) =

(
3z2 − 2zh

6νt

)(
−ga0ξ

(1 + ξLe)2
+ f(z)

(
w̃ũ

0.2Aw

)
− ε

2
CdAvφUcU∞,rms

)
+

Uc

(
1− 2z

h

)
, (29)

where ε = 1 for z ≤ hv and ε = 0 for z > hv, and,216

f(z) =

{
1− 1

δ | hv − z |, z ∈ [hv − δ, hv + δ]
0, z ≤ hv − δ ∧ z ≥ hv + δ,

(30)

a delta function included to activate or deactivate the effect of the wave stress at the top217

of the canopy. Finally, the steady current at the bottom can be estimated assuming that218

drag coefficients for waves and current are comparable (Luhar et al., 2010), so that,219

Uc =

√
4

3π

k

σ
U3
b , Ub =

3

4

a2σk

sinh2(kh)
, (31)

where k, and σ are the wavenumber and angular frequency, and Ub the steady current220

in absence of canopy (Longuet-Higgins, 1953).221

3 Validation and discussion of the analytical model222

The vertical profile for steady current obtained with the analytical model is tested223

in this section for rigid vegetation using experimental data from van Rooijen et al. (2020)224

–7–
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Table 1. Experimental and numerical parameters. Ur the Ursell, Re Reynolds and KC

Keulegan-Carpenter numbers.

Van Rooijen et al. 2020
ID H(m) T (s) Re KC Ur

R1 0.14 2 1043 51 4.19
R2 0.10 3 1009 74 7.86
R3 0.21 3 1845 135 16.51
R4 0.20 4 1722 169 29.45
R5 0.09 5 1182 144 21.22
R6 0.21 5 1887 230 49.42

Maza et al. 2013
ID H(m) T (s) N(m−2) h(m) Ur

CM1 0.44 3.5 180 2.4 6.91
CM2 0.49 4 360 1.8 20.26

and for flexible vegetation with numerical experiments from Maza et al. (2013). van Rooi-225

jen et al. (2020) performed experiments considering a rigid canopy under 6 different wave226

conditions. The tests were done in a 35 m long, 1.2 m deep, and 1.2 m wide wave flume.227

A Nortek Vectrino ADV measuring at 25Hz was placed at the midpoint of the canopy.228

The canopy was constructed as an staggered dowels array of 6.4 mm diameter, 30 cm229

high, approximately 3100 units per m2 density, and 2.5 m long. Water depth was equal230

to 75 cm, wave heights ranged from 9 to 21 cm and wave periods from 2 to 5 s (see Ta-231

ble 1).232

Regarding the numerical data for a flexible canopy, Maza et al. (2013) performed233

numerical simulations using a RANS-VOF model, including the stem flexibility and the234

relative displacement between the stems and the surrounding oscillatory flow. Two canopy235

density values were tested, 180 units per m2 and 360 units per m2. The stems were 55cm236

high (including their base), 1mm thick and 1cm width, and the material used to built237

them had a Young’s modulus equal to 2.9 GPa. Wave height, water depth and wave pe-238

riod were defined according to Table 1.239

3.1 Rigid canopy240

Figure 1 displays the comparison of the normalized steady current of the exper-241

imental data and the analytical model for rigid canopies. The 95% confidence interval242

of the experimental data, estimated by using the interquartile and bootstraping meth-243

ods, is also shown in the figure. Results show that for all cases tested, the steady cur-244

rent obtained by using the analytical model is always inside the confidence interval of245

the experimental data from the bottom to the canopy top. Below the top of the canopy246

the steady current is around 10% the horizontal wave orbital velocity. At the top of the247

canopy the steady current goes shoreward. This behaviour was already reported exper-248

imentally and numerically by Luhar et al. (2013, 2010); van Rooijen et al. (2020); Ab-249

dolahpour et al. (2017). Additionally, the skimming flow at the top of the canopy is well250

reproduced, and the current inside the canopy is basically depth-uniform. From the top251

of the canopy to the free surface, a seaward current is observed. This seaward current252

is identified by the model in agreement with van Rooijen et al. (2020); Luhar et al. (2010).253

Nonetheless, for R1 and R2 the analytical model presents the largest deviation with re-254

spect to the experimental data. Two possible sources of error are attributed to these dis-255

crepancies: 1) the wave height decay formulation used in the present model assumes a256
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linear wave theory, so the pressure gradient is being underestimated; and 2) the last term257

on the right hand side of Eq.(29) is a linear function dependent of the water depth and258

proportional to Uc. In addition, the seaward current above the top of the canopy is depth-259

dependent and follows a parabolic profile as demonstrated in Eq.(29). Finally, the lower260

the KC number (KC in Table 1) the least the effect by the pressure gradient on the sea-261

ward current in the analytical model (as observed in Figure 1).262

3.2 Flexible canopy263

To test the analytical model for the steady current induced in flexible canopies, the264

canopy frontal area has been modified by an stem-effective length to account for the bi-265

ased position induced by the streaming. Following Luhar et al. (2013, 2017) this length266

is function of the Cauchy (Ca) and Buoyancy (B) numbers. In addition, for the RANS267

model velocity, possible departures from the steady current due to turbulent fluctuations268

or systematic errors are not possible to be assessed by confidence intervals.269

The normalized wave induced steady currents in flexible canopies are shown in Fig-270

ure 2 showing a good performance at the top of the canopy (the shoreward current) for271

both wave conditions. Above the canopy, the seaward current from the analytical for-272

mulation and RANS model are in agreement for CM1, but not for CM2 where the an-273

alytical model presents a lower value. For flexible canopy scenarios it seems that the wave274

non-linearity influences the seaward current estimation. The higher the Ur the bigger275

the difference between the RANS and the analytical model. So, the pressure gradient276

is being underestimated for non-linear wave conditions.277

3.3 General discussions278

Concerning the steady current at mid-canopy, the profile can be split in three re-279

gions (see Figure 3). Z1, above the canopy top, shows a parabolic seaward current as280

the result of the balance between pressure gradient and mass conservation restriction (the281

linear function on the last term of the right hand side of equation (29)). Z2, at the canopy282

top, presents a skimming flow shoreward where the pressure gradient, the wave stress,283

steady current-wave drag force, and mass conservation restriction are involved. Z3, be-284

low the canopy top, presents a very low velocity magnitude where the momentum bal-285

ance is between the pressure gradient, the steady current-wave interaction drag force,286

and mass conservation restriction. Below the top of the canopy, the steady current given287

by the analytical model predicts a shoreward current while the RANS simulations and288

experimental data show a seaward current, but, u is less than 10% U∞,rms for all sce-289

narios. Nonetheless, ADV experimental data in Abdolahpour et al. (2017) and Particle290

Image Velocimetry data in van Veelen et al. (2020) reported some shoreward currents291

scenarios.292

Finally, Figure 1 and Figure 2 show an analytical solution neglecting the pressure293

gradient term where is possible to observed how this term contributes to the seaward cur-294

rent above the canopy top and intensifies the skimming flow at the top of the canopy (sce-295

narios where the pressure gradient is included). In addition, the steady current over a296

flat bottom and no canopy (upstream the canopy) (see Figure 3) presents a similar be-297

havior to a mean flow in Longuet-Higgins (1953), where a wave height decay is produced298

by the viscous dissipation when the wave interacts with the bottom (Luhar et al., 2010).299

In this region, the first term (pressure gradient) and the last term on the right hand side300

of equation (29) define the steady current profile. This result is in agreement with the301

experimental work in Luhar et al. (2010); Abdolahpour et al. (2017).302
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Figure 1. Normalized wave-induced steady current, u(z). U∞,rms is the horizontal root mean

square wave orbital velocity far from canopy effects. Orange dot-dashed line is the experimental

data, blue line the confidence interval. The continuous black and red dashed lines are the analyti-

cal model including the pressure gradients and neglecting the pressure gradient, respectively. The

horizontal dashed line indicates the canopy top.
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locity far from canopy effects. The blue corresponds to the RANS − V OF model by Maza et al.

(2013), and the continuous black and red dashed lines are the analytical model with and without

the pressure gradient, respectively.
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Figure 3. Qualitative scheme for the wave-induced steady current. Dashed line represents the

vertical axis of the velocity profile. Upstream is the steady current profile with no canopy. Mid-

canopy represents the steady current vertical profile under aquatic vegetation-wave interaction.
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4 Conclusions303

In this work we provide a step forward to a better understanding of the mechanisms304

involved in the wave-induced steady current under wave-canopy interaction by formu-305

lating a simple analytical model. The development is performed by a dimensional anal-306

ysis to the momentum equation satisfying the mass conservation. The model, expressed307

by a polynomial function, can be easily implemented in large scale phase averaged coastal308

models in order to include the wave-induced steady current created by aquatic canopies-309

wave interaction.310

The development of the analytical model revealed the dominant terms driving the311

wave-induced steady current. Some of the terms discussed in this work were introduced312

in previous studies by using numerical simulations, however, this is the first approach313

from analytical departure solving a depth-dependent wave-induced steady current. Ad-314

ditionally, the influence by the wave decay (pressure gradient) on inducing the seaward315

current above the canopy and its contribution to the skimming flow at the top of the canopy316

was also revealed in this work.317

The highest discrepancies between the analytical model and experimental/RANS318

data are observed above the canopy top, the seaward direction. These differences are at-319

tributable to the underestimation in the pressure gradient since we assumed a linear wave320

decay. Thus, the development of wave decay statements based on nonlinear wave the-321

ory is further needed.322

The wave-induced steady current can be split in three regions. Above the canopy323

top (a balance between the mass conservation restriction and pressure gradient) a sea-324

ward current is observed. At the top of the canopy a shoreward current is realised and325

intensified when including the pressure gradient term. Inside the canopy where the steady326

flow is weak compared with the other two regions. Additionally, in the present study a327

parametrization to the wave stress term is defined, however, investigations to the wave328

stress gradient term is needed in order to improve the steady current calculations.329
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5 Appendix339

The parameters used to calculate the wave-induced steady currents are defined as340

follows,341

Cd = 0.87 +

(
2200

Red

)0.88

, Red =
avU∞
ν

fw = exp

[
5.123

(
Kb

Aw

)0.1944

− 5.977

]

–12–



manuscript submitted to JGR: Oceans

ξ =
2kavCd

9π

[
9sinh(khv) + sinh(3khv)

sinh(kh)(sinh(2kh) + 2kh)

]

where Kb is the hydraulic roughness and given that the inertial term in the canopy re-342

sistance is negligible φ can be defined based on Lowe et al. (2005),343

φ =

√
Cf (1− λp)
Cdλf

where the empirical friction coefficient is assumed Cf ∼ 0.01, however, future improve-344

ments to the model can include a parametrization as function of the flow condition.345

To solved the Reynolds stress in Equation (29) a formulation based on Prantdl mixing-346

length hypothesis in Cáceres-Euse et al. (2021) has been used,347

u′w′ = −νt
∂u

∂z
⇒ u2∗ ∼ νt

U∞,rms
δ

and assuming u∗ ∼0.1U∞,rms (Lowe et al., 2005),348

νt ∼
δUrms∞

100

For simplicity, νt has been assumed constant and dependent on the wave properties and349

canopy drag.350
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Maxwell, P. S., Eklöf, J. S., van Katwijk, M. M., O’Brien, K. R., de la Torre-Castro,424

M., Boström, C., . . . van der Heide, T. (2017). The fundamental role of ecological425

feedback mechanisms for the adaptive management of seagrass ecosystems – a426

review. Biological Reviews, 92 , 1521-1538. doi: 10.1111/brv.12294427

Maza, M., Lara, J. L., & Losada, I. J. (2013). A coupled model of submerged veg-428

etation under oscillatory flow using Navier-Stokes equations. Coastal Engineering ,429

80 , 16-34. doi: 10.1016/j.coastaleng.2013.04.009430

–14–



manuscript submitted to JGR: Oceans

Mazda, Y., Wolanski, E., King, B., King, B., Akira, S., Daisuke, O., & Michimasa,431

M. (1997). Drag force due to vegetation in mangrove swamps. Mangroves and Salt432

Marshes, 1 , 193–199. doi: 10.1023/A:1009949411068433

Nepf, H. M. (2012). Flow and Transport in Regions with Aquatic Vegetation. An-434

nual Review of Fluid Mechanics. doi: 10.1146/annurev-fluid-120710-101048435

Nielsen, P. (1992). Coastal bottom boundary layers and sediment transport. world436

scientific publishing co inc.437

Rodi, W. (1993). Turbulence Models and Their Applications in Hydraulics: A State438

of the Art Review.439

Tanino, Y., & Nepf, H. (2008). Laboratory Investigation of Mean Drag in a Random440

Array of Rigid, Emergent Cylinders. Journal of Hydraulic Engineering . doi: 10441

.1061/(ASCE)0733-9429(2008)134:1(34)442

van Rooijen, A., Lowe, R., Rijnsdorp, D. P., Ghisalberti, M., Jacobsen, N. G., &443

McCall, R. (2020). Wave-Driven Mean Flow Dynamics in Submerged Canopies.444

Journal of Geophysical Research: Oceans, 125 . doi: 10.1029/2019JC015935445

van Veelen, T., Fairchild, T. P., Reeve, D., & Karunarathna, H. (2020). Exper-446

imental study on vegetation flexibility as control parameter for wave damp-447

ing and velocity structure. Coastal Engineering , 157 . doi: doi.org/10.1016/448

j.coastaleng.2020.103648449

Zhang, Y., Tang, C., & Nepf, H. (2018). Turbulent Kinetic Energy in Submerged450

Model Canopies Under Oscillatory Flow. Water Resources Research, 54 , 1734-451

1750. doi: 10.1002/2017WR021732452

–15–


