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Abstract

As the sea-ice modeling community is shifting to advanced numerical frameworks, developing new sea-ice rheologies, and

increasing model spatial resolution, ubiquitous deformation features in the Arctic sea ice are now being resolved by sea-ice

models. Initiated at the Forum for Arctic Modelling and Observational Synthesis (FAMOS), the Sea Ice Rheology Experiment

(SIREx) aims at evaluating current state-of-the-art sea-ice models using existing and new metrics to understand how the

simulated deformation fields are affected by different representations of sea-ice physics (rheology) and by model configuration.

Part I of the SIREx analysis is concerned with evaluation of the statistical distribution and scaling properties of sea-ice

deformation fields from 35 different simulations against those from the RADARSAT Geophysical Processor System (RGPS).

For the first time, the Viscous-Plastic (and the Elastic-Viscous-Plastic variant), Elastic-Anisotropic-Plastic, and Maxwell-

Elasto-Brittle rheologies are compared in a single study. We find that both plastic and brittle sea-ice rheologies have the

potential to reproduce the observed RGPS deformation statistics, including multi-fractality. Model configuration (e.g. numerical

convergence, atmospheric forcing, spatial resolution) and physical parameterizations (e.g. ice strength parameters and ice

thickness distribution) both have effects as important as the choice of sea-ice rheology on the deformation statistics. It is

therefore not straightforward to attribute model performance to a specific rheological framework using current deformation

metrics. In light of these results, we further evaluate the statistical properties of simulated Linear Kinematic Features (LKFs)
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in a SIREx Part II companion paper.

2



manuscript submitted to JGR: Oceans

Sea Ice Rheology Experiment (SIREx), Part I: Scaling1

and statistical properties of sea-ice deformation fields2

Amélie Bouchat1, Nils Hutter2, Jérôme Chanut3, Frédéric Dupont4, Dmitry3

Dukhovskoy5, Gilles Garric3, Younjoo Lee6, Jean-François Lemieux7, Camille4

Lique8, Martin Losch2, Wieslaw Maslowski6, Paul G. Myers9, Einar Ólason10,5

Pierre Rampal11, Till Rasmussen12, Claude Talandier8, Bruno Tremblay1,6

Qiang Wang27

1Department of Atmospheric and Oceanic Sciences, McGill University,Montréal, QC, Canada.8
2Alfred-Wegener-Institut, Helmholtz Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany.9

3Mercator Ocean International, Ramonville-Saint-Agne, France10
4Service Météorologique Canadien, Environnement et Changement Climatique Canada, Dorval, Qc,11

Canada12
5Center for Ocean‐Atmospheric Prediction Studies, Florida State University, Tallahassee, FL, USA13

6Department of Oceanography, Naval Postgraduate School, Monterey, California, USA14
7Recherche en Prévision Numérique Environnementale, Environnement et Changement Climatique15

Canada, Dorval, Qc, Canada16
8University of Brest, CNRS, IRD, Ifremer, Laboratoire d’Océanographie Physique et Spatiale (LOPS),17

IUEM, Brest, France18
9Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada19

10Nansen Environmental and Remote Sensing Centre, and Bjerknes Centre for Climate Research, Bergen,20

Norway21
11Institut de Géophysique de l’Environnement, CNRS, Grenoble, France22

12Danish Meteorological Institute, Copenhagen, Denmark23

Key Points:24

• Power-law scaling and multi-fractality of deformations in space and time can be25

achieved by both plastic and brittle sea-ice rheologies.26

• Scaling statistics of simulated sea-ice deformation fields depend on the model con-27

figuration and physical parameterizations.28

• Finite-difference plastic models need to be run at higher resolution than that of29

observations for deformation statistics to agree with observations.30
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Abstract31

As the sea-ice modeling community is shifting to advanced numerical frameworks, de-32

veloping new sea-ice rheologies, and increasing model spatial resolution, ubiquitous de-33

formation features in the Arctic sea ice are now being resolved by sea-ice models. Ini-34

tiated at the Forum for Arctic Modelling and Observational Synthesis (FAMOS), the Sea35

Ice Rheology Experiment (SIREx) aims at evaluating current state-of-the-art sea-ice mod-36

els using existing and new metrics to understand how the simulated deformation fields37

are affected by different representations of sea-ice physics (rheology) and by model con-38

figuration. Part I of the SIREx analysis is concerned with evaluation of the statistical39

distribution and scaling properties of sea-ice deformation fields from 35 different simu-40

lations against those from the RADARSAT Geophysical Processor System (RGPS). For41

the first time, the Viscous-Plastic (and the Elastic-Viscous-Plastic variant), Elastic-Anisotropic-42

Plastic, and Maxwell-Elasto-Brittle rheologies are compared in a single study. We find43

that both plastic and brittle sea-ice rheologies have the potential to reproduce the ob-44

served RGPS deformation statistics, including multi-fractality. Model configuration (e.g.45

numerical convergence, atmospheric forcing, spatial resolution) and physical parameter-46

izations (e.g. ice strength parameters and ice thickness distribution) both have effects47

as important as the choice of sea-ice rheology on the deformation statistics. It is there-48

fore not straightforward to attribute model performance to a specific rheological frame-49

work using current deformation metrics. In light of these results, we further evaluate the50

statistical properties of simulated Linear Kinematic Features (LKFs) in a SIREx Part51

II companion paper.52

Plain Language Summary53

The ice in the Arctic Ocean is not continuous: it breaks under the influence of winds54

and ocean currents. The fractures in the ice pack form zones of intense deformations,55

where important energy exchanges between the atmosphere and ocean take place. To56

simulate these deformations and include realistic ice dynamics in climate projections, dif-57

ferent sea-ice models have been proposed. The goal of the Sea Ice Rheology Experiment58

(SIREx) is to compare these different models and assess how realistic are the simulated59

deformations compared to those derived from satellite observations. SIREx is divided60

in two parts. In Part I (this study), we compare statistical properties of the deforma-61

tion fields, as characterized by their intensity distribution. In our companion paper for62

Part II, we compare the sea-ice deformation fields through statistics of linear deforma-63

tion features that are apparent in both observations and simulations. We show that cur-64

rent sea-ice models can reproduce realistic deformation statistics, without preference for65

a given fracturing or deformation model. We also suggest new methods for comparing66

models with observations, and we formulate recommendations for configuring more re-67

alistic sea-ice simulations.68
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1 Introduction69

Statistical properties of small-scale sea-ice dynamics derived from buoy records and70

synthetic aperture radar (SAR) imagery in the Arctic Ocean have been extensively doc-71

umented in the last two decades. Observations from the RADARSAT Geophysical Pro-72

cessor System (RGPS) show that deformations in shear and divergence (positive and neg-73

ative) define highly-localized Linear Kinematic Features (LKFs — e.g. Kwok, 2001) and74

complex spatio-temporal scaling laws describe their localization over a wide range of spa-75

tial and temporal scales (Marsan et al., 2004; Rampal et al., 2008; Stern & Lindsay, 2009;76

Marsan & Weiss, 2010). Specifically, the mean total deformation rates follow a power-77

law with increasing spatial and temporal scales and the scaling exponent of this power-78

law increases non-linearly when considering higher moments of the deformation distri-79

bution, suggesting that very large deformation rates significantly affect the mean defor-80

mation statistics (Weiss & Dansereau, 2017; Rampal et al., 2019). These properties are81

reminiscent of fully-turbulent flows, which also exhibit strong heterogeneity and inter-82

mittency and are characterized as multi-fractal processes (e.g. Benzi et al., 1984; Schmitt83

et al., 1994). As such, the observed sea-ice deformation characteristics might provide mean-84

ingful information about the underlying mechanisms governing the sea-ice mechanics.85

For example, the highly-localized LKFs have been hypothesized to result from brittle com-86

pressive shear faulting (Schulson, 2004), while the sea-ice deformation multi-fractality87

and scaling laws are sometimes associated with the presence of a threshold/trigger, stress88

relaxation, and damage/healing mechanisms (Marsan & Weiss, 2010; Weiss & Dansereau,89

2017; Dansereau et al., 2016).90

In sea-ice dynamical models, a rheology describes the relation between the applied91

load and resulting deformation, effectively representing the sea-ice mechanical response92

to the external forcing. The Viscous-Plastic (VP) rheology with elliptical yield curve (Hibler,93

1979) and its Elastic-Viscous-Plastic (EVP) variant (Hunke & Dukowicz, 1997, 2002)94

are the most widely used in regional and Global Climate Models (see for example Stroeve95

et al., 2014). In the standard VP rheology, sea ice is assumed to deform as a plastic ma-96

terial when the mechanical stresses reach prescribed critical loads in compression, shear,97

and tension (as defined by the elliptical yield curve), and as a creeping, highly-viscous98

fluid for smaller stresses. The EVP variant assumes the same physical concepts but uses99

damped artificial elastic waves that allow for an explicit numerical implementation of100

the dynamical equations. In this sense, the EVP approach can be considered as an al-101

ternative numerical solver for the VP rheology. Since its formulation, extensive work has102

been done on improving the speed and stability of the numerical schemes used for solv-103

ing the (E)VP equations (e.g. Lemieux et al., 2008, 2010; Bouillon et al., 2013; Kimm-104

ritz et al., 2016), but parallel work has also pointed out inconsistencies in its basic phys-105

ical assumptions (e.g. Coon et al., 2007). This has led to reconsideration of the classi-106

cal (E)VP rheology by, among others, adding tensile strength (Zhang & Rothrock, 2005;107

König Beatty & Holland, 2010) and developing sea-ice rheologies based on different phys-108

ical assumptions. Of these, the Elastic-Plastic-Anisotropic (EAP - Wilchinsky & Feltham,109

2006; Tsamados et al., 2013) builds upon the artificial elastic closure of the EVP approach,110

but represents anisotropy of the ice stress by parameterizing the interactions of diamond-111

shaped floes. Long-range elastic interactions have also been explicitly included in the Elasto-112

Brittle (EB) and Maxwell-Elasto-Brittle (MEB) rheologies, in which the classical plas-113

tic response of the ice was traded in favor of a brittle parameterization accounting for114

fracturing and sliding of ice along fault planes (Girard et al., 2011; Bouillon & Rampal,115

2015b; Dansereau et al., 2016).116

Sea-ice models (and sea-ice rheologies) have traditionally been evaluated by esti-117

mating the error between the simulated and observed large-scale features such as sea-118

ice drift, thickness, concentration and extent (e.g. Flato & Hibler, 1992; Kreyscher et119

al., 2000; Ungermann et al., 2017). Given that these large-scale error metrics can gen-120

erally be minimized by tuning the model thermodynamics, the sea-ice modeling commu-121
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nity has recently introduced additional metrics that specifically evaluate the small-scale122

deformation statistics with the goal of better discriminating/calibrating the different sea-123

ice rheologies. Rheology and deformation metrics are of particular interest for modelling124

applications requiring accurate small-scale deformation statistics (e.g. short-term drift125

forecasting for navigation), but also potentially for climate projections since sea-ice de-126

formations affect ice production, vertical heat and moisture fluxes, and salt rejection to127

the surface ocean. Using the observed sea-ice deformation statistics has now become com-128

mon practice to validate or constrain sea-ice rheologies (e.g. Girard et al., 2009; Bouil-129

lon & Rampal, 2015b; Spreen et al., 2017; Bouchat & Tremblay, 2017; Hutter et al., 2018).130

Specifically, the observed strain rate probability density functions (PDFs) decay expo-131

nent and the spatio-temporal scaling exponents of the total deformation rates are used132

as metrics to assess the ability of sea-ice rheologies and models to reproduce large de-133

formation events and their localization and multi-fractality properties.134

The application of these deformation metrics resulted in a debate about the abil-135

ity of the VP sea-ice rheology to reproduce the observed deformation statistics, justify-136

ing the need for the new EB/MEB rheology (Girard et al., 2009, 2011; Rampal et al.,137

2016). It has since been shown that the VP rheology is able to reproduce similar defor-138

mation characteristics as the EB/MEB rheology based on the same deformation met-139

rics (Spreen et al., 2017; Bouchat & Tremblay, 2017; Hutter et al., 2018; Hutter & Losch,140

2020), leaving open the question as to whether those metrics can be used to robustly dis-141

criminate between sea-ice rheologies, and if the deformation metrics accurately capture142

differences in the underlying deformation statistics. Additionally, deformation fields of143

other sea-ice rheologies (e.g. EAP) have not been thoroughly evaluated using the new144

set of deformation metrics as for VP and MEB rheologies. A comprehensive assessment145

of the ability of different sea-ice models and rheologies to reproduce the observed defor-146

mation statistics and the sensitivity of the deformation metrics to model parameteriza-147

tions was therefore identified by the sea-ice modeling working group at the Forum for148

Arctic Modeling and Observational Synthesis (FAMOS) Annual Meeting 2017 as a pri-149

ority for the sea-ice modeling community.150

To this end, the Sea Ice Rheology Experiment (SIREx) was devised with the goal151

of (1) understanding if the sea-ice deformation metrics, as currently applied, are useful152

to discriminate between the different sea-ice models/rheologies, and (2) determining how153

the representation of simulated sea-ice deformations can be improved to formulate rec-154

ommendations for future model development. SIREx takes the form of a model inter-155

comparison project in which participating models are not constrained by the same con-156

figuration, allowing for low-level entry participation to better determine the usefulness157

of the deformation metrics as applied to a broad range of sea-ice models. The analysis158

of the runs from all participating models/groups is divided in two parts. First, and the159

subject of the present publication, the statistical distributions (PDFs) and scaling prop-160

erties of the deformation fields are analyzed. Second, a feature-based comparison of the161

sea-ice deformation fields is performed using a recent LKF detection and tracking algo-162

rithm (Hutter et al., 2019) and is presented in a companion SIREx publication (Hutter163

et al., 2021).164

In the present paper, we analyze the deformation statistics (i.e. PDFs, spatio-temporal165

scaling, and multi-fractality) for the different sea-ice models participating in SIREx with,166

for the first time in a single comparison study, the (E)VP, EAP, and MEB sea-ice rhe-167

ologies. The goal of the paper is two-fold: (i) compare current state-of-the-art sea-ice mod-168

els against observed sea-ice deformations to understand how different physical param-169

eterizations and model configuration can impact the simulated deformation statistics,170

and (ii) evaluate the usefulness of the current deformation metrics to discriminate sea-171

ice models based on their deformation statistics and formulate more appropriate met-172

rics if found necessary.173
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The paper is organized as follows. The model specifications and observations used174

in this study are presented in Section 2. The methods used to obtain the simulated and175

observed deformation fields, as well as the deformation statistics and metrics used for176

comparison are detailed in Section 3. Results are presented in Section 4, followed by a177

discussion and recommendations for model development in Section 5. Finally, a sum-178

mary and concluding remarks are presented in Section 6.179

2 Models and Observations180

A total of 35 simulations from 11 different models contributed to the first part of181

SIREx. The participating models were not constrained to use the same forcing and they182

also vary in their spatial and temporal resolution, grid type (e.g. Eulerian vs. Lagrangian),183

physical parameterizations, numerical convergence criterion, etc. Specifically, only daily184

sea-ice velocity, thickness, and concentration fields for January-February-March of 1997185

and 2008 were requested from all participating models. These two periods were chosen186

to allow for low-level entry participation to the study, as well as to sample different ice187

dynamic conditions (i.e. pre- and post- 2000’s). Some groups provided two runs differ-188

ing only by one component, allowing us to isolate the effects of that component on the189

deformation statistics. In the following, we analyze the effects of sea ice rheology jointly190

with spatial resolution (section 4.1), ice strength (section 4.2.1), ice thickness distribu-191

tion parameterization (section 4.2.2), and atmospheric forcing (section 4.2.3). A list of192

all simulations and key sensitivity parameters are given in Table 1. Note that the FESOM-193

2 model participating in SIREx Part II does not participate in the analysis of Part I. For194

more information about the models, the reader can refer to the respective references in195

Table 1.196

All participating models provided daily output on an Eulerian grid, except for neXtSIM197

where the output were given as Lagrangian trajectories. While spatial scaling can be stud-198

ied using either Eulerian or Lagrangian deformation fields, temporal scaling requires the199

deformation history of tracked elements and therefore needs to be performed in a La-200

grangian framework. We therefore construct Lagrangian deformation fields from the Eu-201

lerian model output before assessing the deformation statistics (see details in Section 3.2).202

Note that most model output were provided as daily means, but some groups provided203

daily snapshots. We have verified (not shown) that the Lagrangian deformation statis-204

tics presented below are robust to the choice of temporal averaging of the model out-205

put (i.e. snapshots or daily means).206

The simulated deformation statistics are compared with those derived from the RADARSAT207

Geophysical Processor System (RGPS) Lagrangian motion data set. The RGPS Lagrangian208

motion data set is given as a list of trajectories (time and position) for a 10 km × 10 km209

grid that is initialized at the beginning of the winter season over the central Arctic Ocean210

for different satellite passes (i.e. streams), tracked using sequential synthetic aperture211

radar (SAR) images (Kwok, 1998). The nominal spatio-temporal resolution of the RGPS212

Lagrangian data set is T ∗ = 3 days and L∗ = 10 km, however sampling of the RGPS213

Lagrangian data set is non-uniform given that trajectories are not always updated on214

the same days or at the same times or can be missing if the tracking on the SAR images215

was unsuccessful. For this reason, a pre-processing of the trajectories (see Section 3.1)216

is necessary to eliminate temporal inconsistencies that can affect the resulting sea-ice de-217

formation statistics (e.g. Bouchat & Tremblay, 2020).218

3 Methods219

3.1 Pre-Processing of RGPS Lagrangian Trajectories220

To ensure temporal consistency of the RGPS deformation field, we use the Weighted-221

Average pre-processing method (Hutter et al., 2019; Bouchat & Tremblay, 2020), which222
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consists in keeping only trajectories forming cells that have (i) simultaneous (± 3 hours)223

start and end times for all fours corners, (ii) an average time resolution for all corners224

that corresponds to the nominal temporal resolution of T ∗ = 3 days, and (iii) an area225

corresponding to the nominal spatial resolution of L∗ = 10 km. We also require that226

all corner positions remain at least 100 km away from land for the present analysis. The227

remaining trajectories are then used to compute the Lagrangian strain rates (see e.g. Equa-228

tions 1–5 below) and the resulting time series of strain rates for each cell are then av-229

eraged in regular 3-day intervals (using a weighted-average of contributing strain rate230

estimates) starting on January 1st each year. For more information on the pre-processing231

of the RGPS Lagrangian trajectories and the resulting observed strain rate data set, we232

refer the reader to Bouchat and Tremblay (2020).233

3.2 Constructing Simulated Lagrangian Trajectories and Deformation234

Fields235

To construct simulated Lagrangian trajectories and deformation fields from Eule-236

rian model output, we track artificial Lagrangian quadrangle cells that are initialized with237

the 10-km RGPS Lagrangian positions on 1 January 1997 and 2008. Model trajectories238

are integrated in their respective grid projection using 1-hour time increments to pre-239

vent trajectories from crossing multiple grid cells during one integration step. At the be-240

ginning of each hour, the daily mean or snapshot sea-ice velocity field (u, v) is first lin-241

early interpolated in time to the current integration time, and then spatially interpo-242

lated onto the trajectories’ positions using a Great-Circle distance-weighted linear in-243

terpolation of the four nearest velocity components (e.g. Madec, G. and NEMO System244

Team, 2019). Trajectories are integrated until March 31, unless they drift to within 100 km245

of the model landmask in which case they are terminated. When the Lagrangian inte-246

gration is done, the hourly model trajectories are sampled at the beginning of the same247

regular 3-day intervals as for the RGPS Weighted-Average data set. In the case of data248

gap in the RGPS data set, we remove the corresponding simulated trajectory to min-249

imize the effects of the different spatio-temporal coverage on the deformation statistics.250

Note that the initialization of the model trajectories with RGPS positions and the 3-day251

temporal sampling ensure that the nominal spatial and temporal resolutions of the sim-252

ulated Lagrangian deformation fields are the same as for the RGPS observations (i.e. L∗ =253

10 km and T ∗ = 3 days), regardless of the original resolution of the model.254

The strain rates (velocity gradients) and cell area A are then computed for each255

cell using the line integral approximations (e.g. Lindsay & Stern, 2003):256

∂u

∂x
=

1

A

4∑
k=1

1

2
(uk+1 + uk) (yk+1 − yk) , (1)

∂u

∂y
=

−1

A

4∑
k=1

1

2
(uk+1 + uk) (xk+1 − xk) , (2)

∂v

∂x
=

1

A

4∑
k=1

1

2
(vk+1 + vk) (yk+1 − yk) , (3)

∂v

∂y
=

−1

A

4∑
k=1

1

2
(vk+1 + vk) (xk+1 − xk) , (4)

with,

A =
1

2

4∑
k=1

(xkyk+1 − xk+1yk) , (5)

where (xk, yk) is the position of the cell vertex k at time t (k = 1, 2, 3, 4; counterclock-257

wise with x5 = x1 and similar cyclical identities for y5, u5, and v5) and (uk, vk) = (∆xk

∆t , ∆yk

∆t ),258
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their approximate velocity during the time interval ∆t. The spatial scale of the strain259

rate estimate is L =
√
A, and its temporal scale is T = ∆t = T ∗ = 3 days. Following260

Bouchat and Tremblay (2020), all cells where A ≤ 50, or A ≥ 200 km2 are removed261

in order to only keep cells that are representative of the nominal spatial scale (L∗ = 10262

km).263

The strain rate invariants (ie. divergence ϵ̇I , and shear ϵ̇II) and total deformation264

rates (ϵ̇tot) are obtained as:265

ϵ̇I =
∂u

∂x
+

∂v

∂y
, (6)

ϵ̇II =

[(
∂u

∂x
− ∂v

∂y

)2

+

(
∂u

∂y
+

∂v

∂x

)2
]1/2

, (7)

ϵ̇tot =
√
ϵ̇2I + ϵ̇2II . (8)

3.3 Deformation Statistics and Associated Metrics266

We detail below the deformation statistics used in this study (i.e. probability den-267

sity functions of shear and absolute divergence, spatio-temporal scaling of the mean to-268

tal deformation rates, and multi-fractal scaling analysis) along with their usual compar-269

ison metrics.270

3.3.1 Probability density functions (PDFs)271

PDFs for the shear and absolute divergence are used to evaluate the ability of sea-272

ice models to reproduce large deformation rates and to characterize their statistical dis-273

tribution. The observed RGPS PDFs of strain rate invariants are heavy-tailed and de-274

cay approximately linearly in log-log plots (e.g. Girard et al., 2009, 2011; Bouillon & Ram-275

pal, 2015b; Bouchat & Tremblay, 2017; Rampal et al., 2019).276

Here, the PDFs are obtained using logarithmic bins and the typical metric used to277

compare the observed and simulated PDFs is the decay exponent of the tail, obtained278

as the slope of a least-square linear fit in log-log space. We do not fix the fitting inter-279

val, but rather use an interval of one order of magnitude ending on the largest deforma-280

tion bin available (or use the maximum available fitting interval if the PDFs spans less281

than one order of magnitude). We do this because models do not necessarily reproduce282

deformation rates as large as in the RGPS distributions. Note that it has recently been283

shown that a power-law distribution is not a suitable hypothesis for the observed RGPS284

PDFs based on a goodness-of-fit test (Bouchat & Tremblay, 2020). We therefore con-285

sider that a linear fit is sufficient to obtain an estimate of the decay exponent (e.g. as286

opposed to using the more robust Maximum Likelihood Estimator) until a better descrip-287

tion of the observed deformation distribution is known.288

3.3.2 Spatio-temporal scaling analysis of the mean total deformation289

rates290

We use the coarse-graining procedure with data-quality weights described in Bouchat291

and Tremblay (2020) to generate deformation fields at larger scales and investigate the292

spatial and temporal scaling of the mean total deformation rates, i.e.:293

⟨ϵ̇tot(L, T )⟩ ∼ L−β , (9)
⟨ϵ̇tot(L, T )⟩ ∼ T−α , (10)

–8–
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where ⟨·⟩ denotes the distribution weighted average, L and T are the spatial and tem-294

poral scales of the coarse-grained deformation estimates, and β and α are the spatial and295

temporal scaling exponents.296

The values of β and α characterize the degree of spatial and temporal localization297

of the mean total deformation rates, and are used as metrics to compare the observed298

and simulated spatio-temporal scaling. The spatial scaling exponent β varies between299

0 (deformation field is homogeneous in space) and 2 (deformations are highly localized300

in space), while the temporal scaling exponent α varies between 0 (deformations field301

is homogeneous in time) and 1 (deformations are highly localized in time). Here, β and302

α are obtained using least-square power-law fits on the average total deformation rates303

⟨ϵ̇tot(L, T )⟩ for a given range of spatial and temporal scales. We restrict the spatial scal-304

ing to scales 10 ≤ L ≤ 600 km and the temporal scaling to scales 3 ≤ T ≤ 30 days to305

minimize the effects of the reduced spatio-temporal coverage at larger scales.306

Using data-quality weights to obtain the distribution average at each scale results307

in giving more weight to the tail of the distribution where interesting sea‐ice dynami-308

cal features are represented (e.g., LKFs) and where deformation rates have smaller rel-309

ative errors. As discussed in Section 4.1.2, this improves the interpretation of the scal-310

ing exponent metrics as a measure of localization of deformations when applied to sim-311

ulated deformation fields. The data quality is defined by the signal-to-noise ratios which312

are obtained by estimating the Lagrangian trajectory errors. The details of the signal-313

to-noise ratio calculations for RGPS and simulated Lagrangian trajectories can be found314

in Appendix A.315

3.3.3 Multi-fractal analysis316

The spatio-temporal scaling analysis described for the mean total deformation rate317

above is repeated for higher moments q to construct β(q) and α(q), the spatial and tem-318

poral structure functions, i.e.:319

⟨ϵ̇qtot(L, T )⟩ ∼ L−β(q) , (11)
⟨ϵ̇qtot(L, T )⟩ ∼ T−α(q) . (12)

It has usually been assumed that the structure functions β(q) and α(q) for sea-ice to-
tal deformation rates are quadratic, e.g. β(q) = aq2+bq, where a has been interpreted
as the degree of multi-fractality of the scaling (e.g. Bouillon & Rampal, 2015b; Hutter
et al., 2018; Rampal et al., 2019; Bouchat & Tremblay, 2020). However, following the
universal multi-fractal formalism, the structure functions are not required to be quadratic
and can have a varying degree of non-linearity, which is then more correctly interpreted
as the degree of multi-fractality (Lovejoy & Schertzer, 2007, 2013). Here, we do not as-
sume a fixed degree of multi-fractality and instead find a general least-square fit for the
structure functions of the following form (in full agreement with the universal multi-fractal
formalism — e.g. Lovejoy & Schertzer, 1995, 2007; Weiss, 2008):

β(q) = q − ζ(q) , (13)

with,
ζ(q) = qH −K(q) , (14)

and
K(q) =

C1

µ− 1
(qµ − q) , (15)

such that we can write:

β(q) =

(
C1

µ− 1

)
qµ +

(
1−

(
H +

C1

µ− 1

))
q , (16)

–9–



manuscript submitted to JGR: Oceans

where H is a fluctuation exponent, K(q) is the universal multi-fractal moment scaling320

function, C1 (0 ≤ C1 ≤ 2) characterizes the degree of heterogeneity (or sparseness)321

of the field, and µ (0 ≤ µ ≤ 2) is the degree of multi-fractality (µ = 0 for a mono-322

fractal process, and µ = 2 for a log-normal multiplicative model with maximal degree323

of multi-fractality). An equivalent formulation applies for the temporal structure func-324

tion α(q).325

In the following, the values of the three multi-fractal parameters H, C1, µ are used326

as metrics to compare the observed and simulated multi-fractal structure functions.327

4 Results328

Results for low-resolution model runs (∆x = 9–12 km) are presented separately from329

high-resolution model runs (∆x = 2–5 km), even if their Lagrangian deformation fields330

are reconstructed at the same nominal spatial scale of L∗ = 10 km. In fact, Eulerian331

models with finite-difference schemes will resolve the sea-ice dynamics with different lev-332

els of complexity as their spatial resolution changes (e.g. Spreen et al., 2017; Williams333

& Tremblay, 2018). It is therefore expected that higher resolution runs will resolve finer334

deformation features in their Lagrangian deformation fields, affecting the result of the335

deformation metrics. For instance, consider the observed sea-ice deformation field sam-336

pled at L∗=10 km. The deformation statistics at this scale are the result of underlying337

dynamics occurring at much finer scales (e.g. fractures at the sub-km scales). The ob-338

served deformation fields sampled at L∗=10 km are therefore much more rich in infor-339

mation than model deformation fields that are generated (rather than sampled) at the340

same nominal spatial scale, unless sub-grid parameterization are used and calibrated. De-341

grading the observed deformation fields to larger spatial scales could help minimizing this342

discrepancy when comparing the observed and simulated deformation statistics, but only343

if the degraded spatial scales are much larger than the nominal spatial scales at which344

models are run (e.g. observations at L ∼ 50 − 100 km vs. models at L ∼ 10 km), in345

which case the range of scales available for determining the observed statistical charac-346

teristics (e.g. spatio-temporal localization) becomes too small. Note that we also con-347

sider atmosphere-ice-ocean coupled model simulations (with forcing fields at much higher348

spatio-temporal resolution) separately from coupled ice-ocean models (or stand-alone ice349

models) forced with reanalyses (see Section 4.2.3).350

In the following sections, the agreement between models and observations is inter-351

preted in terms of the RGPS interannual variability. That is, metrics are first obtained352

for all years in the RGPS record and, unless stated otherwise, the full RGPS distribu-353

tion is used as a range defining a good agreement between models and observations.354

4.1 Effects of sea-ice rheology355

4.1.1 Probability Density Functions356

Most of the simulated PDFs of shear and absolute divergence decay approximately357

linearly in log-log plot, with a wide range of simulated decay exponents (Figures 1–4,358

top panels). We note that very different distributions can lead to very similar decay ex-359

ponents, suggesting that this metric does not adequately capture differences in the de-360

formation fields (for example, compare RGPS with HYCOM-CICE (FSU) in Figure 3,361

or with IFREMER (e=1) in Figure 2). We therefore define a new metric as the sum of362

the absolute difference between the simulated and observed PDFs in logarithmic scale,363

divided by the number of bins spanned by the simulated PDF. Dividing by the number364

of bins ensures that the metric penalizes models that do not simulate sufficiently large365

deformation rates and have a smaller number of bins. An advantage of this metric is that366

differences in the tail of the PDFs (i.e. where probabilities are small, but represent larger367

deformation rates that are likely to affect climate interactions or operational applications)368
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Figure 1. Top: Probability density functions (PDFs) of maximum shear rate (left) and abso-
lute divergence (right), for low-resolution runs (∆x ≃ 10 km) and RGPS observations (black) at
L=10 km and T=3 days in January-February-March 1997. Each run is identified in the lower-left
panel by a different color corresponding to its sea-ice rheology (Blue/Purple: VP, Pink/Red:
EVP, Yellow: EAP, Green: MEB) and insets give the decay exponents kϵ̇II and kϵ̇I ; Bottom:
Difference (per bin) between the logarithm of models and RGPS PDFs. The insets give the av-
erage absolute difference per bin, where bold font marks values that are equal to or less than the
RGPS interannual average obtained using all other RGPS years in comparison to 1997.

are given more weight by using a logarithmic scale. To interpret the value of the met-369

ric, we compute its interannual variability for all available RGPS observations, using ei-370

ther the RGPS PDFs of 1997 or 2008 as the reference and computing the difference met-371

ric with all other years in the RGPS data set. We then use the mean value of the RGPS372

PDFs difference metric for each comparison year (one value for 1997 and another for 2008)373

as an upper threshold defining a reasonable agreement between models and observations.374

These reference mean values, as well as the mean difference per bin (in logarithmic scale)375

for the RGPS data set are shown in Figures 1–4 (bottom panels) for comparison.376

Out of all low-resolution runs, we find that only the neXtSIM simulations show an377

agreement with the observed PDFs (Figures 1–2, bottom panels). This reflects a clear378

underestimation of the range over which the PDFs extend (i.e. smaller number of bins),379

along with a drop in probabilities in the respective last bins of the PDFs for low-resolution380

runs with plastic rheologies ((E)VP, EAP). Only the neXtSIM model (MEB) captures381

deformations in the largest observed bins at low-resolution. Modifying the plastic ellip-382

tical yield curve parameters at low resolution helps increasing the range over which the383

PDFs extend and also reduces the drop in the tail, especially in divergence (see also Sec-384

tion 4.2.1).385
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Figure 2. Same as Figure 1 for low-resolution runs (∆x ≃ 10 km) in January-February-March
2008.
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Figure 3. Same as Figure 1 for high-resolution runs (∆x ≃ 2-5 km) in January-February-
March 1997.
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Figure 4. Same as Figure 1 for high-resolution runs (∆x ≃ 2-5 km) in January-February-
March 2008.

Increasing the spatial resolution of the models generally improves the agreement386

of simulated PDFs with observations (Figures 3–4). This can be attributed in part to387

a refinement of LKFs in which deformation rates increase at higher resolution (e.g. Spreen388

et al., 2017; Williams & Tremblay, 2018), and in part to an increased spatio-temporal389

LKF density (Hutter et al., 2021). We find that high-resolution runs with the (E)VP rhe-390

ology (i.e. the only rheology represented by the very-high resolution runs) can reproduce391

PDFs that agree reasonably well with the RGPS shear and absolute divergence simul-392

taneously. However, some EVP runs at high-resolution still poorly agree with the RGPS393

PDFs, even if the range of the simulated PDFs is improved compared to low-resolution394

EVP runs (see e.g. HYCOM-CICE (FSU) and ANHA 4km). We hypothesize that this395

reflects a numerical artifact originating from insufficient subcycling with the EVP ap-396

proach. In the EVP equations, an artificial elastic strain is added to the VP rheology397

to allow explicit solving of the momentum equations. Within each advective time step,398

small iteration steps (subcycling) are used to explicitly advance the solution, while damp-399

ing the artificial elastic waves in order to recover a solution that approximates a VP so-400

lution. When using too few subcycles with the EVP solver, the solution is noisy with large401

residual errors, and the probability of simulating large deformation rates is significantly402

reduced (Lemieux et al., 2012; Kimmritz et al., 2015). While we cannot explicitly check403

their numerical convergence, we note that noise is present in the EVP deformation fields404

analyzed here (results not shown), and that the EVP runs poorly agreeing with the ob-405

served RGPS PDF consistently use a small number of subcycles (and vice-versa: EVP406

runs showing a good PDF agreement also use a large number of subcycles — see e.g. ANHA407

4km: 120 subcycles, vs. RIOPS: 900 subcycles in Figure 4). We therefore hypothesize408

that the high-resolution EVP runs showing a poor PDF performance here are also af-409

fected by large residual errors originating from undamped elastic waves and too few sub-410

cycles. This could explain the lower performance of EVP compared to VP for low-resolution411

runs as well, but it remains to be validated with further experiments.412
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4.1.2 Spatio-Temporal Scaling and Coupling413

The spatio-temporal scaling analysis of simulated deformation rates has typically414

been investigated without using data-quality weights (Girard et al., 2009; Bouillon & Ram-415

pal, 2015a; Spreen et al., 2017; Bouchat & Tremblay, 2017; Hutter et al., 2018; Rampal416

et al., 2019). Considering high-resolution sea-ice simulations, Hutter and Losch (2020)417

showed that the spatio-temporal scaling exponents depend on the LKF density, such that418

a run with fewer LKFs returned lower scaling exponents. However, lower scaling expo-419

nents are also expected for diffuse deformation fields (see Section 3.3.2). We find here420

that the spatial scaling exponents for simulated deformation fields with few but highly-421

localized deformations can in fact be comparable to those for deformation fields with ob-422

viously less localized deformations when the data quality (signal-to-noise ratio) is not423

used to weight the deformation estimates in the scaling analysis (see example in Figure 5a).424

In contrast, using the signal-to-noise ratios to weight the simulated deformation distri-425

bution helps to distinguish between both cases, as the scaling exponents increase for sim-426

ulations with highly-localized deformation features, while they remain low for more dif-427

fuse deformation fields (Figure 5b). This is in agreement with Bouchat and Tremblay428

(2020) who showed that signal-to-noise ratio weights enhance the spatio-temporal scal-429

ing exponents of RGPS observations due to the added weight in the tail of the distri-430

bution where highly-localized deformation features are prominent. Implementing the scal-431

ing analysis with signal-to-noise ratio weights to compare observations and models there-432

fore improves the interpretation of the scaling exponent metric as a measure of the lo-433

calization of the deformation fields. It also allows us to investigate the presence of a spatio-434

temporal coupling of the spatial and temporal scaling exponents (i.e. a logarithmic de-435

cay of β and α when increasing T and L, respectively - Marsan & Weiss, 2010), which436

is otherwise absent for the observed RGPS mean total deformation rates when using weights437

equal to one (Bouchat & Tremblay, 2020). Note that, while the coupling and scaling ex-438

ponents are affected, we have verified that finding a power-law scaling in space or time439

does not depend on the weights used to average the deformation distribution (i.e. signal-440

to-noise ratio weights vs. weights equal to one as in previous studies). In the following,441

the scaling analysis is performed with the signal-to-noise ratio weighting method.442

We find that all sea-ice rheologies produce a power-law spatial scaling of the to-443

tal deformation rates holding over ∼1.5 orders of magnitude (i.e. 10 ≤ L ≤ 600 km444

— Figures 6–7, a and b). However, the simulated spatial scaling exponent β (i.e. the slope445

of the power-law decay in log-log space) varies largely from run to run (Figures 6–7, c446

and d). We note that the only runs showing a spatial scaling exponent large enough to447

be within the observed RGPS interannual variability (or larger) also showed a reason-448

able agreement in their PDFs of deformations (i.e. neXtSIM, RIOPS, FESOM, and MIT-449

gcm - 2km). The presence of large deformation rates therefore appears as a necessary450

condition for also having a large degree of spatial localization. It is not sufficient how-451

ever, since it is the spatial organization of these large deformation rates along well-defined452

features (i.e. LKFs) that is responsible for the spatial scaling (e.g. Marsan et al., 2004;453

Stern & Lindsay, 2009).454

For low-resolution runs, the largest spatial scaling exponents are obtained with the455

MEB rheology (neXtSIM). While the neXtSIM deformation fields do show highly local-456

ized LKFs (Figure 8), this model uses an adaptive Lagrangian mesh as opposed to a static457

Eulerian grid as in all other runs. It is therefore not straightforward to attribute this stronger458

spatial localization of deformation to the rheology alone since moving meshes are known459

to be very efficient at capturing and preserving singularities or discontinuities in the so-460

lution (e.g. Ceniceros & Hou, 2001).461

The lowest spatial scaling exponents are obtained with the EVP rheology, in both462

low- and high-resolution runs (Figures 6–7, c and d). The deformation fields for these463

runs (i.e. DMI, IFREMER, HYCOM-CICE (FSU), ANHA 4km and 12km) clearly un-464

derestimate the presence of well-defined deformation features (Figures 8–9 and Hutter465
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et al., 2021). We again hypothesize that this could be due to insufficient damping of the466

artificial elastic wave and small numbers of subcycling steps, but the effects of the nu-467

merical convergence on the scaling statistics need to be further evaluated. We note, how-468

ever, that more iterations to obtain more accurate VP and EVP solutions leads to ad-469

ditional lines of deformations in the solution (Lemieux et al., 2012; Bouchat & Tremblay,470

2014; Wang et al., 2016; Koldunov et al., 2019), which should increase the spatial scal-471

ing exponent (or spatial localization).472

Ignoring the runs with a smaller number of subcycles mentioned above, the spa-473

tial scaling exponent for (E)VP runs generally increases as the grid is refined. This is474

consistent with a refinement of the spatial localization of deformation lines with increas-475

ing spatial resolution in Eulerian plastic sea-ice models (Williams & Tremblay, 2018).476

In contrast, the spatial scaling exponent was shown to be approximately resolution-independent477

for neXtSIM (MEB) when tested on a range of spatial resolutions from 30 to 7.5 km (Rampal478

et al., 2019). It is still unclear whether this is a consequence of using a Lagrangian mesh479

that better adapts to discontinuities in the solution (regardless of the resolution), or of480

using a brittle rheology. We can however conclude that a large spatial localization of de-481

formation is possible for both visco-plastic ((E)VP) and brittle visco-elastic (MEB) rhe-482

ologies, as long as Eulerian sea-ice models are run at high spatial resolution. Modifying483

the ice strength parameters and the atmospheric forcing also has a large effect on increas-484

ing the scaling exponents as discussed later in Sections 4.2.1 and 4.2.3.485

Interestingly, both low- and high-resolution runs span a similar range of temporal486

scaling exponents that overlaps with the RGPS interannual variability, showing that a487

strong degree of temporal localization of deformations is reproduced by all models, at488

least for the range of temporal scales considered in this study (i.e. [3–30] days — Fig-489

–15–



manuscript submitted to JGR: Oceans

101 102

10−2

10−1

To
ta

l d
ef

or
−

at
io

n 
ra

te
 [d

ay
−1

]
(a) (c) (e)

101
0.0

0.2

0.4

0.6

0.8

β

VP
McGill (e=2)
McGill (e=1,↓P)
McGi,, (e=0.7,↓P)
McGi,, (e=1,↑S)
MIT)cm (2km)
MIT)cm (2km, e=1,↓P)
MIT)cm (2km, e=0.7,↓P)

EVP
IFREMER (e=2)
IFREMER (e=1)
ANHA (12km)
FESOM
MERCATOR
HYCOM-CICE (FSU)
RASM-WRF (EVP)

EAP
RASM-WRF (EAP)
RASM-POP (EAP)

MEB
neXtSIM

MEB
neXtSIM

0.00 0.05

101 102

Spatial scales [km]

10−2

10−1

To
ta

l d
ef

o1
−

at
io

n 
1a

te
 [d

ay
−1

]

(b) (d) (f)

101

Te−0o1al 2cale2 [day]

0.0

0.2

0.4

0.6

0.8

β

RGPS, 1997RGPS, 1997

0.00 0.05
cβ

Figure 6. (a,b): Spatial scaling for total deformation rates estimated at T = 3 days in January-
February-March 1997. (c,d): Spatial scaling exponent β as a function of the temporal scale T

at which the mean total deformation rates are estimated. (e,f): Coupling coefficient cβ obtained
from least‐squares logarithmic fits β ∼ cβ ln(T ) for 3 ≤ T ≤ 30 days. Dashed lines are the least-
square power-law fits used to obtain β. The solid black lines, dark gray, and light gray shaded
areas are the mean, standard deviation, and min/max for the entire RGPS data set. Model re-
sults are separated with low-resolution runs in top panels, and high-resolution runs in bottom
panels.
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Figure 7. Same as Figure 6 for total deformation rates in January-February-March 2008.
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Figure 8. Total deformation rate snapshots (in day−1) for selected runs for the period of
21-22-23 February 2008.
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Figure 9. Total deformation rate snapshots (in day−1) for selected runs for the period of
10-11-12 January 1997.
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Figure 10. (a,b): Temporal scaling for total deformation rates estimated at L= 10 km in
January-February-March 1997. (c,d): Temporal scaling exponent α as a function of the spatial
scale L at which the mean total deformation rates are estimated. (e,f): Coupling coefficient cα

obtained from least‐squares logarithmic fits α ∼ cα ln(L) for 10 ≤ L ≤ 300 km. Dashed lines
are the least-square power-law fits used to obtain α. The solid black lines, dark gray, and light
gray shaded areas are the mean, standard deviation, and min/max for the entire RGPS data set.
Model results are separated with low-resolution runs in top panels, and high-resolution runs in
bottom panels.

ures 10 and 11). Here, it is important not to confuse strong temporal localization with490

strong intermittency. A field can be highly localized in time, but it is the change of lo-491

calization within the data set (or with changing deformation magnitude) that reflects492

the intermittency (or heterogeneity). The intermittency of the deformation field is in-493

dicated by its (non-linear) moment scaling function (or structure function) which is in-494

vestigated in Section 4.1.3. Temporal scaling (or localization in time) of the deforma-495

tion rates is assumed to originate from the presence of long-ranged temporal correlations496

in the time series of deformations. We have verified that when randomly re-ordering the497

times series of deformation, the power-law temporal scaling is lost for both RGPS ob-498

servations and simulated deformation fields (results not shown). This is analogous to the499

presence of long-ranged spatial correlation (for instance, LKFs) giving rise to the spa-500

tial scaling. The origin of these temporal correlations in models and observations remains501

to be identified. We note however that a larger simulated temporal scaling exponent does502

not necessarily correlate with the use of a smaller advective time-step, nor with higher503

spatio-temporal resolution of the atmospheric forcing. Preliminary analysis with the MEB504

rheology (not shown) also shows that the choice of damage propagation scheme can also505

significantly affect the spatio-temporal scaling and could be used to tune this rheology506

against observations.507

Finally, a logarithmic reduction in the spatial and temporal scaling exponents when508

increasing the temporal and spatial scales of the deformation estimates (i.e. β ∼ cβ ln(T )509

and α ∼ cα ln(L), the so-called space-time coupling) is achieved by all sea-ice rheologies,510

regardless of the original spatio-temporal resolution of the model runs (Figures 6, 7, 10,511

11, c and d). This indicates that the simulated deformation fields appear less and less512

localized as the spatial and temporal scales are increased, consistent with the smooth-513

ing of deformation features when averaged at larger and larger scales. The strength of514
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Figure 11. Same as Figure 10 for total deformation rates in January-February-March 2008.

the observed RGPS coupling, evaluated by the coupling constants cβ and cα (i.e. the slope515

in semi-log plot), is also well reproduced by all rheologies at both low- and high-resolution516

(Figures 6, 7, 10, 11, e and f). Runs for which the space-time coupling is systematically517

absent or very weak (e.g. IFREMER e=2 and ANHA 12 km) are low-resolution EVP518

runs and already have smoother deformation fields to start with. Marsan and Weiss (2010)519

suggested that a space-time coupling of sea-ice deformation scaling can emerge from brit-520

tle dynamics and a possible chain-triggering deformation mechanism similar to that ob-521

served for earthquakes. We show here that sea-ice rheologies that do not assume brit-522

tle parameterizations also reproduce such a coupling.523

4.1.3 Multi-fractal analysis524

As the moment q of the total deformation distribution increases, the scaling expo-525

nents β(q) and α(q) also increase, given that the scaling still holds. For mono-fractal sys-526

tems, the increase in localization is linear with increasing moment, while for multi-fractal527

systems, the increase in localization with increasing moment deviates from linearity. Multi-528

fractality then reflects a large variability of the scaling exponent within the field. For sea-529

ice deformation fields, multi-fractality can be interpreted as larger deformation rates be-530

ing more localized (in space and time) than smaller deformation rates (Weiss & Dansereau,531

2017; Rampal et al., 2019).532

Using the universal multi-fractal formalism, the non-linear multi-fractal structure533

functions are described by three variables: the degree of multi-fractality µ, the degree534

of heterogeneity C1, and the fluctuation exponent H (see Eq. 16). The spatial scaling535

exponent of the mean total deformation rates evaluated in the previous section is equal536

to β(1) = 1 − H and therefore, the larger the H, the smoother (or less localized) the537

field appears. Interpretation of the effects of µ and C1 on the observable fields are less538

intuitive. Generally, a larger value of µ characterizes a field dominated by singularities539

of larger values, and a larger C1 indicates that these singularities are more sparsely grouped540

(Lovejoy & Schertzer, 2007, 2013). However, for the same values of µ, C1, and H the field-541

to-field variability can be large (Lovejoy & Schertzer, 2013) and it is not straightforward542

to visually distinguish the effects of the different parameters. We can nonetheless iden-543

tify a few general points below regarding the use of the structure functions and the multi-544

fractal parameters as deformation metrics for evaluating sea-ice models. Note that, while545
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Figure 12. Left: RGPS (black) and simulated (colors) spatial structure functions β(q) for
total deformation rates estimated at T=3 days in January-February-March 1997. Right: Tem-
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the multi-fractal formalism requires 0 ≤ C1 ≤ 2 and 0 ≤ µ ≤ 2, here the least-square546

fits used to obtain the multi-fractal parameters are not constrained to return values in547

these intervals, allowing us to evaluate the validity of the multi-fractal hypothesis for the548

observed and simulated deformation fields.549

All sea-ice rheologies reproduce non-linear structure functions in space and time,550

suggesting that multi-fractality (i.e. µ ̸= 0) and heterogeneity (C1 ̸= 0) are not ex-551

clusive to a specific rheology assumption (Figures 12, 13 and Figures 14, 15). In general,552

the conclusions of the previous section based on the scaling of the mean (q = 1) total553

deformation rates also apply to q > 1, with the exception that agreement with the RGPS554

interannual variability does not necessarily carry over to higher moments. These con-555

clusions include higher scaling exponent for MEB and high-resolution models, lower scal-556

ing exponents for EVP runs with fewer subcycles, larger variability of spatial scaling ex-557

ponents compared to temporal scaling exponents. In fact, models agreeing with the RGPS558

distribution for the fluctuation exponent H (i.e. for the scaling of the mean) do not nec-559

essarily agree in the other multi-fractal parameters describing the structure functions,560

and vice-versa (Figures 14 and 15). However, we note that the spatial and temporal multi-561

fractality hypothesis for RGPS observations is not robust since the distribution of the562

fitted degree of multi-fractality (µ) reaches values outside the theoretical range, which563

complicates the comparison and interpretation of the observed and simulated multi-fractal564
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Figure 13. Same as Figure 12 for total deformation rates in January-February-March 2008

parameters (e.g. in 2008 – Figures 14 and 15). In this case, the usefulness of the multi-565

fractal structure functions to evaluate sea-ice deformation fields is not clear and more566

work is required to better understand why the multi-fractal hypothesis is not valid for567

certain years. Nevertheless, we note that the degree of multi-fractality (µ) for other years568

of the RGPS records is generally not quadratic (i.e. µ ̸= 2). This confirms that all three569

multi-fractal parameters should be used as metrics for the structure functions, as opposed570

to considering a fixed (e.g. quadratic) degree of multi-fractality and using only the de-571

gree of heterogeneity as a metric.572

4.2 Effects of model configuration and other parameterizations573

Results from the previous section show that deformation statistics have a run-to-574

run variability that can be as large or larger than the effects of the choice of a given sea-575

ice rheology. In the present section, we explore model parameterizations that could ex-576

plain part of this variability.577

4.2.1 Ice strength parameters578

In the classical two ice-categories (E)VP rheology, the ice strength is parameter-579

ized using an elliptical yield curve and a compressive ice strength parameter P ∗, which580

defines the maximum isotropic compressive stress that can be supported by ice for a given581

thickness and concentration (Hibler, 1979). The elliptical yield curve then implicitly de-582

fines the shear strength parameter S∗ of the ice through the ratio of the major to mi-583

nor axes, i.e. the ellipse ratio e (Bouchat & Tremblay, 2017). Calibration of the ellipse584

ratio and compressive ice strength parameter have usually been performed by minimiz-585

ing the drift and/or thickness errors (e.g. Hibler & Walsh, 1982; Miller et al., 2006; Unger-586

mann et al., 2017). However, the PDFs of sea-ice deformation rates are sensitive to in-587

dependent changes of P ∗ or S∗, and therefore it has been suggested that observed RGPS588
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Figure 14. Multi-fractal parameters (µ, C1, H — see Equation 16) for the spatial struc-
ture function β(q), and for the temporal structure function α(q), for runs in 1997 and RGPS
inter-annual variability (boxplots). Dashed areas represent parameters outside the valid range
predicted by the multi-fractal formalism. Model results are separated with low-resolution runs in
top panels, and high-resolution runs in bottom panels.

Figure 15. Same as Figure 14, for runs 2008.
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PDFs of deformation rates can be used to calibrate the ice strength parameters in sea-589

ice models (Bouchat & Tremblay, 2017). Specifically, increasing the ratio of shear-to-590

compressive ice strength parameters (i.e. reducing the ellipse ratio from e = 2, P ∗ =591

27.5 kNm−2 to e = 1, P ∗ = 13.8 kNm−1) significantly improved the agreement be-592

tween observed and simulated PDFs of deformation rates for VP gridded deformation593

fields at low (10 km) resolution. Other studies using the (E)VP rheology with a reduced594

ellipse ratio (i.e. 0.7 ≤ e ≤ 1.8) at low resolution also showed improved landfast ice595

and ice bridges simulation, as well as reduced ice thickness bias (Miller et al., 2005; Du-596

mont et al., 2009; Lemieux et al., 2016). Whether these conclusions are configuration-597

dependent (e.g. resolution, forcing, ridging scheme, etc.) has however not been tested.598

We revisit the McGill runs (same as in Bouchat & Tremblay, 2017) in order to in-599

vestigate the sensitivity of the deformation statistics to the ice strength parameters with600

our updated deformation metrics, which now include temporal scaling, multi-fractal struc-601

ture functions, and the new PDF-difference metric. We also extend this analysis to the602

IFREMER runs (low-resolution) and MITgcm 2-km runs (high-resolution), where only603

the compressive ice strength parameter P ∗ and the ellipse aspect ratio e were modified.604

At low resolution (McGill and IFREMER runs), the results confirm that increasing the605

ratio of shear-to-compressive strength parameter improves the agreement of all simulated606

deformation statistics with RGPS observations, independently of the model configura-607

tion. The PDF-difference metric reveals that reducing the ice strength in compression608

even lower than suggested in Bouchat and Tremblay (2017) provides a better agreement609

with the RGPS distributions (see e.g. McGill e=0.7, ↓P in Figure 1). We also note that610

the spatio-temporal scaling analysis of Lagrangian trajectories with signal-to-noise ra-611

tios as weights is more conclusive than the gridded scaling analysis in Bouchat and Trem-612

blay (2017). The results show that an increase in the shear-to-compressive strength ra-613

tio (either by reducing P ∗ or increasing S∗) systematically leads to spatial and tempo-614

ral scaling exponents closer to those for the RGPS observations for both the McGill and615

IFREMER low-resolution runs (Figures 6, 7, 10, and 11). The analysis of the structure616

functions also reveals that the degree of heterogeneity and intermittency (C1) in space617

and time is sensitive to changes in the shear-to-compressive strength ratio with the (E)VP618

rheology (Figures 14 and 15).619

At high resolution (MITgcm 2-km runs), increasing the shear-to-compressive strength620

ratio can also improve the sea-ice deformation statistics (Figures 3,4,6,7,10,11,14 and 15).621

However, we note that the combination of ice strength parameters that provided the best622

model-observation agreement for McGill runs (i.e. e = 0.7, P ∗ = 9.6) does not result623

in the best agreement for the MITgcm 2-km runs. The effects of increasing the shear-624

to-compressive strength ratio on the degree of heterogeneity and multi-fractality at high625

resolution are also less clear than at low resolution. These results likely point at the in-626

timate links that exist between the (E)VP yield curve, the deformation fields and the627

energy dissipation, and to the need of better understanding how sea-ice parameteriza-628

tions should (or not) change with changing model resolution.629

Finally, we note that the yielding shear, compressive, and tensile strength are much630

larger for the Mohr-Coulomb yield curve in the neXtSIM model than for typical plas-631

tic elliptical yield curves (see Table 1). In VP models at low-resolution, a higher shear632

strength allows the stress level to increase within the ice and to be relieved along well-633

defined and less frequent (more intermittent) deformation features, which helps improv-634

ing the simulated deformation statistics (Bouchat & Tremblay, 2017). Whether this is635

also the case in the MEB rheology and could also partly explain the better deformation636

statistics of the neXtSIM model at low resolution compared to other (E)VP models re-637

mains to be verified.638
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4.2.2 Ice Thickness Distribution639

The simplest way to represent the presence of ice in a continuum sea-ice model is640

to use two categories of ice thickness: thick ice, and thin or no ice. The ice is then char-641

acterized by its mean thickness (h) and concentration (A) per grid cell, and the ice strength642

is typically assumed to depend linearly on h (Hibler, 1979). However, as multiple sub-643

grid scale processes in the Arctic climate system are affected by the local presence of thick644

versus thin ice (e.g. albedo, conductive heat fluxes, etc.) it is now common practice to645

use an ice-thickness distribution (ITD) with more than two thickness categories (Thorndike646

et al., 1975). In this case, the ice strength can instead be parameterized as a function647

of the change in potential energy during the ridging process (Rothrock, 1975), which ex-648

plicitly depends also on the thinnest ice category and on the local distribution of ice in649

the different thickness categories. This change in the ice strength formulation was shown650

to increase the spatial heterogeneity of the simulated ice strength and to significantly651

increase the deformation rates in convergence for thick multi-year ice in a very-low res-652

olution (∆x ∼ 36 km) coupled ice-ocean model (Ungermann et al., 2017). Hutter and653

Losch (2020) recently showed that using the ice strength parameterization of Rothrock654

(1975) with a multi-category ITD also results in a larger number (or density) of LKFs655

in high-resolution runs.656

Here, the 2008 MITgcm 2-km runs (one with two thickness categories and the other657

with an ITD) allow us to investigate the effects of the ITD on the deformation statis-658

tics within the same model, in light of the new PDF-difference metric introduced in Sec-659

tion 4.1.1 and the updated scaling analysis with signal-to-noise ratio weights. On the one660

hand, we find that there is no clear improvement in the agreement of the simulated PDFs661

of shear rates and absolute divergence with observations when introducing an ITD at662

high resolution (Figure 4). On the other hand, using a multiple-category ITD significantly663

increases the spatial scaling exponent for the mean total deformation rate (Figure 7),664

apparently because there are more LKFs in the thicker pack ice (Hutter et al., 2021). We665

note however that the temporal scaling exponent remains unchanged by the introduc-666

tion of multiple categories in the ITD (Figure 11), suggesting that the local sub-grid re-667

distribution of ice in the ITD that can initiate the formation of new LKFs does not af-668

fect the long-range temporal correlations giving rise to the temporal scaling, or at least669

that the temporal effects of this process are not resolved at the 3-day scale. We also note670

that the spatial scaling exponents for both runs are more similar for larger moments q671

(Figure 13). This indicates that the multiple-category ITD mostly increases the spatial672

localization of smaller deformation rates. We therefore hypothesize that the effects of673

the ITD on the deformation statistics might be more important at lower resolution since674

strain rates are smaller to start with, but this remains to be verified.675

We finally note that the use of an ITD in itself does not guarantee a better spatio-676

temporal localization of deformations. For instance, the HYCOM-CICE (FSU) runs have677

a five-category ITD, but the localization of the simulated deformation fields remains low678

compared to other high-resolution runs. In this case, too few EVP subcycles and large679

residual errors on the solution may again partly explain the poor localization of defor-680

mations.681

4.2.3 Atmospheric forcing682

Kwok (2001) showed that LKF patterns in the observed RGPS deformation fields683

can remain very similar for long periods of time (∼ months) suggesting that pack ice de-684

formations occur independently of variability in the wind forcing. However, the major-685

ity of LKFs are active on much shorter time scales and LKF lifetimes show an exponen-686

tial tail (Hutter et al., 2019). Thus, one can wonder about the importance of the atmo-687

spheric forcing in setting the observed and simulated small-scale deformation statistics.688

Given that the majority of the energy input that sets the ice cover in motion originates689
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from the atmospheric forcing (e.g. Steele et al., 1997; Bouchat & Tremblay, 2014), it could690

be expected that the simulated deformation scaling statistics are inherited from the turbulent/multi-691

fractal scaling properties of the atmosphere (e.g. Schmitt et al., 1994). For example, Hutter692

(2015) showed that the spatial scaling exponent in idealized numerical experiments de-693

pends on the spatial resolution of the reanalysis wind forcing, suggesting that the sim-694

ulated small-scale deformation statistics are, in part, limited by the complexity of the695

imposed atmospheric forcing. However, the observed scaling properties of sea-ice defor-696

mations were shown to hold down to temporal scales much smaller than the atmospheric697

mesoscale or synoptic temporal scale using ship-based radar observations (Oikkonen et698

al., 2017). Weiss (2017) suggests this to be a confirmation that the mechanical response699

of the ice cover is not controlled by the atmospheric forcing, at least not at the mesoscale700

or synoptic temporal scale (Weiss, 2017).701

Here, we note that the degree of temporal multi-fractality and heterogeneity for702

turbulent wind (i.e. µ = 1.45 ± 0.1, C1 = 0.25 ± 0.1; Schmitt et al., 1994) is close to703

that for RGPS deformation rates (see e.g. Figure 14 a,b). While this does not confirm704

that the observed multi-fractality of RGPS deformation rates originates from that of the705

wind forcing, it nonetheless shows that we cannot assume a specific lowest scale for the706

atmospheric forcing, such that sea-ice deformation scaling statistics could well be influ-707

enced by atmospheric forcing below the mesoscale and synoptic scale. We further note708

that the deformation statistics in the fully-coupled atmosphere-ice-ocean RASM-WRF709

(EAP) runs with higher spatial and temporal resolution of the atmospheric and oceanic710

components are closer to RGPS observations compared to runs with the same model but711

forced with an atmospheric reanalysis (i.e. RASM-POP (EAP) — see Figures 1, 2, 6, 7,712

10, and 11). Larger deformation rates appear in the PDFs (especially in shear, where the713

PDF difference metric reduces by ∼50%), and the spatio-temporal scaling exponents for714

the mean total deformation rate also increase. However, we cannot firmly attribute these715

improvements to the increased complexity of the atmospheric forcing only, since the fully-716

coupled runs also have an increased number of elastic subcycles (i.e. smaller subcycling717

time step for the same advective time step) which suggest a better numerical convergence718

of their solution, although this is not directly quantifiable with the numerical implemen-719

tation of the EAP rheology.720

5 Discussion721

In the previous sections, both plastic and brittle sea-ice rheologies have shown the722

potential for reproducing the observed RGPS deformation scaling statistics, even if plas-723

tic rheologies do not use specific assumptions that were hypothesized to give rise to the724

observed scaling of sea-ice deformations (e.g. long-range elastic interactions, damage and725

healing mechanism, etc. – Weiss & Dansereau, 2017). In particular, a non-zero tempo-726

ral scaling, intermittency, and temporal multi-fractality is observed for practically all727

sea-ice models, independently of their spatial scaling. It has previously been assumed728

that the temporal correlations (or a certain form of memory resulting in time cluster-729

ing of deformations) giving rise to the temporal scaling and intermittency of deforma-730

tions should be inherent to the imposed sea-ice mechanical behavior (e.g. Weiss & Dansereau,731

2017; Hutter et al., 2018). For instance, Weiss and Dansereau (2017) suggested that plas-732

tic sea-ice rheologies cannot reproduce temporal scaling because they do not include stress733

relaxation, such that temporal correlations cannot develop in their deformation fields.734

Well-defined LKFs in high-resolution models could also provide such a “memory” via lo-735

cal weakening and divergence of the ice along LKFs (Hutter et al., 2018). Here, we show736

that plastic sea-ice rheologies, even those without well-defined LKFs, do reproduce a strong737

temporal localization of deformations and a degree of temporal multi-fractality and in-738

termittency similar to that of the observed RGPS deformation fields. The origin of the739

multi-fractal temporal scaling in both observed and simulated deformation fields remains740

to be identified. We note however that we find no significant correlation between sim-741
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ulated temporal scaling exponents and LKFs growth rates or lifetimes (not shown). We742

hypothesize that temporal correlations in the simulated deformation field could emerge743

from persistent synoptic atmospheric forcing at the basin scale, loading the ice and re-744

opening recently frozen leads, keeping the ice pack active for several days at a time fol-745

lowed by periods of rest. This is in agreement with RGPS observations showing that de-746

formation of the multiyear ice pack is accommodated by long-lasting LKFs (e.g. Coon747

et al., 2007). This hypothesis remains to be tested in future work.748

In light of the results presented in this first part of the SIREx analysis, a few rec-749

ommendations for model development and implementation emerge for improving the rep-750

resentation of sea-ice deformation statistics by sea-ice models. First, a spatial resolution751

of Eulerian models higher than that of the observations is required in order to better lo-752

calize the deformations and capture their heterogeneity at the observation scale. In Eu-753

lerian models, several grid cells are always required to represent a velocity discontinu-754

ity (e.g. a lead opening or a shear fracture line). Specifically, in VP finite-difference mod-755

els, the number of grid points required to resolve a discontinuity forming under the same756

forcing conditions remains approximately the same with increasing model spatial res-757

olution (5–7 grid points; Williams & Tremblay, 2018), leading to a spatial refinement of758

LKFs and an increased spatial localization of deformations with increasing resolution.759

The spatial resolution of Eulerian models should therefore be at least 5–7 times that of760

the observations for a fair comparison of their deformation field. Note that as the spa-761

tial resolution increases (∆x ≲ 100 km), the continuum assumption (requiring the pres-762

ence of a large number of ice floes within one grid cell) is technically no longer valid. How-763

ever, current sea-ice models remain able to capture the observed deformation statistics764

because the simulated deformations are shown here to be scale-independent.765

We further note that it is not expected that models (Eulerian or Lagrangian) re-766

produce the observed deformation statistics when run at the same nominal scale as the767

RGPS observation scale. The observed Lagrangian deformation fields are obtained from768

the motion of tracers at a 10-km spatial scale, but displacement at this scale is closely769

tied to processes acting on much finer scales that can act as initiation for larger-scale de-770

formations (e.g. micro-fractures, thermal cracking and bending, etc.). These fine-scale771

processes are sub-grid-scale processes and are usually not resolved or parameterized by772

sea-ice models, with the exception of neXtSIM which uses a damage parameterization773

that can represent sub-grid brittle fracturing to some extent. We therefore hypothesize774

that including well-tuned parameterizations of the sub-grid-scale mechanical processes775

could also help with the representation of larger-scale sea-ice deformations. The use of776

a multi-category ice thickness distribution, for example, improves the simulated defor-777

mation scaling statistics and can also partly improve the LKFs statistics (see also Hut-778

ter et al., 2021). Note that a brittle fracturing parameterization (e.g. using a damage779

formulation) could also be implemented in plastic rheologies, which could help to bet-780

ter understand its role on the simulated deformation statistics.781

Second, calibrating the yield curve parameters proves to be an efficient solution to782

improve the deformation statistics, even if sea-ice models are not run at very-high res-783

olution or do not include sub-grid scale mechanical parameterizations. Specifically, we784

find that increasing the ratio of shear-to-compressive strength provides a better agree-785

ment with observed RGPS deformation statistics for both the VP and EVP rheologies.786

We provided here a new quantitative metric, the sum of the absolute difference of PDFs787

in logarithmic scale, that is useful for such a calibration of the yield curve parameters.788

The spatio-temporal scaling exponents of the mean total deformation rates could also789

be used to further calibrate the rheological model, however the usefulness of the scal-790

ing of higher moments of the deformation distribution (i.e. the structure functions) is791

not clear since the multi-fractality assumption is not robust for all years in the RGPS792

records.793
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Third and finally, ensuring a numerically converged solution without remaining noise794

appears to be critical for the small-scale deformation statistics when using an explicit795

numerical solver such as originally designed in the EVP and EAP rheologies, although796

this could not be directly assessed with the available runs. Results nonetheless suggest797

that using an increased number of iterations in the numerical solver along with a small798

dynamical time step (i.e. reducing the subcycling time step) improves the EVP defor-799

mation scaling statistics. The impact of the numerical convergence in EVP (but also in800

VP, EAP and MEB), and the impact of using the modified or adaptative EVP numer-801

ical schemes (i.e. mEVP or aEVP — Lemieux et al., 2012; Bouillon et al., 2013; Kimm-802

ritz et al., 2016) remains to be further evaluated.803

6 Concluding Remarks804

The first part of the Sea Ice Rheology Experiment (SIREx), with a total of 11 dif-805

ferent models, 32 simulations, three different sea-ice rheologies ((E)VP, EAP, and MEB)806

and a wide range of other model parameterizations, allowed us to investigate how dif-807

ferent sea-ice representations affect the deformation statistics using existing and new de-808

formation metrics, namely, the sum of the absolute difference of observed and simulated809

PDFs of deformation rates, the spatio-temporal scaling exponents, and the multi-fractal810

parameters describing the structure functions. It is found that the sea-ice rheology, as811

well as the model configuration (e.g. resolution, atmospheric coupling, numerical con-812

vergence, etc.) and physical parameterizations (e.g. ITD and ice strength parameters)813

can affect the deformation statistics to a similar extent. For this reason, we argue that814

the aforementioned deformation metrics do not only evaluate the effect of the sea-ice rhe-815

ology, and that it is important to analyze both the effects of the model configuration or816

parameterizations along with the effects of the rheological parameters in order to dis-817

cuss the appropriateness of a given sea-ice rheology in terms of deformation statistics.818

We find that a power-law scaling and multi-fractality of deformations in both space819

and time can be achieved by all sea-ice rheologies evaluated in this study, showing that820

these metrics are not sufficient to favor the use of a given rheology, and closing the de-821

bate on whether plastic rheologies can reproduce the observed deformation properties.822

However, the VP/EVP rheologies implemented in a Eulerian framework need to be run823

at higher resolution than that of the observations to yield spatial scaling exponents as824

high as those observed, because 5–7 grid cells are necessary to spatially resolve discon-825

tinuities with such a numerical scheme. It is also expected that spatial scaling exponents826

in agreement with the RGPS distribution could be obtained with the EAP rheology at827

very-high spatial resolution, given that its spatial scaling exponents are on the same or-828

der as for VP/EVP simulations at high-resolution. On the other hand, the spatial lo-829

calization of MEB (brittle) simulations is larger than for the plastic rheologies when run830

at the same resolution as observations. Since these simulations (neXtSIM) are performed831

on a Lagrangian mesh that can better localize and follow discontinuities, it is not clear832

if the higher spatial scaling exponents are attributable only to the difference in sea-ice833

rheology.834

Interestingly, a strong temporal scaling is better resolved by all rheologies compared835

to the spatial scaling, independently of the models’ temporal resolution. While the ori-836

gin of the observed and simulated temporal scaling remains to be identified, this con-837

firms that there is not only one set of specific rheological assumptions that can give rise838

to strong temporal correlations in the deformation fields. We further note that increas-839

ing the shear-to-compressive strength ratio of the ice in elliptical plastic rheologies sig-840

nificantly increases the scaling exponents, while the addition of multiple ice categories841

in the ITD does not have a large influence on the temporal scaling. Coupling the ice model842

with an atmospheric model instead of forcing with a reanalysis also appears to signif-843

icantly affect the temporal (and spatial) multi-fractal parameters and scaling. However,844

due to a different number of elastic subcycles in the runs with these variations (likely845
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leading to a difference in numerical convergence of the solution), we cannot firmly at-846

tribute this only to a change in the atmospheric forcing/coupling resolution.847

The present study also allowed us to evaluate the usefulness of the scaling metrics848

to discriminate between different sea-ice models, as per SIREx’s goal. First, we showed849

that the decay exponent of the tail of the deformation PDFs does not efficiently char-850

acterize departure from reference PDFs and therefore cannot be used to extract infor-851

mation on the agreement of the simulated PDFs with observations. We therefore intro-852

duced a new quantitative metric that evaluates the sum of the bin-wise absolute differ-853

ences between the observed and simulated PDFs in logarithmic scale. This metric bet-854

ter characterizes the ability of models to reproduce deformations as large as in RGPS855

observations since the logarithmic scale puts more weight on differences in the tail of the856

PDFs. Second, we showed that the spatio-temporal scaling of the mean total deforma-857

tion rates as usually implemented does not capture differences in localization of defor-858

mations when the density of LKFs also changes between different simulations. For ex-859

ample, simulated deformation fields with few, but highly-localized LKFs return similarly860

low scaling exponents as more diffuse deformation fields. We showed that using the signal-861

to-noise ratios as weights in the scaling analysis (as introduced by Bouchat & Tremblay,862

2020) helps to distinguish both cases and improves the interpretation of the scaling ex-863

ponents as a measure of localization of deformations. This also allows the space-time cou-864

pling of the scaling exponents for the mean (q = 1) total deformation rates to emerge865

in RGPS observations (Bouchat & Tremblay, 2020) and to be used as an additional met-866

ric to evaluate the simulated deformation fields. Third, we found that the degree of multi-867

fractality for observed and simulated deformation fields is generally not quadratic as pre-868

viously assumed, and that the multi-fractality hypothesis is not robust for all years of869

the RGPS records. Our results also show that multi-fractality in both space and time870

can be achieved without assuming specific ”cascade-like” models for the deformation of871

the sea-ice cover, which leaves open the question of what physical/mechanical param-872

eterizations common to all the tested sea-ice models are critical in producing the multi-873

fractality. In this sense, it is unclear whether the multi-fractal analysis is appropriate to874

calibrate or evaluate sea-ice rheologies, since the observed deformation multi-fractality875

could emerge from parameterizations other than the rheology (e.g. atmospheric forcing876

and turbulent momentum transfer).877

Keeping in mind that the MEB and EAP rheologies are under-represented in the878

participating sea-ice models, the conclusions presented here should be tested using a larger879

number of experiments including more MEB and EAP runs, or ideally, by running a unique880

model configuration with different sea-ice rheologies. Specifically, to eliminate the po-881

tential differences associated with using a Lagrangian mesh, the deformation statistics882

of MEB runs implemented on a Eulerian grid (as recently done by Plante et al., 2019)883

should be evaluated. Nevertheless, this study shows that the (E)VP rheology — used884

in a majority of climate models — does generate large deformation rates that are highly885

localized in space and time, albeit by using a higher spatial resolution than currently used886

in GCMs and CMIP-type climate models. Generating large, localized deformation rates887

is a necessary condition for sea-ice models to achieve before their effect on the Arctic cli-888

mate system can be assessed. While a thorough study of the impacts of sea-ice defor-889

mations and rheology in Global Climate Model runs remains to be performed, the anal-890

ysis of LKFs statistics (and their link to ice thickness and concentration anomalies) pre-891

sented in the second part of the SIREx analysis offers a complementary step to the present892

analysis towards improving the representation of sea ice in climate projections.893
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Appendix A Strain Rate Error Estimation894

Trajectory errors and boundary-definition errors affect both the observed and sim-
ulated Lagrangian deformation estimates. Following Bouchat and Tremblay (2020), we
consider only the trajectory errors to compute the signal-to-noise ratio of the deforma-
tion estimates and use this ratio as weight when averaging the deformation distribution
for the scaling analysis. Trajectory errors result from uncertainty on the position of the
Lagrangian trajectories used to compute the strain rates (ϵ̇ij). When using the line in-
tegral approximations of Eq. 1-4 to evaluate the strain rates between time t and t+∆t,
the signal-to-noise ratios of the total strain rate estimates (ϵ̇tot/σϵ̇tot) can be approxi-
mated using the propagation of uncertainty as in Bouchat and Tremblay (2020):

ϵ̇tot
σϵ̇tot

∼ ϵ̇tot√
2σϵ̇ij

, (A1)

where σϵ̇ij is the trajectory error on the strain rates, given by:895
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and σA, the error on the cell area A at time t, is defined as (e.g. Lindsay & Stern, 2003):

σ2
A =

1

4

4∑
k=1

[(
xj
k+1 − xj

k−1

)2
+
(
xi
k−1 − xi

k+1

)2]
σ2
x , (A3)

where σx and σx′ are the position errors at time t and t+∆t respectively, and (xi
k, x

j
k) =896

(xk, yk) and (ui
k, u

j
k) = (uk, vk) are the position and velocity of the cell corner k. As897

the error on the strain rates is inversely proportional to the spatial and temporal scales898

of the strain rate estimates, the signal-to-noise ratio is the largest at larger spatial and899

temporal scales. Note that we have ignored timing uncertainties (i.e. σt) in Equation A3900

above.901

Position errors can originate from (i) geolocation errors that are due to uncertainty902

of the recording instrument or acquisition method, and/or (ii) tracking errors that oc-903

cur when the position of tracked features on images are misidentified at the pixel level.904

For RGPS strain rates derived from the tracking of ice features in consecutive SAR im-905

ages, we can assume that the geolocation error is zero and that the position of a tracked906

feature on the first SAR image at time t is always known exactly (σx = 0, see e.g. Bouchat907

& Tremblay, 2020; Dierking et al., 2020). The position of that feature on the second im-908

age at time t+∆t is however affected by a tracking error of one pixel in the SAR im-909

ages, i.e. σx′ = 100 m (Lindsay & Stern, 2003).910

For the reconstructed model Lagrangian trajectories, no tracking is done, but trac-
ers are instead advected using the model velocity fields. Tracking errors are therefore zero,
but geolocation errors accumulate in time with every step of the integration due to un-
certainty on the model velocity fields. To see this, consider the case where the initial po-
sition of a tracer (x0) at time t0 = 0 is known perfectly (i.e. σx0 = 0). At time t1 =
∆t, the position of the advected tracer is x1 = x0 + U0∆t, where U0 is the model ve-
locity in the x-direction at t0. At time t2 = 2∆t, the position is x2 = x1 + U1∆t =
x0 + (U0 + U1)∆t and similarly, at any number n of subsequent integration steps ∆t,
we have:

xn = x0 + (U0 + U1 + ...+ Un−1)∆t . (A4)

–30–



manuscript submitted to JGR: Oceans

Using the propagation of uncertainty and again neglecting timing uncertainties, the
uncertainty σxn on the position at time tn, is therefore given by:

σxn
=

√
nσU∆t , (A5)

where we assume that the uncertainty on the model velocity remains the same in time911

(i.e. σUn
= σU for all n). The error on the model Lagrangian trajectory positions there-912

fore grows with the square-root of the number of integration steps. Assuming that the913

error on the model velocity in the y-direction is the same as in the x-direction, it is also914

straightforward to show that σyn = σxn .915

Here, for simplicity in our calculations, we conservatively assume that all the points
on the model trajectories have the largest error possible, i.e. the error of the last point
after the full integration is done. We therefore fix n = 2160 steps (i.e. 90 days with ∆t =
1 hr time steps), such that for any point along the model trajectory we have:

σx = σx′ = σx2160
= (1.7× 105)σU . (A6)

The error on the ice velocity is due to an interpolation error of gridded model ve-916

locity fields to the trajectory positions, as well as to the numerical error on the dynam-917

ical solution resolved by the sea-ice models. The latter source of error depends on the918

model time step and spatial resolution, the choice of numerical solver and number of it-919

erations performed to solve the non-linear dynamical equations (i.e. convergence of the920

solution), on the numerical regularization methods and parameterization schemes used,921

etc. (e.g. Lemieux et al., 2008, 2010, 2012; Bouillon et al., 2013; Kimmritz et al., 2015,922

2017; Plante et al., 2019). The values of σU are therefore expected to vary within the923

participating simulations, however, those values are unknown and a complete conver-924

gence/error analysis is outside the scope of the present study. We therefore assume an925

upper bound of σU = 0.006 m/s for all simulations regardless of their specific config-926

urations and parameterizations, which corresponds to a typical velocity error for high-927

resolution EVP simulations with a default number (120) of elastic subcycles and a time928

step of 20 minutes (Lemieux et al., 2012), and should also largely encompass the inter-929

polation error. This corresponds to a position uncertainty of σx ≃ 1000m for simulated930

Lagrangian trajectories. Note that this error is especially overestimated for very-high res-931

olution models which generally have a much smaller time step and a larger number of932

elastic subcycles.933
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