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Abstract

Water stored in lakes and underground is a crucial component of the global hydrological cycle, with impacts on climate and

sea level. However, long-term changes in the global distribution of this water are not well understood. Here we present the

Water Table Model (WTM), which is capable of computing water-table elevation at large spatial scales and over long temporal

scales. The WTM comprises two components: groundwater and dynamic lakes. The inclusion of a dynamic lake component

allows us to incorporate surface-water movement and evaporation into water-table elevation estimates. We share sample results

from both an artificial topography, and for the North American continent. These results indicate the close interactions between

changes to water levels in lakes and the surrounding groundwater tables. The open-source code for the WTM is available on

Github and Zenodo.
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Key Points:10

• The WTM simulates water-table elevation, including both groundwater and dy-11

namic lake components, on a continental scale.12

• Combining depression-hierarchy, fill–spill–merge, and adaptive time-stepping al-13

gorithms enables efficient lake–groundwater coupling.14

• Running the WTM on North America shows the importance of both model com-15

ponents in understanding the coupling of climate and water levels.16
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Abstract17

Water stored in lakes and underground is a crucial component of the global hydrolog-18

ical cycle, with impacts on climate and sea level. However, long-term changes in the global19

distribution of this water are not well understood. Here we present the Water Table Model20

(WTM), which is capable of computing water-table elevation at large spatial scales and21

over long temporal scales. The WTM comprises two components: groundwater and dy-22

namic lakes. The inclusion of a dynamic lake component allows us to incorporate surface-23

water movement and evaporation into water-table elevation estimates. We share sam-24

ple results from both an artificial topography, and for the North American continent. These25

results indicate the close interactions between changes to water levels in lakes and the26

surrounding groundwater tables. The open-source code for the WTM is available on Github27

and Zenodo.28

Plain Language Summary29

Groundwater and water stored in lakes influence climate and sea level, both in the30

short- and long-term. However, long-term changes in groundwater and lake-water stor-31

age are not well understood. In this study, we present a new model, the Water Table Model32

(WTM). The WTM calculates the depth of the water table, whether it is below the land33

surface (groundwater) or above the land surface (lakes). The model is efficient enough34

that we can use it to find the water table elevation for whole continents, even over long35

time spans. We share a sample result for the North American continent, and show that36

it is important to include both the groundwater and lakes within the model.37

1 Introduction38

The water table represents the level below which water-saturated conditions oc-39

cur. Below the water table, extensive water stores exist: the volume of groundwater stored40

in the upper 2 km of continental crust is approximately 22.6 million km3 (Gleeson et al.,41

2016), or approximately 62 m sea-level equivalent. In addition, lake surfaces represent42

locations where the water table peeks above the land surface. Although lakes cover only43

about 3.7% of the Earth’s nonglaciated land surface (Verpoorter et al., 2014), they are44

numerous: Verpoorter et al. (2014) recorded over 100 million lakes in their inventory. The45

total volume of the world’s lakes is about 181.9 × 103 km3 (Messager et al., 2016), or46

approximately 0.5 m SLE. This lake-water storage impacts hydrologic connectivity (Callaghan47

& Wickert, 2019), and therefore also sediment and contaminant transport. Groundwa-48

ter provides baseflow to rivers and lakes, defines wetland locations (Fan et al., 2013), and49

provides a large storage of fresh water for human use (Wada, 2016). Changes in water-50

table elevation represent changing terrestrial water storage volumes, significantly impact-51

ing the hydrological cycle on a global scale (Ni et al., 2018; Syed et al., 2008).52

High-performance computing and efficient algorithms have made continental-scale53

modelling of modern-day groundwater (Fan et al., 2013; Maxwell et al., 2015) and stream-54

flow (Döll et al., 2009; NOAA, 2016) possible. Various land-surface models (e.g. Decharme55

et al., 2019; Koirala et al., 2014; Lawrence et al., 2019; Wiltshire et al., 2020; Yokohata56

et al., 2020) provide complex depictions of surface and sub-surface hydrology. These land-57

surface models are often coupled with climate models (e.g. Decharme et al., 2019; Lawrence58

et al., 2019; Yokohata et al., 2020; Zeng et al., 2002) to understand change, including59

changes in terrestrial hydrology, through time. However, while they may include lake com-60

ponents that influence local climate (Oleson et al., 2010), these models do not incorpo-61

rate dynamic changes in lake-water storage through time. In addition, land-surface mod-62

els generally have complex data input and calibration requirements. These limitations63

make it difficult to assess long-term changes in water table, both because dynamically64

changing lakes are not simulated and because input data may not be available prior to65

the beginning of the satellite record.66
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Here we present the Water Table Model (WTM), which couples groundwater (Sec-67

tion 2.1) and lake-water (Section 2.2) levels and flow across spatial scales from local catch-68

ments to the globe and over time scales of years to thousands of years (Figure 1). In-69

put data to the WTM are commonly available for both the present day and recent ge-70

ological past, and are described in sections 2.1 and 2.2. The conceptual simplicity of the71

model helps it to remain practical and computationally efficient over large spatial and72

long time scales. These large spatial and long temporal scales represent the ideal use of73

the WTM, which captures broad-scale natural variations in water-table elevation.74

The WTM offers several advantages: (1) Simplicity – the focus of the model is on75

the simulation of the water table alone. There is no need to model other processes such76

as vadose zone processes, integrated climate factors, or streamflow. (2) Open-source model77

code – the source code for the WTM is available on GitHub (https://github.com/78

KCallaghan/TWSM/, v1.1.0) and Zenodo (https://doi.org/10.5281/zenodo.3554537,79

v1.1.0), for other researchers to use and peruse. (3) Inclusion of a dynamically chang-80

ing lake component – lake locations are not predefined and can dynamically interact with81

the rest of the water table. (4) Broad applicability – the WTM can be used across spa-82

tial scales from catchment to global and can produce both transient and steady-state water-83

table outputs.84

P P
ET

ET

ESW

QGW

QGW

Downslope
flow

f(ɸ, k, S, Tw)

Figure 1. A schematic of the Water Table Model, including both groundwater and dynamic-

lake components. Green represents the land surface and blue represents the water table after

the WTM has moved water for some time. The groundwater table is recharged through pre-

cipitation (P ) minus evapotranspiration (ET ), including surface-water evaporation (ESW ) in

place of land-surface evapotranspiration, as appropriate. Groundwater discharge (QGW ) is com-

puted as a function of porosity (φ), hydraulic conductivity (k), slope (S), and winter temperature

(Tw), as well as the head gradient between adjacent cells within the discretised rectilinear do-

main. The lake shown in the figure receives groundwater inputs from both sides. As the water

level emerges above the land surface to the left of the lake, the surface-water model component

(Fill–Spill–Merge) moves this water downslope, producing a flat lake surface that partially fills

the depression.

2 Model description85

The WTM (Callaghan et al., 2020) simulates the depth to water table, inclusive86

of both groundwater and lake surfaces. Separate model components for simulation of ground-87

water and dynamic lakes are run in a repeated cycle to permit feedbacks between the88
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ground- and surface-water components of the terrestrial hydrological system. The wa-89

ter table is recharged by precipitation-minus-evapotranspiration (P −ET ), and evap-90

oration occurs where surface water is present. Exfiltrating water flows downslope and91

may help to fill lake basins, and seepage from lakes may raise regional groundwater ta-92

bles. When climate or topography change, flow paths and hydrologic connectivity are93

impacted and this is reflected in changes in the water table.94

The WTM captures broad natural patterns in water-table elevations, and is most95

appropriate for large spatial scales, from continent-spanning catchments to the globe.96

The WTM can simulate a steady-state water table for any given set of conditions, and97

can also simulate transient change in the water-table over time. For transient water-table98

change, the WTM is best suited to temporal scales from years to millennia.99

2.1 The Groundwater Component100

To simulate the groundwater table, the groundwater model component solves the101

2D horizontal groundwater flow equation (Equation 4) with a finite-difference approach102

in a single layer of vertically integrated hydraulic conductivity (i.e. transmissivity). This103

2D approach follows the conceptual framework of Fan et al. (2007); Fan and Miguez-Macho104

(2011) and Fan et al. (2013) and is explained in more detail in Section 2.1.2. Ground-105

water flow is forced by climate (i.e. recharge), topography, and sea level. This compo-106

nent moves physically realistic water volumes over user-selected time intervals for a user-107

selected number of time intervals.108

The groundwater model component requires the following 2D, horizontally-distributed109

input arrays:110

• Topography: Land elevation above sea level, in metres.111

• Ocean mask: A binary mask with 1 values indicating land cells and 0 values in-112

dicating ocean cells.113

• Climatic water input: Precipitation and, if appropriate, ice melt in metres per114

year.115

• Evapotranspiration: Evapotranspiration occurring over land in metres per year.116

• Open-water evaporation: The evaporation that will occur when there is open117

surface water (i.e. a lake: Appendix E).118

• Winter temperature: Temperature during the months of December, January,119

and February (Northern hemisphere) or June, July, and August (Southern hemi-120

sphere) [◦C].121

• Slope: Topographic slope, which should be based on the input topography data.122

• Shallow sub-surface hydraulic conductivity – horizontal: Horizontal hy-123

draulic conductivity (k in Equation 6), representative of near-surface conditions,124

in metres per second.125

• Porosity: Shallow sub-surface porosity (φ in Equations 13, 14 and 15). Poros-126

ity is unitless.127

• Starting relative water-table elevation: The relative water-table elevation128

(zwr) is defined as the water-table elevation minus the elevation of the land sur-129

face, in metres. Positive values indicate the presence of a lake, while negative val-130

ues indicate groundwater table. This input is optional: if it is not supplied, zwr131

will be initialised at 0 (equal to the land surface) and the model should first be132

run to equilibrium.133

As an output, the WTM returns a 2D array of water-table elevation, zwr.134

–4–
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User-selected time 
step completed?

Start
groundwater

End 
groundwater

Calculate local
transmissivity

Calculate maximum 
stable time step

Calculate Δzwr in 
target cell

Assign next cell to 
be the target cell Update zwr array

No

Yes

Δzwr calculated
for all cells?

No Yes

Figure 2. Steps taken by the groundwater component. Relative water-table eleva-

tion, defined as the water-table elevation minus the land-surface elevation, is abbreviated as zwr.

‘Target cell’ refers to the current cell on which we are performing calculations. To see how the

groundwater algorithm fits into the model coupling, see Figure 5.
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2.1.1 Exponential decay of Hydraulic Conductivity135

Hydraulic conductivity dictates the rate of lateral groundwater flow. Given the dif-136

ficulty in obtaining data on the variability of hydraulic conductivity with depth at large137

scales, the WTM uses only a single hydraulic conductivity value in each cell of the do-138

main, representative of near-surface conditions. This value is used from the land surface139

to a depth of 1.5 m, because the global soil datasets that our hydraulic conductivity in-140

puts are based on are representative of the conditions until approximately this depth.141

Beyond depths of 1.5 m, we assume that the hydraulic conductivity decreases exponen-142

tially with depth. Exponential decay of hydraulic conductivity with depth is a well-docu-143

mented phenomenon and is commonly used in the absence of more detailed data (Ameli144

et al., 2016; Cardenas & Jiang, 2010; Fan et al., 2013).145

We calculate the rate of this exponential decay as an e-folding depth (fd), depen-
dent on both the local terrain slope and a temperature modifier to decrease hydraulic
conductivity at locations where seasonal frost or permafrost occur:

fd = f × Tf , (1)

where f is a slope-dependent term described below and Tf is a temperature-dependent
modifier. We define f as:

f = max

(
fmin ,

a

1 + bS

)
, (2)

where S is the terrain slope; and a, b, and fmin are user-selected calibration constants.146

The temperature-dependent modifier, Tf , is incorporated into the e-folding depth
following the method used by Fan et al. (2013). When the average winter temperature
drops below −5◦ C, we assume that seasonal frost inhibits groundwater flow. When av-
erage winter temperatures fall below −14◦ C, we assume that groundwater flow is af-
fected by permafrost. This limits lateral drainage, reducing the effective hydraulic con-
ductivity (Fan & Miguez-Macho, 2011). We define Tf as:

Tf =


1, if (TC > −5◦C)

1.5 + 0.1TC , if (−14◦C < TC < −5◦C)

max(0.17 + 0.005TC , 0.05), if (TC < −14◦C),

(3)

where TC is the temperature in degrees Celsius.147

2.1.2 Lateral groundwater movement148

Lateral groundwater movement is computed on a cell-by-cell basis using an explicit
finite difference numerical scheme. We solve for the change in head (h) in each cell us-
ing the 2D horizontal groundwater flow equation. We invoke the Dupuit–Forchheimer
approximation, which posits the assumptions that flowlines are horizontal and that the
hydraulic gradient is equal to the slope of the water table and does not vary with depth
(Freeze & Cherry, 1979). In this way, groundwater flow is limited to two dimensions (the
x and y dimensions): (

∂2h

∂x2
+
∂2h

∂y2

)
=
Sy
T
× ∂h

∂t
, (4)

where T is the transmissivity (detailed in Section 2.1.2.2), t is the length of a single time149

interval, and Sy is the specific yield, here approximated as being equal to porosity. For150

each cell in the domain, we solve this equation in the following steps:151

1. Recharge the groundwater table and evaporate surface water (Equation 5).152

2. Calculate the local transmissivity (Equation 6).153

3. Calculate the length of the time interval, t, to use (Equation 7).154
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4. Compute discharge into or out of the cell in the x and y directions during time155

interval t (Equation 10), hence obtaining the total change in groundwater volume156

within the cell (Equation 11).157

5. Use the cell area and local porosity to convert the volume change to a change in158

water table elevation within the cell, and obtain the updated relative water ta-159

ble elevation zwr (Equations 12, 13, 14 and 15).160

We call the cell being considered at any given time the ‘target cell’. Figure 2 summarises161

the steps taken.162

2.1.2.1 Recharge and evaporation We use the precipitation (P ), overland evap-
otranspiration (ET ), and open-water evaporation (ESW ) input arrays to recharge the
groundwater table and evaporate surface water. When surface water is present, evap-
oration rates typically increase. Physically, this is because actual evaporation is able to
equal potential evaporation. Both physically and algorithmically, this typically acts as
a feedback that slows runaway lake growth by decreasing the catchment-wide water bal-
ance as the lake surface area increases. To account for the changes in evaporation de-
pendant on the presence of surface water, the WTM recalculates the climatic water in-
put (Equation 5) at the beginning of each groundwater–surface-water model cycle. The
climatic water input (bC) is given by:

bC =

{
min(P − ET, 0) if zwr ≤ 0

P − ESW if zwr > 0,
(5)

Equation 5 dictates how much water is added to a cell due to precipitation at each time163

interval. If the cell’s water table is below or at the surface (groundwater) then the wa-164

ter added is precipitation minus evapotranspiration. If there is sufficient evapotranspi-165

ration, then no water is left to be added to the groundwater, though the surface of the166

earth shields the groundwater itself from evaporation. Conversely, if the cell’s water ta-167

ble is above ground (a lake) then sufficient evaporation can actually subtract water from168

the cell.169

We assume that vertical transit time through the unsaturated zone is short com-170

pared to the time interval for the calculation, and therefore simplify by ignoring any ver-171

tical transit time: recharge is applied directly to the water table.172

2.1.2.2 Transmissivity We calculate the local depth-integrated transmissivity,173

based on the shallow subsurface hydraulic conductivity and the e-folding depth described174

in Section 2.1.1. Following Fan et al. (2013), we divide this calculation into three cases:175

1. The water table lies below 1.5 m depth, where the exponential decay of hydraulic176

conductivity comes into play.177

2. The water table lies in the shallow subsurface, above 1.5 m depth, where the un-178

modified input hydraulic conductivity is representative of conditions at the wa-179

ter table.180

3. The water table lies above the land surface. In this case, hydraulic conductivity181

is calculated at the level of the land surface (i.e. it is identical to that for a fully182

saturated substrate). The dynamic lake component (Section 2.2) later moves the183

surface water into depressions or out of the domain as appropriate.184

Based on these three cases for hydraulic conductivity, we calculate transmissivity, the
depth-integrated hydraulic conductivity from −∞ to zwr, as:

T =


fd × k × exp

(
zwr+1.5

fd

)
, if (zwr < −1.5 m)

k × (zwr + 1.5 + fd), if (−1.5 m ≤ zwr ≤ 0 m)

k × (0 + 1.5 + fd), if (0 m < zwr),

(6)
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where T is the transmissivity, fd is e-folding depth (Equation 1), k is the shallow sub-185

surface horizontal hydraulic conductivity, and zwr is the relative water-table elevation.186

See Fan and Miguez-Macho (2011) and Fan et al. (2013) for more information on the deriva-187

tion of these formulæ.188

2.1.2.3 Time interval selection and handling We define model time intervals as189

“stable”, “safe”, or “unsafe” and use these to balance accuracy and runtime. Unsafe time190

intervals are those that are neither globally safe nor locally stable, and are longer than191

both. If the minimum “stable” time interval of all the cells is used as the global time in-192

terval, then the time interval is mathematically guaranteed to be short enough to pre-193

vent numerical instabilities in the model when computing changes in zwr. However, be-194

cause of the spatially variable cell size and transmissivity, different cells may have dra-195

matically different stable time intervals. This means a single cell with a very short sta-196

ble time interval can hold up the whole calculation.197

Therefore, we require the user to supply a “safe” time interval, used as the global198

time interval, which does not have a mathematical guarantee of stability but which we199

can show empirically to satisfy indicators of stability such as mean water-table elevation200

(Figure 3). “Safe” time intervals are short enough to avoid situations where water would201

flow through multiple cells in the domain, rather than just to a neighbouring cell, dur-202

ing each time interval.203

If the length of the global “safe” time interval exceeds that of the local “stable”204

time interval between a given target cell and its four neighbours, then several stable time205

intervals which collectively comprise the same time as the “safe” time interval are made206

for the target cell.207

Ultimately, the “safe” timestep allows WTM to avoid moving water through all cells208

at the slowest rate while ensuring that any fluid movement between adjacent cells is still209

physically realistic, thereby accelerating the model.210

We use a 2D von Neumann stability analysis (Charney et al., 1950; Crank & Nicol-
son, 1996) to calculate the maximum stable time interval for a given target cell based
on local transmissivity, porosity, and cell size:

tN =
(L2

EW × L2
NS)

4× Tmax × (L2
EW + L2

NS)× fs
× φmin, (7)

where tN is the von Neumann stable time interval, LEW is the cellsize in the east-west211

direction, LNS is the cellsize in the north-south direction, Tmax is the maximum trans-212

missivity among the target cell and its four neighbour cells, φmin is the minimum poros-213

ity among the target cell and its four neighbours, and fs is a factor of safety, set equal214

to 2. tN is computed for every cell in the domain.215

In the ideal case, we would select the smallest tN value from the domain and set216

the stable time interval equal to this value for all cells. However, doing so can lead to217

unreasonably long compute times: a few cells with unusually high transmissivity values218

resulting from a combination of high hydraulic conductivity, low slope, and shallow wa-219

ter table can set an exceptionally short stable time interval for all cells in the domain.220

To prevent the problem becoming computationally untenable, we instead select an in-221

dividual tN value for each cell based on its local conditions.222

Because the stability criterion is applied only to each individual target cell, this method223

may result in a loss of conservation of water mass. This is because the volume of water224

moving out of one target cell to its neighbour may not be exactly equal to the volume225

of water received by the neighbour if they operate on different time intervals. However,226

tests on the synthetic topography shown in Section 3.1 showed that mass loss on this to-227

pography with various time intervals was less than 0.1% of the summed zwr across the228

domain. From this, we conclude that any volume loss is small relative to the total wa-229

–8–
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ter volumes being moved by the component. A comparison of the mean zwr in a model230

result using various time intervals, both longer and shorter than the calculated time in-231

terval, is given in Figure 3. Although this water volume is small, users should select a232

time interval shorter than the von Neumann stable time interval for their region in cases233

where this is possible in order to obtain the most accurate result possible.234
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Figure 3. Mean relative water-table elevations with different time intervals in a sample model

run. The stable time interval was 218,733 s when using a factor of safety equal to 2, and is indi-

cated by the solid blue line. The estimated safe time interval was 935,609 s when using a factor

of safety equal to 5, and is indicated by the dashed blue line. Red circles indicate time intervals

that are shorter than the domain-wide stable time interval. Blue squares indicate time intervals

that are longer than the stable time interval, so that groundwater movement may be calculated

in multiple portions, but the time interval is still safe. Green triangles indicate time intervals

that are unsafe. These time intervals are too long and will lead to erroneous results. Note that

the leftmost green triangle does not show a significantly lower mean zwr and is likely a safe

time interval: it is marked unsafe as a result of the cautious selection of the safe time interval.

A factor of safety equal to 1 would have resulted in the acceptance of the second-from-the-left

green triangle, a time interval which, as indicated by this plot, resulted in mass loss and is clearly

unsafe.

Note that even when the user-selected time interval is shorter than the domain-235

wide stable time interval across the model domain, minor differences will occur between236

results using different user-selected time intervals. This is the nature of the forward-diff-237

erencing regime: a longer time interval will move water across a steeper head gradient238

for the full length of the time interval. These differences are small in comparison to the239

broad patterns in zwr produced by the model (Figure 3).240

While the stable time interval ensures numerical stability of the calculation, it is241

vital that the user also select a safe time interval. Any given target cell only has direct242

communication with its four neighbouring cells during a single time interval. This lim-243
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its the distance that water can move during a single time interval. In locations where244

there is a steep head gradient, high hydraulic conductivity, or low porosity, groundwa-245

ter may realistically be able to move further than the distance to the neighbouring cell,246

i.e. the Courant number would be greater than 1 (Courant et al., 1956). This results in247

unreasonable volumes of water attempting to move cell-to-cell. The effects are most promi-248

nently visible on steep, saturated hillslopes: water attempts to move downslope unrea-249

sonably fast, resulting in large, unrealistic amounts of exfiltration. Model results in this250

scenario may be significantly incorrect. The selection of a safe time interval will depend251

on the hydrologic and topographic specifications of the input data. A visual represen-252

tation of safe, unsafe, and stable time intervals is given is Figure 3.253

Users can select a safe time interval by calculating the maximum velocity of wa-
ter movement at their study location, and comparing this with the size of the cells in their
input data, using the Darcy velocity and porosity as follows (Freeze & Cherry, 1979):

∆ts =
LEW
u ∗ fa

, (8)

where ∆ts is the safe time interval, LEW is the cellsize in the East-West direction, u is
the velocity of the groundwater, and fa is a factor of safety. u is given by:

u = −
k dhdl
φ
, (9)

where k is the hydraulic conductivity, dh
dl is the head gradient, and φ is the effective poros-254

ity.255

It is not possible to know ahead of time what the maximum head gradient between256

two cells within the course of a model run will be. We recommend using the topographic257

slope of the input data as a guideline: if zwr initialises at the land surface, this will rep-258

resent the starting head gradient. However, steeper head gradients can occur during the259

course of a model run, especially immediately after the dynamic lake component described260

in Section 2.2 has executed. Because of this and any other factors that may result in a261

higher water velocity, we recommend including the factor of safety, fa, in the calcula-262

tion. In Figure 3, the safe time interval shown was obtained using a conservative factor263

of safety of 5, although values as low as 2.1 would have precluded the obviously unsafe264

time intervals. If possible, a model user should compare results at a significantly shorter265

time interval to confirm that there are not major differences in the broad patterns of ground-266

water in the result, which would be an indication that the time interval they had selected267

was unsafe.268

2.1.2.4 Compute discharge and update water table We calculate discharge from
each target cell using the elevation head, i.e. the elevation above sea level of the water
table, for the target cell and its four neighbouring cells. Along coastlines, sea level pro-
vides a 0-elevation boundary condition for hydraulic head and zwr is set equal to 0 at
these locations. Following Fan and Miguez-Macho (2011), we use Darcy’s Law and the
Dupuit–Forchheimer Approximation (Freeze & Cherry, 1979) to compute the discharge
from each target cell as follows:

QN =

(
TN+T

2

)
× (hN − h)× LEW

LNS
,

QS =

(
TS+T

2

)
× (hS − h)× LEW

LNS
,

QE =

(
TE+T

2

)
× (hE − h)× LNS
LEW

,

QW =

(
TW +T

2

)
× (hW − h)× LNS
LEW

,

(10)
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where QN , QS , QE and QW are the groundwater discharges to the north, south, east,269

and west; T represents the transmissivity of the target cell and TN , TS , TE and TW are270

the transmissivities in the four neighbouring cells; h and hN , hS , hE and hW are the el-271

evation heads of these five cells; LNS is the distance between the centres of two cells in272

the north-south direction; and LEW is the distance between the centres of two cells in273

the east-west direction.274

The change in water volume in the target cell, ∆V , is given by

∆V = (QN +QS +QE +QW )×∆t, (11)

where ∆t is the stable time interval in seconds.275

Based on these volumes, we calculate the change in relative water table elevation276

(zwr) in the target cell and its four neighbours, dependent on the area of each cell. Change277

below the land surface is modulated by the porosity in that cell. Since most water ta-278

bles are relatively near the land surface, we assume that porosity remains constant with279

depth and that above the land surface porosity is equal to 1. By doing this, we assume280

that vegetation occupies negligible volume.281

There are four cases to consider when calculating the final relative water-table el-282

evation, zwf , in the target cell. These are:283

1. The initial relative water-table elevation, zwi, is above the land surface and the
water table remains above the land surface after the change in water table height.
In this case, zwf is calculated as

zwf = zwi +
∆V

A
, (12)

where A is the area of the cell.284

2. zwi was above the land surface, but the water table moves below the land surface
during this step. In this case, we will take the porosity, φ, of the subsurface into
account as follows:

zwf =
zwi + ∆V

A

φ
. (13)

3. zwi was below the land surface, and zwf is above the land surface. In this case,
we account for porosity only in the portion filled up to the land surface:

zwf = (zwi × φ) +
∆V

A
. (14)

4. Finally, zwi and zwf are both below the land surface:

zwf = zwi +
1

φ

∆V

A
. (15)

A new array records zwf for each cell. After performing these calculations at each285

cell in the array, the groundwater component adjusts the water table for the entire ar-286

ray in a single step.287

2.2 The dynamic lake component288

The dynamic lake component uses a parsimonious network-based approach to move289

surface water into depressions and compute surface-water storage within these depres-290

sions. Depressions are defined as inwardly-draining regions within the topography, where291

water would naturally pool without being able to flow away. The dynamic lake compo-292

nent proceeds in two steps: (1) it uses a digital elevation model (DEM) to build a De-293

pression Hierarchy data structure (Barnes et al., 2020)—a directed tree of depressions294

and their connections, and (2) it uses the Fill–Spill–Merge method to rapidly allocate295

runoff to these depressions (Barnes et al., 2021), with optional infiltration occurring, and296

to calculate the resulting depth of surface water in all of the depressions.297
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2.2.1 The depression hierarchy298

Understanding the topological and geographical relationships between depressions299

in the landscape allows us to more rapidly calculate how these depressions will trap and300

store water. An unfilled depression will retain water that flows into it, while a depres-301

sion that is already filled with water will overflow. We use the depression hierarchy data302

structure (see Barnes et al., 2020; Barnes & Callaghan, 2019, for a full description) to303

aid in our computation of surface-water flow using Fill–Spill–Merge, discussed in Sec-304

tion 2.2.2. This depression hierarchy is scale independent, though the data may be more305

or less appropriate for accurate representation of depressions in the landscape.306

As inputs, the depression hierarchy requires 2D arrays of topography and a binary307

mask indicating where land and ocean cells occur. The following are supplied as outputs:308

• An array of flow directions.309

• An array of labels assigning each cell in the domain to a certain depression, or to310

the ocean in the case of ocean-draining cells.311

• A depression hierarchy, which defines the topological and geographical relation-312

ships among depressions in the landscape. This depression hierarchy stores per-313

tinent information about each depression, including its volume and the locations314

and elevations of its pit (i.e., lowest elevation) and outlet cells. A full list of the315

recorded information is given in Appendix A.316

The depression-hierarchy algorithm builds the depression hierarchy data structure,317

organized as a forest of binary trees (Barnes et al., 2020), by analysing the input topog-318

raphy file to determine the locations of internally-drained depressions and their catch-319

ments. Smaller depressions may be nested within larger ones. Each depression, when com-320

pletely filled with water, will overflow either to the ocean or to another depression. We321

use these topological relationships of natural depressions in the landscape to one another322

to construct the depression hierarchy.323

Here we modify the original depression-hierarchy code described by Barnes et al.324

(2020) in two critical ways to permit global calculations of water-table elevation. First,325

we generalize the code to allow for latitude-dependent variable cell sizes (Callaghan et326

al., 2020). This is necessary for work with unprojected geospatial data on a continen-327

tal scale, in which the variable cell size can have a significant impact on the amount of328

water accommodated within a cell. Second, we include storage volume below the land329

surface when assessing the total capacity for water available in a depression. This is nec-330

essary for the model coupling with the groundwater component described in Section 2.1,331

because water tables may be below the land surface and the ground needs to become sat-332

urated before surface water begins to fill the depression.333

2.2.2 Fill–Spill–Merge334

The Fill–Spill–Merge (FSM) algorithm rapidly simulates the movement of surface-335

water downslope into depressions and ultimately assigns any surface water that exists336

on the landscape to a specific depression from the depression hierarchy. A depression that337

contains more water than it can accommodate will spill, sending any additional water338

to its neighbouring depression. If two neighbouring depressions are both filled, they will339

merge to form a larger metadepression, which will then continue to fill with water. This340

process continues until all surface water flows either to a depression or to the ocean. Barnes341

et al. (2021); Barnes and Callaghan (2020) provide a full description of the original FSM342

algorithm. The combination of depression-hierarchies and FSM solves the above flow rout-343

ing and water distribution problem thousands of times faster than previous models (Barnes344

et al., 2020, 2021). Here, we add optional infiltration, discussed in section 2.2.2.1, and345

we allow cell size to vary with latitude, discussed in section 2.2.2.3.346
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FSM is time-independent, always moving surface water to its final destinations in347

depressions, the ocean, or out of the model domain within a single time interval. This348

is based on the assumption that surface-water movement is fast in comparison to that349

of groundwater, and that only equilibrium surface-water results are needed over the time-350

scales we address using the WTM.351

The computational efficiency of Fill–Spill–Merge—it works thousands of times faster352

than previous approaches—makes this a convenient algorithm to use in a variety of hy-353

drologic studies. Understanding the location of filled depressions on the landscape re-354

veals information about hydrologic connectivity, as well as potential water storage vol-355

ume in natural depressions. The FSM algorithm is summarised in Figure 4.356

Start
Fill-Spill-Merge

End
Fill-Spill-Merge

Move water downhill 
to pits using flow 

directions and 
infiltrating as needed

Overflow and
merge depressions

Flood the
landscape

Input data

Is infiltration 
enabled?

Recurse through 
depressions to find 
those where we can 
update water depth.

Calculate
available volume

The total volume
of water a 

depression can hold
includes space both

above and below 
ground. 

Is infiltration 
enabled?

Assign water to the 
relevant leaf 

depressions in the 
depression hierarchy

Labels, flow
directions, depression 
hierarchy, topography, 

porosity, starting 
relative water table 

elevation; if infiltration 
is active, then slope 

and vertical hydraulic 
conductivity.

Yes

No

Overflow and merge
depressions with
cell-by-cell water
movement and 

infiltration

Yes No

Recurse through depressions 
and find those with more 
water than they can hold.

Then redistribute this water 
to siblings and parents in 
the depression hierarchy.

Figure 4. Steps taken by the Fill–Spill–Merge algorithm. We modified the Barnes et

al. (2021) algorithm to include optional infiltration during downslope flow. Additionally, seepage

will always occur beneath standing water during the ‘flood the landscape’ step (i.e. a lake will

never represent a perched aquifer: there is a single water table at the lake surface). Figure 5

shows how FSM fits into the model coupling.

–13–



manuscript submitted to Water Resources Research

The following 2D, horizontally distributed arrays are required as inputs for FSM.357

Note that several of these are the same inputs required by the groundwater component:358

• Labels: The depression-hierarchy algorithm gives each cell a number, here called359

its ‘label’, that associates it with a particular depression.360

• Topography: Land elevation above sea level, in metres.361

• Porosity: Shallow subsurface porosity.362

• Starting relative water table elevation (zwr): The elevation of the water-table363

relative to the land surface, as output by the groundwater algorithm. In cells con-364

taining surface water, we will refer to this water as ‘runoff’.365

In addition, FSM requires the Depression hierarchy: The data structure created by366

the depression-hierarchy algorithm, detailing all of the depressions and their topologi-367

cal relationships to one another.368

If the infiltration option in Fill–Spill–Merge is enabled, additional required inputs369

are:370

• Flow directions: The 2D array of flow directions created by the depression hi-371

erarchy algorithm.372

• Slope: Topographic gradient, which should be computed from the input topographic373

data.374

• Shallow subsurface hydraulic conductivity – vertical: Vertical hydraulic375

conductivity for infiltration calculations.376

The output of FSM is an array showing the updated zwr, after infiltration has (op-377

tionally) occurred and surface water has either flowed into depressions to form lakes or378

exited the domain.379

2.2.2.1 Infiltration Here, we add an optional infiltration component to FSM. This380

is only recommended for cases in which the input data have a high enough resolution381

to resolve hillslopes and river channels that wholly occupy distinct individual cells. When382

using coarser resolution input data, a single pixel will contain sections of both river net-383

work and hillslope, and the model will not have sufficient information about the tran-384

sit routes and times of water across these different zones, themselves determined by drainage385

density and hillslope geometry, to realistically simulate infiltration. When input-data res-386

olution becomes high enough to differentiate these hillslope and channel components of387

the landscape, the infiltration component adds an additional element of realism to the388

model.389

In cases in which the user does not want infiltration to occur during surface flow,390

the land surface will be treated as impermeable in order to simulate rapid evacuation391

of surface water from each cell via river networks. The algorithm will bypass its subrou-392

tine to compute cell-to-cell flow of water in order to speed calculations. Using the labels393

array and depression hierarchy data created by the depression hierarchy algorithm, FSM394

will move water directly from each surface-water-containing cell to the relevant depres-395

sion in the hierarchy.396

When the infiltration option is enabled, the FSM algorithm first moves surface wa-397

ter downslope cell-by-cell, using the flow directions generated by the depression hierar-398

chy. As the water moves downslope, some may infiltrate; the remainder continues along399

the flowpath until it flows into the ocean, out of the domain, or into a pit cell (that is,400

the cell within a depression that has the lowest elevation). Similarly, when water over-401

flows from one depression to another later in the algorithm, the water will move cell-to-402

cell and infiltration will be computed (see ‘Overflow and merge depressions with cell-by-403

cell water movement and infiltration’ in Figure 4).404
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Our method for managing infiltration can accommodate both saturation-excess and405

infiltration-excess overland flow, while omitting the dynamics of the unsaturated (i.e. va-406

dose) zone. When surface water flows into a cell, the following possibilities exist:407

1. The cell is fully saturated, i.e. the groundwater table is at the land surface. In this408

case, no infiltration is possible, and saturation-excess overland flow (Dunne & Black,409

1970) will occur.410

2. The cell is not fully saturated. Some water will infiltrate and some will continue411

to flow downslope as infiltration-excess overland flow (Horton & Htrata, 1955).412

The amount of infiltration that occurs is dependent on infiltration rate and res-413

idence time of water in a cell, discussed further below.414

When water reaches a cell that is not fully groundwater-saturated, we calculate the415

time t that it takes the water to cross the cell as a function of the distance travelled by416

the water from cell to cell (L) and the depth-integrated flow velocity (u). We compute417

this velocity using Manning’s equation (Eq. B1), making it a function of slope (S) and418

flow depth (h). This flow depth decreases as the water crosses the cell due to infiltra-419

tion at a rate governed by the saturated vertical hydraulic conductivity (ksat); for sim-420

plicity, we do not consider transient wetting and drying effects in the unsaturated zone.421

We limit the topographic slope, S, to a minimum value of 10−6 to allow movement over422

flat cells in the DEM. We calculate L based on the directions of travel between the two423

cells (north–south, east–west, or diagonal), and the latitude of the cells.424

We obtain the transit time t for each cell following the derivation in Appendix B:

t =

[
h0 −

(
h

5/3
0 − 5

3

n

S1/2
ksatL

)3/5
]/

ksat. (16)

From this travel time, we next want to find the amount of water that will infiltrate. There
are three possible solutions for the potential total amount of water infiltrated, Ipot:

Ipot =


h0 if h

5/3
0 ≤ 5

3
n

S1/2 ksat

0 if ksat = 0

ksatt otherwise.

(17)

In the first case, the entire column of water that enters the cell can infiltrate before it425

crosses. (Indeed, you may already have noted that the solution to Equation 16 becomes426

undefined in this case.) In the second case, a vertical hydraulic conductivity of 0 means427

that no water is able to infiltrate. In the third, some of the surface water infiltrates as428

it crosses the cell, and the remainder continues to the next cell.429

Converting Ipot to the actual amount of infiltration that occurs, I, requires con-
sideration of the space available to accommodate infiltration water. Combining Eq. 17
with the amount of groundwater space available in the cell, given by −φzwr where φ is
the subsurface porosity (assumed constant) and zwr is the relative water table elevation,
provides the general solution:

I = min (−φzwr , Ipot) . (18)

This amount of infiltrated water is then subtracted from the flow depth, h. If h > 0430

as the water exits the cell, then it continues onwards to the next downslope cell.431

2.2.2.2 Seepage When a lake is present in a depression, we allow the water col-432

umn to instantaneously seep into the subsurface until either (a) the full subsurface is sat-433

urated or (b) no surface water remains. The WTM does not simulate any perched wa-434

ter tables; a lake surface represents the water table with complete saturation up to that435

elevation.436
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2.2.2.3 Variable cell areas When performing computations using a latitude–longitude437

grid, cells at higher latitudes have smaller areas than cells at lower latitudes due to the438

roughly spherical shape of the Earth. The same volume of water at each of these two439

latitudes would translate to a different thickness of ground- or surface water in a cell.440

We conserve water volume within the model and account for this variable cell area when441

calculating zwr.442

2.2.2.4 Updating the relative water table elevation If a depression is completely
full, its water level is set to the outlet level of the depression. If a depression is only par-
tially full, we calculate its water level using the volume of water and the elevations and
areas of each cell following equation 6 from Barnes et al. (2021):

zwr =
Vw∑
iAi

+

∑
iAizi∑
iAi

, (19)

where zwr is the relative water table elevation, Vw is the volume of water in the depres-443

sion, Ai is the area of cell i in the depression that contains water, and zi is the eleva-444

tion of cell i. See Appendix C for the derivation of this formula.445

2.3 Model coupling446

The WTM couples the two model components by running the groundwater and dy-447

namic lake components sequentially in a repeated cycle. Figure 5 demonstrates the steps448

followed within the coupled model. Figure 6 shows an example topography with depres-449

sions and the conditions at each step through the WTM.450

A user may elect to perform either a steady-state or a transient model run. For a451

steady-state model run, the user should monitor the amount of change in zwr from one452

model cycle to the next. Values indicating the total change in the array are output in453

a text file. The total change in zwr should approach an asymptote as it nears steady-454

state. For these model runs, a single set of climate and topography input arrays are re-455

quired. An example of the progression of a model run as it moves towards steady-state456

is shown in Figure 7.457

For transient runs, the WTM requires two sets of input arrays, which define the458

state of climate and topography at both the beginning and the end of the model run pe-459

riod. These parameters will then be adjusted from starting state to the ending state us-460

ing a linear interpolation throughout the model run. If the topography changes during461

the time period to which the model is being applied, the depression hierarchy will be re-462

calculated accordingly. The WTM also requires a starting zwr array representing water-463

table conditions at the beginning of the modelled period. The user will select the total464

real-world length of time for which to run the model.465

3 Sample model runs466

3.1 Synthetic data467

We provide sample results on a synthetic dataset to make the results of the WTM468

easy to visualise. The topography consists of two hills and two depressions with a two-469

dimensional sinusoidal shape (see Figure 8a). To focus on the interaction of topography470

with the WTM, we used constant values across the entire domain for the other inputs:471

0.03 m yr−1 precipitation, 0.0 m yr−1 evapotranspiration, 0.5 m yr−1 open water evapo-472

ration, e-folding depth of 100 m, and a winter temperature of 0◦C. Hydraulic conduc-473

tivity was set to 0.0001 m s−1 and porosity to 0.25. The water table was initialised at474

the land surface, i.e. zwr = 0.475

Figure 8 shows the results of the model when applied to the synthetic topography.476

We use this visually simple example to compare results of running the groundwater com-477
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Start

Output relative 
water table 
elevation

Completed 
total time steps?

Completed 
GW time steps?

Move groundwater

Water table 
above land surface?

No

Get depression 
hierarchy

Yes

Move surface
water

End

No

Use surface-water
evaporation rate

Yes

Input data

Use supplied
evapotranspiration

rate

Add climatic
water balance

Yes

No

Topographic
change?

Yes

No

Figure 5. Steps taken in the coupled model. The two red boxes indicate the two main

modelling components of our coupling. Figure 2 details the ’move groundwater’ step and Figure 4

details the ‘move surface water’ step.
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Figure 6. Water movement in the groundwater and dynamic lake components of

the WTM. (a) A cross section across a portion of the landscape, showing the depressions and

their labels within the depression hierarchy. (b) Map view of the depressions from (a). (c) Initial

relative water table elevation conditions: the water table is at the land surface. (d) The ground-

water component has executed. The water table is deeper below the hilltops and exfiltration has

occurred on hillsides. (e) FSM has executed. Surface water is now distributed into lakes at the

bottom of depressions. (f) P-ET is added over land surfaces, and P-E, which may be negative,

is added over the lake surfaces. (g) After steps (d) to (f) have been repeated many times, we

reach the steady-state result that is the output of the model. Higher precipitation towards the

right-hand side of the figure has resulted in a higher water level in those depressions. Depressions

1 and 2 have merged and their metadepression, 10, has partially filled. Depression 3 has partially

filled. Depressions 4 and 6 have merged into their metadepression 11, which has completely filled

with water. Any overflow from depression 11 has flowed into the ocean. Figure modified from

Barnes et al. (2021).
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Figure 7. The absolute value of the summed change in the relative water table elevation array

per iteration, showing the progression towards equilibrium. Both the total change and the slope

of the line decrease the longer the model run continues. This was the result of a model run on

artificial topography featuring sinusoidally-shaped depressions, discussed in Section 3.1.

ponent in isolation, to results from the full coupled WTM. We also provide an example478

of water depths in completely filled depressions produced using RichDEM’s complete-479

depression-filling command (Barnes et al., 2014a, 2014b; Barnes, 2016), for comparison480

to the partially-filled depressions that result from the WTM’s surface-water evaporation.481

The results emphasize the importance of including the dynamic lake component482

in the WTM. The zwr values obtained using the coupled model include not only the sur-483

faces of lakes in the depressions themselves, but also a regionally higher water table due484

to the impact that the lake water has on surrounding relative water table elevations. When485

the lake surface is not present, the low zwr at the floor of the depression results in con-486

tinued exfiltration from the hillslopes, and hence a lower regional water table. The re-487

sults also show that the high open-water evaporation, and the ability of lakes to recharge488

local groundwater, have kept lake levels low in comparison with a fully-filled depression.489

These factors permit internal drainage of the lakes.490

3.2 Real-world model run: North America491

Sample results from a real-world site are provided for the North American conti-492

nent. Details on the input data used are given in Appendix D.493

Using equations 8 and 9 discussed in Section 2.1.2, we computed the fastest tran-494

sit time that we would expect to see across a cell to determine the safe time interval. Es-495

timating the head gradient with the topographic gradient, and using a factor of safety496

of 3, we obtained a safe time interval of 216,228 s. Therefore, we performed the model497

run for North America using a time interval of 216,000 s (equivalent to 2.5 days). FSM498

executed after every 146 groundwater time intervals, i.e. once per year.499
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Figure 8. The results of the model on an artificial topography, with two sinusoidal depres-

sions and two sinusoidal hills. (a) shows the artificial topography used in these sample results.

(b) shows the water-table elevation resulting from a flood-fill algorithm, used to completely fill

the depressions. In (c), only the groundwater component of the WTM was used. The maximum

relative water table elevation is 0, since all surface water is assumed to run off or evaporate. Re-

sults are shown in metres relative to the land surface. In (d), the full WTM coupled model was

used, so the two depressions contain surface water. While the biggest difference between these

two is seen in the depressions themselves, (e) indicates that the actual differences are further-

reaching: in the case where surface water is present, the local to regional groundwater table is

also affected. (f) shows the difference between only the surface-water portion of the coupled

model, and the result of a flood fill. This emphasizes the fact that the depressions were not com-

pletely filled by the coupled model, partially as a result of the surface-water evaporation term.
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Figure 9 shows the sample model results for the continent of North America. Re-500

sults of the full coupled model are compared with results of the groundwater component501

run in isolation, with no surface water being allowed to accumulate; simplifying the WTM502

in this way makes it identical to the Fan et al. (2013) model. When surface water is al-503

lowed to accumulate in the coupled model, additional water is stored in lakes, but lo-504

cal water tables are also higher in the surrounding cells (Figure 8) due to the higher el-505

evation head of the water table within these lakes.506

Both groundwater-only and coupled WTM simulations (Figure 9) capture broad507

climate-driven patterns in zwr at a continental scale. The drier climate in the west re-508

sults in deeper water tables while wetter climates in the north and east result in shal-509

lower water tables. Variable geology and topography add detail to this overall pattern510

driven by the climatic gradient.511

The results from the coupled WTM simulation in Figure 9b show the importance512

of accounting for surface water in the model. North America contains tens of thousands513

of lakes. Many of these are reflected in the results, ranging from large water bodies, such514

as the Great Lakes, to smaller features such as internally-drained basin and range de-515

pressions, calderas, and fluvial lakes. These features are highly sensitive to the input data,516

particularly surface-water evaporation, and therefore improvements to the input data517

will result in more accurately simulated lakes.518

Figure 10 compares the results of the WTM simulation with observed data across519

North America. Fan et al. (2007) gathered over 500000 observations of groundwater depth520

across the continent. These are compared to WTM groundwater depths in Figure 10a.521

Simulated water table depths tend to be shallower than observations, a trend that has522

already been observed by Fan et al. (2013) and Maxwell et al. (2015). The trend in sim-523

ulated groundwater depth appears similar to these prior works, though a higher propor-524

tion of very shallow groundwater in this work likely results from the inclusion of the dy-525

namic lakes module and associated groundwater seepage. A lack of very shallow water526

tables in the observed data may be because the observed data is likely to suffer from se-527

lection bias as a result of well location. Additionally, it includes anthropogenic impacts528

on the water table (e.g. pumping), while the simulated water table does not.529

Lake depths were compared to the Kourzeneva et al. (2012) lake dataset. This com-530

parison is shown in Figure 10b. The Kourzeneva et al. (2012) dataset includes full lake531

bathymetry for some major lakes, but only mean depth for most smaller lakes, making532

direct comparisons between the simulated and observed data difficult. Additionally, bath-533

ymetry is non-identical between the Kourzeneva et al. (2012) dataset and topography534

used for the WTM simulation: the Great Lakes bathymetry for the simulation was based535

on GEBCO Bathymetric Compilation Group (2020) data. Improvements in observed data536

in the future will enable us to better test simulated results.537

4 Conclusions538

The WTM computes changing water tables and terrestrial water storage across spa-539

tial and temporal scales. Using the depression hierarchy data structure and Fill–Spill–Merge540

to efficiently route surface water, we are able to create a continental-scale simulation of541

water table that includes locations where the water table is above the land surface. The542

WTM is ideal for modelling changes in the water table under changing climatic condi-543

tions, and the simple input requirements mean that it can be used for the distant past544

or for the future as climate changes.545
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(a)

(b)

(c)

Figure 9. A comparison of the fully coupled WTM with the groundwater component alone

for the North American continent. Model runs were performed using modern-day data as detailed

in Appendix D. Shown here is the equilibrium water table elevation relative to the land surface.

(a) shows the result of the groundwater component alone, where surface water is all assumed to

run off or evaporate. (b) shows the result of the fully coupled model (WTM), including lakes. (c)

shows the difference between the two.
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Figure 10. A comparison of the results of the WTM simulation with real-world data. (a)

shows simulated and observed groundwater depths. (b) shows simulated and observed lake

depths.
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Appendix A Depression hierarchy data546

The depression hierarchy stores data about each depression that may be useful for547

a variety of applications. Aside from the relationships of depressions to one another, data548

on the size, elevation, and location of each depression is also stored. A leaf depression549

refers to the lowest level of depressions in the hierarchy. These depressions do not con-550

tain any subdepressions. Any depression that is not a leaf depression will contain two551

subdepressions, referred to as its children. The depression is the parent of its children.552

For each depression, the data recorded comprise:553

• The location of its pit cell (the lowest cell in the depression).554

• The elevation above sea level of the pit cell.555

• The location of its outlet cell, the lowest point at which the depression will spill556

over to a neighbouring depression or to the ocean.557

• The elevation above sea level of the outlet cell.558

• The label of the depression (a unique number).559

• The number of cells in the depression.560

• For leaf depressions, a list of all of the cell indices for cells that the depression con-561

tains.562

• The area of the depression.563

• The above-ground volume of the depression.564

• The total volume of the depression, including any space in unsaturated ground.565

• The difference between the above-ground and total volumes of the depression.566

• The volume of water currently contained in the depression.567

• The label of the depression that is its parent in the binary tree structure.568

• The label of the leaf-level depression into which the depression overflows.569

• The label of the upper-level depression into which the depression overflows. In some570

cases, this will be the same as the above item.571

• For non-leaf depressions, the labels of the two children of the depression in the bi-572

nary tree structure.573

• Whether this depression overflows into a depression which ultimately overflows574

to the ocean.575

• If this depression ultimately overflows into the ocean, then a list of any depres-576

sions which link to the ocean via this one.577

Appendix B Transit time across a cell578

To calculate the amount of infiltration that happens while water is in transit across579

a cell, we must consider the total time the water takes to cross the cell. The more time580

that the water spends in a cell, the longer it will have to infiltrate. Water will take longer581

to flow across cells that are larger or have shallower slopes, or when the water depth, and582

hence its flow velocity, is smaller.583

We use Manning’s equation to estimate the time taken for flow to cross a cell.

u =
1

n
R

2/3
h S1/2, (B1)

where u is the mean (i.e. vertically averaged) velocity of the surface water moving across
the cell, n is the Gauckler–Manning coefficient, Rh is the hydraulic radius, and S is the
slope. By default, we set Manning’s n to a value of 0.05m−1/3s. We make the assump-
tion that the height of water in the cell, h, is much smaller than the cell width. This al-
lows us to simplify the hydraulic radius to equal h:

u =
1

n
h2/3S1/2. (B2)
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Because S and n are both constants, for convenience we will combine them in constant
k0, where

k0 =
S1/2

n
, (B3)

so that
u = k0h

2/3. (B4)

The next step is to consider the infiltration rate,

dh

dt
= −ksat. (B5)

By separating variables, integrating, and defining h = h0 at t = 0, we obtain:

h = h0 − ksatt. (B6)

We substitute Eq. B6 into Eq. B4 and use the definition of velocity as the time deriva-
tive of position to set up the final equation to integrate:

dL

dt
= k0 (h0 − ksatt)

2/3
. (B7)

where L is the displacement in an arbitrary orientation. By separating variables and solv-
ing via u substitution, we obtain:

L = k0

∫ ti

0

(h0 − ksatt)
2/3dt

= −3

5

k0

ksat
(h0 − ksatt)

5/3 + c,

(B8)

where c is the constant of integration. Defining L = 0 when t = 0 (i.e. that the clock
starts when the water first touches the cell margin), we obtain:

c =
3

5

k0

ksat
h

5/3
0 (B9)

This gives the distance crossed by the water as:

L =
3

5

k0

ksat

(
h

5/3
0 − (h0 − ksatt)

5/3
)

(B10)

We now know the distance that the water must travel from one side of the cell to
the other. We want to know the amount of time that this transit takes, because this is
the amount of time that the water has to infiltrate within the cell. Rearranging to solve
for the transit time and substituting S and n back in gives

t =

[
h0 −

(
h

5/3
0 − 5

3

n

S1/2
ksat∆L

)3/5
]/

ksat. (B11)

Appendix C Calculating lake-water levels584

The depression hierarchy is used to distribute water to the appropriate depressions.585

Within each depression, we need to determine the geographic distribution and depth of586

this water. We do so by calculating the elevation of the water surface within a given de-587

pression. In cases where a depression is filled to the brim, this elevation is simply the588

elevation of the outlet cell. In cases where the depression is not filled to the brim, a cal-589

culation needs to be performed as follows:590

Vw: Total volume of water contained in the depression591
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zw: Elevation of the water surface592

zi: Topographic elevation in cell i593

Ai: Area of cell i594

We know the volume of water, topographic elevation of each cell, and area of each
cell, and need to find the elevation of the water surface. We know that the volume of the
depression can be calculated with:

Vw =
∑
i

Ai (zw − zi)

=
∑
i

Aizw −
∑
i

Aizi

= zw
∑
i

Ai −
∑
i

Aizi

We then separate zw and algebraically rearrange.

zw =
Vw∑
iAi

+

∑
iAizi∑
iAi

All terms on the right-hand side are known.595

Appendix D Model input data: North America596

Here we provide the data sources that we used for each of the input arrays required597

by the WTM for the continent of North America.598

We obtained topographic data from the GEBCO 2020 grid (GEBCO Bathymet-599

ric Compilation Group, 2020). We modified this topography using lake bathymetry from600

the Global Lake Database (Kourzeneva et al., 2012), using all included lakes except for601

the Great Lakes, which are already included in GEBCO 2020, and the Great Salt Lake.602

We updated the bathymetry of the Great Salt Lake using data from Tarboton (2017).603

We created the slope input files using this topography and GRASS GIS (Neteler et al.,604

2012).605

We obtained precipitation and evapotranspiration data from the Terraclimate dataset606

(Abatzoglou et al., 2018). We averaged monthly data from Terraclimate, applying a weight-607

ing based on month length, over a total of 30 years, from 1981 to 2010 inclusive to ob-608

tain annual averages. The spatial resolution of the Terraclimate data was resampled from609

1/24 degrees to 30 arcseconds using a bivariate spline approximation.610

We used the ERA5 reanalysis monthly mean 0.25 degree latitude-longitude grid611

data for winter temperature (European Centre for Medium-Range Weather Forecasts,612

2019). The data is a long-term annual average, based on monthly averages from 1979613

to 2018 inclusive. We used monthly temperatures from December, January and Febru-614

ary for the Northern hemisphere. We resampled the data from 0.25 degree resolution to615

a 30 arcsecond resolution using the topography and an adiabatic lapse rate of 5◦ C/km,616

representative of a wet adiabatic lapse rate (Peirce et al., 1998).617

Hydraulic conductivity and porosity values are both based on the hybrid STATSGO/FAO618

soil texture database available at https://ral.ucar.edu/solutions/products/wrf619

-noah-noah-mp-modeling-system (last accessed: 10 November 2020), which give 12620

different soil texture categories. We converted these to hydraulic conductivity and poros-621

ity values using the representative values suggested by Clapp and Hornberger (1978). The622

value for silt was not provided in Clapp and Hornberger (1978), and was estimated based623

on other nearby values and the range of possible values given by Earle (2015). Similarly,624

the value for bedrock was selected from the range given by Earle (2015). The value for625

‘organic materials’ was taken from the value listed as ‘peat’ from Fan et al. (2007). We626
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accounted for anisotropy between vertical and horizontal hydraulic conductivity, using627

the anisotropy ratios listed by Fan et al. (2007).628

We calculate evaporation of surface water using the classic Penman (1948) equa-
tion, modified following Hersbach (2011) to account for variable water-surface roughness
due to wind-driven waves:

E =
Rn + (cpρau

2
∗)/(∆P,Tu)

ρw∆Hvap + Pcpρw(Rv/Ra)
(esat − ea) . (D1)

Here, E is the rate of open-water evaporation, Rn is net solar radiation, cp is the spe-629

cific heat capacity of air at constant pressure, ρa is air density, u∗ is wind shear veloc-630

ity, ∆P,T is the gradient in temperature–pressure space of the liquid-to-vapor phase tran-631

sition for water, u is wind velocity (typically at 2 meters elevation above the surface),632

ρw is water density, ∆Hvap is the latent heat of vaporization of water, P is atmospheric633

pressure, Rv/Ra = 1/0.622 is the ratio of the gas constants of water vapor and air, esat634

is water vapor pressure at saturation, and ea is water vapor pressure. Appendix E holds635

our derivation.636

The open-water evaporation calculations were based on data from TerraClimate637

(Abatzoglou et al., 2018) and the GEBCO Bathymetric Compilation Group (2020) el-638

evation data set. The open-water evaporation rates were calculated from monthly cli-639

matic data from 1958 to 1970, inclusive.640

Calibration constants for the e-folding depth were set to a = 100, b = 150, and641

fmin = 2.5, following Fan et al. (2013).642

Appendix E Surface-water evaporation643

We calculate open-water evaporation by solving and applying the Penman Equa-644

tion (Dingman, 1994) alongside the Charnock (1955) expression for the roughness length645

over open water as a function of wind-induced waves. This evaporation rate overrides646

the input evapotranspiration rate wherever the water table crops out above the surface,647

forming an exposed water body (Fig. 5).648

The Penman (1948) Equation combines radiative, sensible, and latent heat trans-649

fer to solve for evaporation. Though it is well-established (Finch & Calver, 2008; Valiantzas,650

2006; Vörösmarty et al., 1998; Zotarelli & Dukes, 2010), we choose to include a brief deriva-651

tion of the Penman equation due to (1) the central role played by evaporation in our study;652

(2) the fact that most derivations center on the Penman–Monteith equation (Monteith,653

1965), which involves plant transpiration that is not relevant to our application to lakes;654

and (3) our inclusion of a wind-speed-determined roughness length to modulate wind-655

driven turbulent energy transfers, which seems reasonable to include but that we have656

not found in our review of the literature. Here we use variable nomenclature that is more657

common to thermodynamics than to hydrology.658

E1 Penman Equation (general form)659

The Penman Equation relates evaporation rate (E), which is a latent-heat flux, to
net-radiation flux (Rn: incoming and outgoing shortwave and longwave) and sensible heat
flux due to turbulent atmospheric heat transfer (QH,s, where subscript H indicates en-
thalpy and s indicates that it is sensible):

E =
Rn −QH,s
ρw∆Hvap

. (E1)

Here, ρw is water density, and ∆Hvap is latent heat of vaporization of water. These terms660

in the denominator act to convert the energy fluxes [W m−2] into evaporation [m s−1].661
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E2 Input data products662

Inputs for our solution come from the TerraClimate and GEBCO 2020 datasets.663

TerraClimate (Abatzoglou et al., 2018) comprises monthly 2.5-arcminute (∼5 km N–S)664

gridded data products for:665

• Incoming solar (shortwave) radiation666

• Monthly averaged minimum and maximum daily temperatures667

• Wind speed668

• Vapor pressure669

GEBCO 2020 (GEBCO Bathymetric Compilation Group, 2020) is a 30-arcsecond (∼1670

km N–S) global gridded topographic and bathymetric data set. We resample this to 2.5671

arcminutes to match the resolution of TerraClimate.672

E3 Net radiation673

In the field, acquiring net radiation requires paired upward- and downward-facing674

pyranometers and pyrgeometers to measure incoming and outgoing shortwave and long-675

wave radiation. Here we use a combination of calculations and remotely sensed data prod-676

ucts to assemble a solar-radiation data product at an appropriate resolution for our contiental-677

scale modeling example.678

TerraClimate (Abatzoglou et al., 2018) provides the incoming shortwave radiation
flux, Rin,s. Outgoing shortwave radiation equals the incoming radiation times the sur-
face albedo α. Therefore, net shortwave radiation, Rn,s, is given by

Rn,s = (1− α)Rin,s. (E2)

We use α = 0.06 as characteristic of open water.679

We lack data on net longwave radiation, Rn,l, but know that (1) outgoing longwave
flux is proportional to surface temperature via the Stefan–Boltzmann Law and (2) that
incoming longwave radiation is related to greenhouse gases in the atmosphere that ab-
sorb and re-emit this outgoing radiation. We therefore follow and modify the approach
taken by Zotarelli and Dukes (2010) in approximating the surface temperature by the
maximum and minimum air-temperature values, and using vapor pressure and cloudi-
ness to estimate the impact of greenhouse gases on longwave absorption and re-radiation:

Rn,l = σ
T 4

max + T 4
min

2

(
0.34− 0.00014e1/2

a

)
C. (E3)

Here, σ is the Stefan–Boltzmann constant, T is temperature in Kelvin, ea is the near-680

surface atmospheric vapor pressure, and C is what we choose to call the “cloud function”.681

We can estimate the value of the cloud function by the difference between the clear-
sky solar radiation, Rin,s,CS, and the solar radiation received at the land surface, Rin,s.
To compute the clear-sky solar radiation, we first compute the top-of-atmosphere (i.e.,
extraterrestrial) solar radiation (Rin,s,TOA): see sunpos.py from Wickert (2020). We then
modify it based on elevation (Zotarelli & Dukes, 2010), which determines the atmospheric
thickness above a particular location:

Rin,s,CS =
(
0.75 + 2 · 10−5z

)
Rin,s,TOA, (E4)

where z, as in the main text, is surface elevation in meters.682

This method works only where sufficient incoming solar radiation exists to produce
a meaningful difference between Rin,s,TOA and Rin,s. Based on our tests, a reasonable
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cutoff incoming value of solar radiation is 15 W m−2.

C =

1.35
Rin,s

Rin,s,TOA
− 0.35 if Rin,s,TOA ≥ 15[

1.35
Rin,s

Rin,s,TOA
− 0.35

]
15–20

, otherwise
(E5)

where the lower term equals the average of the upper term where 15 < Rin,s,TOA < 20.683

This is an obvious kludge for the sake of generating a proof-of-concept model outputs,684

and generates a reasonable but inaccurate cloud-function value for the polar regions.685

The final step is straightforward. Net radiation flux is simply the sum of the net
shortwave and longwave fluxes:

Rn = Rn,s +Rn,l (E6)

E4 Sensible heat flux686

The Penman equation derivation for sensible heat flux, QH,s, results in the follow-
ing equation (Dingman, 1994):

QH,s =
KHu

∆P,T

[
E

KEu
− (esat − ea)

]
. (E7)

Here, u is wind speed. ∆P,T is the slope of the water liquid-to-vapor phase transition687

at the air temperature, Ta, which is nominally taken at two meters above the surface.688

Likewise, esat is the saturation water vapor pressure at the air temperature, whereas ea689

is the actual water vapor pressure. KH and KE are coefficients of turbulent conductance690

[kg m s−1 K−1] for sensible heat and water vapor (i.e., latent heat), respectively.691

These conductance coefficients are defined based on ratios of heat (KH) and wa-
ter vapor (KE) transfer to momentum transfer. (Dingman, 1994):

KH =
DH

DM
cpρa

(u∗
u

)2

,

KE =
DWV

DM

∆ρa
Pρw

Ra
Rv

(u∗
u

)2

.
(E8)

Here, DH is thermal diffusivity in air, DM is diffusivity of momentum, and DWV is dif-
fusivity of water vapor. For a stable atmosphere, which we assume, the same turbulent
eddies result in the transfer of heat, momentum, and water vapor. Therefore, DH/DM =
DWV /DM = 1. This simplifies E8 to:

KH =cpρa

(u∗
u

)2

,

KE =
ρa
Pρw

Ra
Rv

(u∗
u

)2

.
(E9)

To restate the variable definitions from the main text for convenience: cp is the specific692

heat capacity of air at constant pressure, ρa is air density; u∗ is wind shear velocity, u693

is measured wind velocity (typically at 2 meters elevation above the surface), ρw is wa-694

ter density, P is atmospheric pressure, and Ra/Rv = 0.622 is the ratio of the gas con-695

stants of air and water vapor.696

E5 Full Penman Equation697

Combining Equations E1 and E7 and solving for evaporation results in the com-
mon full form of the Penman Equation (cf. Dingman, 1994):

E =

[
Rn +

(
KHu

∆P,T

)
(esat − ea)

]/[
ρw∆Hvap +

(
KH

KE

1

∆P,T

)]
. (E10)

Substituting in the definitions of coefficients KH and KE , we obtain Equation D1.698
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E6 Variable water-surface roughness699

The u∗ term in the diffusivity of momentum, DM , may be evaluated by solving for
the boundary-layer velocity profile given by the logarithmic Law of the Wall, in which

u(z) =
u∗
κ

ln

(
z

z0

)
. (E11)

Here, κ = 0.407 is von Kármán’s constant and z0 is a surface roughness length. It is700

then possible to solve for u∗ by knowing the wind velocity – u at a known elevation, z1,701

which is typically 2 m above the surface – and the surface roughness length scale.702

When wind flows over open water, it generates waves, thereby making this rough-703

ness length itself a function of wind speed. This makes Eq. E11 nonlinear, thereby adding704

a complexity not included in models of evaporation over land.705

To address this problem, we turn to Charnock (1955), who found a quadratic re-
lationship between z0 and u∗. Hersbach (2011) define z0 by showing that it depends on
kinematic viscosity, ν, in light winds and on a Charnock (1955) relationship for strong
winds:

z0 = Kν
ν

u∗
+Kwave

u2
∗
g
, (E12)

where the coefficients Kν = 0.11 and Kwave ≈ 0.018. We then substitute this expres-
sion for z0 into Eq. E11 and solve for u∗ using the known u at elevation z1:

u∗ = κu

/
ln

(
z1

Kνν/u∗ +Kwaveu2
∗/g

)
. (E13)

With our single known wind speed at z1=2 meters elevation (Abatzoglou et al., 2018),706

we can solve this equation for u∗ in one of two ways. First, we can use a numerical root707

finder. We implement this using the root scalar method within Scipy (?, ?; Virtanen708

et al., 2020) (see https://github.com/umn-earth-surface/TerraClimate-potential709

-open-water-evaporation). The second option is to derive an analytical solution. This710

is possible for the original Charnock (1955) relationship using a Lambert W function,711

but is not possible for the form given by Hersbach (2011). Roots to Equation E13 ex-712

ist for wind velocities less than approximately 55 m s−1.713
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