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Abstract

We present a new data assimilation algorithm known as the Continuous Data Assimilation (CDA) algorithm that has been

tested extensively in the mathematical literature and, most recently, in a downscaling simulation in the atmospheric literature.

Unlike more common data assimilation methods, the CDA algorithm has an exponential convergence rate and is computationally

efficient. This work is the first attempt to demonstrate the viability of the data assimilation algorithm in large-scale ocean

models. We implement the CDA algorithm in the Model for Prediction Across Scales - Ocean in an idealized mesoscale eddy

test case, demonstrating the ability of the data assimilation algorithm to capture the net effects of unresolved processes in

low-resolution models.
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Abstract20

We present a new data assimilation algorithm known as the Continuous Data Assimi-21

lation (CDA) algorithm that has been tested extensively in the mathematical literature22

and, most recently, in a downscaling simulation in the atmospheric literature. Unlike more23

common data assimilation methods, the CDA algorithm has an exponential convergence24

rate and is computationally efficient. This work is the first attempt to demonstrate the25

viability of the data assimilation algorithm in large-scale ocean models. We implement26

the CDA algorithm in the Model for Prediction Across Scales - Ocean in an idealized27

mesoscale eddy test case, demonstrating the ability of the data assimilation algorithm28

to capture the net effects of unresolved processes in low-resolution models.29

Plain Language Summary30

Data assimilation describes a set of methods that are used to incorporate obser-31

vations into models to improve their representation of the current climate. One of the32

main difficulties with data assimilation for climate models is that measurements are of-33

ten sparse in space, difficult to obtain (especially in the ocean), affected by instrument34

error, and not all variables in a system can be measured directly. Many data assimila-35

tion methods have been developed, the most popular of which are statistical in nature.36

However, these algorithms are computationally intensive and nontrivial to implement.37

In this paper, we test a novel data assimilation algorithm derived from a continuous frame-38

work that has been mathematically proven to converge exponentially fast and is simple39

to implement into existing models. We demonstrate in an idealized climate model that40

the novel data assimilation algorithm is able to very accurately capture the effects of a41

high resolution simulation in a low resolution simulation.42

1 Introduction43

Global ocean models are chaotic and highly sensitive to model inputs, and numer-44

ical approximations of critical processes present their own challenges to resolving the fine45

details of a flow field. Specifically, accurate ocean projections are difficult to obtain due46

to having incomplete initial conditions and computational limitations that restrict the47

ability to fully resolve the variety of different length and time scales present in the ocean.48

One way to mitigate these biases is to use data assimilation to incorporate observed data49

into the model (see, e.g., Dee (2005); He et al. (2014), and references thereof and therein).50

Currently the most popular data assimilation techniques are statistical in nature, the51

most common being the ensemble Kalman filter (EnKF) (see, e.g., Evensen (1997)) and52

4DVAR (see, e.g., Trémolet (2007)). These techniques are popular because they exactly53

minimize the statistical error of linear systems, i.e. they are statistically optimal for these54

systems. However, these methods are subject to notable difficulties and assumptions, in-55

cluding 1) errors due to the linearization of nonlinear models, 2) difficulty in implemen-56

tation due to requirement of adjoint model for derivatives, 3) convergence rates that are57

highly sensitive to the choice of initial conditions, and 4) specialized and highly nontriv-58

ial implementation. EnKF is not subject to (1) and (2), but is more likely to diverge (i.e.,59

discount the influence of observations entirely) when there is not a large enough ensem-60

ble, when the probability distribution of the ensemble is not Gaussian, or if the model61

is strongly nonlinear (which distorts the Gaussian distribution of the ensemble), as is the62

case in standard ocean models (see, e.g., Houtekamer et al. (2014); Trémolet (2007); Evensen63

(1997); Lawson and Hansen (2004)). Even though for some of these difficulties methods64

have been devised to get around them, in the present work, we examine a new algorithm65

for data assimilation in ocean models proposed in (Azouani et al., 2014; Azouani & Titi,66

2014) which gets around these difficulties naturally. This new method, known in the lit-67

erature as the Azouani-Olson-Titi (AOT) or Continuous Data Assimilation (CDA) al-68

gorithm, avoids all of the difficulties mentioned above, and has demonstrated robust con-69
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vergence in a variety of idealized test cases discussed below. Herein, we examine the per-70

formance of this algorithm in the context of a real ocean model.71

History of a New Data Assimilation Algorithm72

The CDA algorithm is based on the idea of feedback-control at the partial differ-73

ential equation level. It bears a superficial resemblance to the so-called nudging or New-74

tonian relaxation methods introduced in (Anthes, 1974; Hoke & Anthes, 1976), with a75

crucial difference being the feedback control term is formed by spatial interpolation of76

the observed error, allowing for observations that are sparse in space. It is not prone to77

any of the difficulties associated with standard data assimilation methods. CDA is math-78

ematically proven to converge exponentially fast in time to the data for a variety of fluid79

equations and in multiple settings, subject to only two conditions, making it very robust80

and versatile. Furthermore, it is very inexpensive to implement computationally. (See81

Section 2.2 for a more detailed explanation of these properties.) In this section, we will82

focus on the robustness of this method in a variety of idealized cases, highlighting which83

ones most directly relate to the needs of large-scale ocean modeling. In the following sec-84

tion, we will focus on how data assimilation is generally used to improve ocean model-85

ing and how the CDA algorithm may also be used in these settings.86

The CDA algorithm has been adapted to a wide variety of equations, including the87

3D Navier-Stokes equations (NSE) (Biswas & Price, 2020; Clark Di Leoni et al., 2020),88

the 3D primitive equations (Pei, 2019), Bénard convection (Farhat et al., 2020, 2016b;89

Altaf et al., 2017; Farhat et al., 2015, 2017; Farhat, Johnston, et al., 2018), magnetohy-90

drodynamic equations, (Hudson & Jolly, 2019), surface quasi-geostrophic equations, (Jolly91

et al., 2019, 2017), the Kuramoto-Sivashinsky equations, (Lunasin & Titi, 2017), the Brinkman-92

Forchheimer-Darcy model (Markowich et al., 2016), reaction-diffusion equations, (Azouani93

& Titi, 2014; Larios & Victor, 2021), and the Weather Research and Forecasting (WRF)94

model (Desamsetti et al., 2019). The CDA algorithm is also quite robust. Specifically,95

the exponential rate of convergence either to 0 or to a controllable error has been proven96

to hold in the the context of: sparse-in-time observations (Foias et al., 2016; Celik et al.,97

2019), statistical solutions (Biswas et al., 2018), systems assimilating time-averaged data98

(Jolly et al., 2019), systems with noisy observations (Bessaih et al., 2015), time-averaged99

data (Jolly et al., 2019), measurements in only certain components of the flow field (Farhat100

et al., 2015, 2016c, 2016a, 2016b, 2017; Farhat, Johnston, et al., 2018), approximations101

with reduced-order-models (Zerfas et al., 2019; Clark Di Leoni et al., 2020; Garćıa-Archilla,102

Novo, & Rubino, 2020), approximations with regularized models (D. A. F. Albanez &103

Benvenutti, 2018; D. A. Albanez et al., 2016; Farhat, Lunasin, & Titi, 2018; Larios &104

Pei, 2018), Leray weak solutions of 3D NSE (Biswas & Price, 2020), moving observers105

(Larios & Victor, 2021; Biswas et al., 2020), finite element methods (Larios et al., 2018;106

Garćıa-Archilla, Novo, & Titi, 2020; Gardner et al., 2020), spectral Galerkin discretiza-107

tion (Ibdah et al., 2019), post-processing Galerkin methods (Mondaini & Titi, 2018), sys-108

tems with incorrect parameters (Carlson et al., 2020; Farhat et al., 2020), and systems109

with data given on a subdomain (Biswas et al., 2020).The algorithm has also seen sev-110

eral modifications (e.g., nonlinear feedback control) aiming at improved convergence rates111

(Larios & Pei, 2017; Rebholz & Zerfas, 2018).112

The robustness of the algorithm demonstrated by the body of work is significant113

for the ocean community. For example, since not all state variables can be measured di-114

rectly (specifically, temperature and salinity are measured, while velocities are not). Some115

idealized computational studies demonstrate that assimilating only temperature mea-116

surements may lead to failure in recovering the solution (Altaf et al., 2017), but this de-117

pends on the model used (Farhat et al., 2016c). However, convergence can be obtained118

with data that is blurred in time, i.e. averaged over a small time interval, (Jolly et al.,119

2019), a common problem that arises when taking measurements. Exponential conver-120

gence can also be proven when assimilating only two-dimensional surface data into the121

three-dimensional surface quasi-geostrophic equations (Jolly et al., 2017). This is extremely122
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important in climate modeling as often, for the ocean especially, surface data is usually123

the most abundant observed data. Another difficulty that is present in obtaining mea-124

surements is obtaining sufficiently many observations over the full domain, and in (Biswas125

et al., 2020) it was recently proven (although in the context of the 2D NSE) exponen-126

tial convergence can be obtained for observations only given on a subdomain.127

How the CDA Algorithm May Address Data Assimilation Needs in Real-World Climate128

Modeling129

In summary, the CDA algorithm has demonstrated significant versatility in ideal-130

ized settings. The main drawback of this algorithm is that although it is statistically ro-131

bust it is not necessarily statistically optimal; specifically, when assimilating noisy data,132

the error is bounded in terms of the trace of the covariance matrix of the assimilated vari-133

ables (Bessaih et al., 2015). However, most statistical data assimilation algorithms (with134

the exception of EnKF) lack a mathematical theory to guarantee a statistically optimal135

convergence of the output for nonlinear models due to the necessary linearization of non-136

linear models. Thus, the demonstrated advantages of the CDA algorithm in a variety137

of different settings make CDA a potentially viable alternative to current data assim-138

ilation methods for ocean modeling. Hence, since for climate modeling data assimilation139

is most often used 1) regionally in a downscaling setting, 2) in conjunction with data to140

initialize a simulation, and 3) to generate more accurate ensembles for climate projec-141

tions, we describe how the CDA algorithm can address each of these aspects.142

First, the CDA algorithm is most directly applicable in the downscaling setting,143

and it outperforms the more simple and popular downscaling method of nudging. Specif-144

ically, to the best of the authors’ knowledge, the first, and currently only, real data study145

done utilizing CDA was in the recently published Desamsetti et al. (2019), which com-146

pared the CDA algorithm with grid and spectral nudging methods implemented in the147

Weather Researching and Forecasting model for downscaling. They conclusively demon-148

strated that the CDA algorithm performed better than or comparable to both grid and149

spectral nudging. It was only comparable to a spectral nudging method with a well-chosen150

cut-off wave number, and was considerably less expensive due to the lack of Fourier trans-151

forms.152

Data assimilation is also a tool used to identify and reduce model bias. This is done153

either (1) via construction of a more balanced initial climate model state for long-term154

climate projections or (2) by improving estimates of uncertain parameters in model pa-155

rameterizations. The CDA algorithm is potentially applicable for both methods as it pro-156

vides convergence up to a quantifiable error in the data, discretization, and/or model.157

This is demonstrated in Carlson et al. (2020), Farhat et al. (2020), and Larios and Pei158

(2018). The paper Carlson et al. (2020) demonstrates that given an incorrect parame-159

ter the error between the true and the CDA solutions is controlled by the error in the160

parameter. The paper Farhat et al. (2020) demonstrates a slightly more complex case,161

proving that the Rayleigh-Bénard system with finite Prandtl number can be used to as-162

similate data into a system with infinite Prandtl number, with exponential convergence163

up to error controlled by the Prandtl number. In a slightly different vein, the paper Larios164

and Pei (2018) considers the data from the 2D NSE and assimilates it into the approx-165

imating model of the Navier-Stokes Voigt (NSV) equations (a regularized version of the166

NSE) using the CDA algorithm. The solution to the approximate data assimilation sys-167

tem converges exponentially fast to the true solution of the NSE up to an error deter-168

mined solely by the parameter α that regularizes the system. Each of these works demon-169

strates how the CDA algorithm can be used to converge up to model bias and thus mak-170

ing model bias identifiable. Furthermore, model bias that is due to incorrect parame-171

ters can be corrected via parameter recovery, on which the CDA algorithm has some nascent172

literature in the ideal setting. In Carlson et al. (2020), the CDA algorithm was applied173

to the 2D incompressible Navier-Stokes Equations assuming the modeler has incorrect174

knowledge of the Reynolds number. Additionally, CDA is amenable to the existing method175
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of applying statistical post-processing techniques that compare the model to the observed176

data to correct bias for parameter calibration (Durai & Bhradwaj, 2014; Glahn & Lowry,177

1972; Lawson & Hansen, 2004; Woodcock & Engel, 2005; Gneiting et al., 2005; Delle Monache178

et al., 2006; Raftery et al., 2005; Bakhshaii & Stull, 2009; Du & Zhou, 2011; Cui et al.,179

2012; Satterfield & Bishop, 2014).180

All of the works mentioned in the previous paragraph (excluding Desamsetti et al.181

(2019)) are either theoretical or have been tested in computationally idealized settings,182

making this work a timely application to more complex models. The goal of this paper183

is to determine how using the CDA algorithm in low resolution simulations allows the184

simulation to capture the net effects of resolved mesoscale eddies in a high resolution sim-185

ulation. Specifically, we implement the CDA algorithm in the unstructured Model for186

Prediction Across Scales-Ocean (MPAS-O), and use the model output of a high resolu-187

tion, eddy resolving simulation as a proxy for real data. The CDA algorithm is used in188

a low resolution simulation. We demonstrate the effectiveness of the algorithm in recov-189

ering net effects of unresolved features present in the high resolution simulation on the190

low resolution grid, consistent with Carlson et al. (2020).191

The remainder of the paper is organized as follows, in Section 2, we describe the192

CDA algorithm, the idealized test case that is the basis for this study, and compare CDA193

to nudging. In Section 3, we present the results of the CDA simulation, briefly compare194

it to corresponding nudging simulations, and discuss the different metrics by which we195

quantify the effect of the CDA algorithm on the low resolution simulation. Finally, we196

summarize and discuss extensions of this study in Section 4.197

2 Setup and Background198

In this section, we describe the CDA algorithm, provide a brief description of the199

difference between the CDA algorithm and nudging, and present the setup of the test200

case.201

2.1 CDA Algorithm202

To describe the CDA algorithm as originally posed in Azouani et al. (2014), sup-203

pose a physical system is perfectly modeled by the differential equation204

du

dt
= F (u)205

u(0) = u0206
207

where F represents the physics evolving the system in time and u0 represents an unknown208

initial condition. For this system, we obtain a discrete set of operations which we inter-209

polate in space, Iδ(u), where, in our case, δ represents the spatial distance between data210

points. In the theoretical works on CDA, Iδ is assumed to be a linear operator satisfy-211

ing a particular bound; examples of these types of linear operators include nodal inter-212

polation, (bi)linear interpolation, volume interpolation, and Fourier truncation, among213

others. The interpolated data is incorporated into the model using a feedback control214

term215

dv

dt
= F (v) + µ(Iδ(u)− Iδ(v))216

v(0) = v0217
218

where µ > 0 is a positive relaxation parameter and v0 is any (sufficiently smooth) ini-219

tial condition (in many of the idealized computational tests of this data assimilation method,220

this initial condition is often taken to be 0). So long as µ is sufficiently large and δ is suf-221

ficiently small, the solution of the assimilated system converges exponentially fast to the222
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original system once the solution to the original system is sufficiently close to the attrac-223

tor. In other words, if the reference field, represented by u, is sufficiently developed so224

that our observations are taken from a turbulent system, then the solution v to the as-225

similated system of equations converges exponentially fast to u, the reference field.226

Note that the only requirements for convergence of the CDA algorithm are a suf-227

ficiently large positive relaxation parameter µ and sufficiently many evenly spaced ob-228

servations. These restrictions are mathematically very strong but in practice the CDA229

algorithm converges even when the restrictions on µ and the number of observations is230

significantly less than what is required in the mathematical theory; for example, in Gesho231

(2013), the 2D incompressible Navier-Stokes equations were simulated in the turbulent232

regime with only 49 observation points and µ = 24, multiple orders of magnitude less233

than required by the theory. For other examples, see computational studies in, e.g., Altaf234

et al. (2017); Carlson et al. (2020); Desamsetti et al. (2019); Farhat et al. (2020); Farhat,235

Johnston, et al. (2018); Garćıa-Archilla, Novo, and Titi (2020); Garćıa-Archilla, Novo,236

and Rubino (2020); Gardner et al. (2020); Hudson and Jolly (2019); Larios and Pei (2017);237

Lunasin and Titi (2017); Zerfas (2019); Zerfas et al. (2019).238

2.2 Interpolation: The Difference between the CDA Algorithm and Nudg-239

ing240

The CDA algorithm deceptively looks like the nudging algorithm, but the main dif-241

ference lies in the way the feedback term is constructed. One of the most popular meth-242

ods of nudging was presented by Stauffer and Seaman (1990), where the observational243

dataset is interpolated to the entire model grid (Bullock Jr. et al., 2018; Zheng & Weis-244

berg, 2012; Zhang et al., 2016; Weisberg et al., 2009; Baptista et al., 2005; Fortunato et245

al., 2014; Robinson et al., 2011; Kilgren, 2006; F. Ye, 2017; Abbasi et al., 2018; Ding et246

al., 2012; X. Ye et al., 2020; Ge et al., 2020; Pringle, 2006; Fujisaki-Manome et al., 2017;247

Cazenave et al., 2018; Wei et al., 2014; Peng et al., 2014; Ge et al., 2013; Cowles et al.,248

2008; Fennel et al., 2016; Foreman et al., 2009). We note that Desamsetti et al. (2019)249

used this particular version of grid nudging for their paper, and their results demonstrated250

that the CDA algorithm was superior, and here we briefly explain at least one reason251

why. Recall that the CDA algorithm compares the interpolation of the observations as252

well as the interpolation of the model data, with system of equations given by253

vt = F (v) + µ(Iδ(u)− Iδ(v))254

v(0) = v0.255
256

Using this same framework, the method of nudging in Stauffer and Seaman (1990) can257

be written as258

vt = F (v) + µ(Iδ(u)− v)259

v(0) = v0.260
261

This implies one is using the observations to inform the model everywhere in space, but262

it does so inconsistently. In particular, if at some time t0 one actually obtained u(t0) =263

v(t0), the true physical evolution equations would not be the same as the nudged evo-264

lution equations, which contain the an error term µ(Iδ(u) − v) 6= 0, errors which in-265

crease with increasing values of µ. In contrast, the CDA algorithm requires that the CDA266

model data must be interpolated to the same grid as the observations in order to make267

an accurate comparison, so that when u(t0) = v(t0), the true physical evolution equa-268

tions and the CDA evolution equations are identical.269

Implementing the CDA algorithm becomes more technical in the setting where the270

observed grid is not a subset of the model grid. This difference is important yet subtle,271

and a more detailed explanation is provided in Appendix A272
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2.3 SOMA: Simulation Ocean Mesoscale Activity Test Case Setup and273

Numerics274

The test case we consider is the Simulating Ocean Mesoscale Activity (SOMA) test275

case (Wolfram et al., 2015), which simulates a wind-driven double gyre similar to the sub-276

tropical and subpolar North Atlantic. The purpose of this test case is to provide a sim-277

plified analog of the mesoscale eddy rich Atlantic ocean. The original test case is described278

in detail in Appendices A and B of Wolfram et al. (2015) and utilizes the Model for Pre-279

diction Across Scales - Ocean (MPAS-O), the ocean component of the Energy Exascale280

Earth System Model (E3SM), created by the US Department of Energy (E3SM Project,281

2018; Golaz et al., 2019; Petersen et al., 2019).282

MPAS-O models the primitive equations on a finite volume spatial discretization283

on an unstructured mesh, which is built using spherical centroidal Voronoi tesselations.284

Temporal discretization is done via the split-explicit method. Unlike Wolfram et al. (2015),285

the simulations in this paper are run in an isopycnal configuration with vertical layers286

specified by the density, to decrease computational cost and more easily visualize isopy-287

cnal diffusivity. The simulations use 10 vertical layers with a density range of 1026.36 kg
m3288

to 1039.95 kg
m3 .289

For reference, we write the CDA algorithm applied to the MPAS equations (Petersen290

et al., 2015; Ringler et al., 2013):291

∂u

∂t
+ ηk× u + w

∂u

∂z
= − 1

ρ0
∇p−ρg

ρ0
∇zmid −∇K + Du

h + Du
v + Fu + µu(Iδ(uref)− Iδ(u))

(1)

292

∂h

∂t
+∇ · (huz) + w|z=stop − w|z=sbot = 0 (2)293

∂

∂t
(hφ

z
) + φw|z=stop − φw|z=sbot = Dφ

h +Dφ
v + Fφ + hµφz (Iδ(φ

z

ref)− Iδ(φ
z
)). (3)294

295

We briefly explain the terms in the above equation.296

• Equation (1) represents the evolution for horizontal normal velocity, equation (2)297

represents the layer thickness evolution, and equation (3) represents the tracer evo-298

lution.299

• The diffusive terms Du
h,D

u
v , D

φ
h , and Dφ

v can be chosen so that the model can em-300

ploy different types of diffusion, each serving specific purposes (for details, see (Ringler301

et al., 2013)).302

– For horizontal diffusion for the tracer term, this is 0 since we are assuming that
diffusion in the advection scheme provides the horizontal diffusion. For hori-
zontal diffusion on the velocity, harmonic diffusion suppresses eddies and dif-
fuses jets and thus biharmonic diffusion is employed (for more details, see (Hecht
et al., 2008)). The term is given explicitly by

Du
h = ∇ ·

(
νh

ρ
3/4
m

∇[∇ · (∇u)]

)
,

where νh is the horizontal viscosity and ρm is the mesh density.303

– Vertical mixing follows the scheme outlined in (Pacanowski & Philander, 1981).304

For more details on the choice of viscosities, see (Wolfram et al., 2015).305

• The term K represents the kinetic energy.306

• The term (·)
z

represents a vertical average.307

• The term µu > 0 and µφz > 0 represent the CDA positive relaxation parame-308

ters.309

• For a description of the boundary conditions employed, see Wolfram et al. (2015).310
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In this simulation we assimilate the horizontal velocity components, temperature, and311

salinity. Note that generally the CDA algorithm is implemented in the corresponding312

evolutionary equation, but the tracers are evolved via a system of equations involving313

the layer thickness h. Thus, using Equations (2) and (3) in conjunction with the prod-314

uct rule, we obtain the term for the assimilation as presented in Equation (3).315

The goal of this study is to determine how using the CDA algorithm in low reso-316

lution simulations allows the simulation to capture the net effects of resolved mesoscale317

eddies in a high resolution simulation. Since the Rossby radius of deformation, the quan-318

tity approximating the length scale of the mesoscale eddies, is approximately 30 km (Wolfram319

et al., 2015) in this test case, the high resolution reference simulation is run at 8 km hor-320

izontal resolution (base mesh cell count: 122,807, culled mesh cell count: 88,056) to fully321

resolve the mesoscale eddies, and the low resolution simulations are run at 32 km hor-322

izontal resolution (base mesh cell count: 8,652, culled mesh cell count: 6,021), which pre-323

cludes mesoscale eddies. At 32 km horizontal resolution, we run a control simulation and324

a CDA simulation. Observations are taken from the reference simulation and coarsened325

to a 0.5◦ × 0.5◦ rectangular grid and also to a 1◦ × 1◦ rectangular grid. We chose the326

0.5◦ × 0.5◦ grid as this is close to the resolution of the low resolution simulation, and327

the 1◦×1◦ grid as it is common for observational data to be provided on this grid. In328

the low resolution data assimilation simulations, we do not expect to recapture the full329

mesoscale eddy field when the simulations are performed at low resolution, but the goal330

of this project is to determine how well the net effects of the mesoscale eddies can be cap-331

tured in a low resolution simulation by assimilating the high-resolution data.332

Given that MPAS-O utilizes a horizontally unstructured mesh, we implement the333

CDA algorithm following the method outlined in Section 2.2 and the nudging method334

of Stauffer and Seaman (1990) for a brief comparison in the context of an unstructured335

grid.336

The reference and control simulations are run 5 1/2 simulated years to reach a near337

steady state (determined to be when the kinetic energy begins to equilibrate) from zero338

initial velocity. The data assimilation systems of equations are also initialized with zero339

initial velocity, but we begin assimilating the reference data from halfway through the340

fifth simulated year. This causes the CDA simulations to equilibrate within four simu-341

lation weeks, and to ensure this we run the simulations for eight simulation weeks. We342

chose the coefficients so that µφz = µu = µ. We drive the simulation using three dif-343

ferent positive relaxation coefficients: µ = 2×10−5, 1×10−5, and 2×10−6, which cor-344

respond to forcing on time scales of approximately 14 hours, 27 hours, and 5 1/2 days.345

These particular positive relaxation coefficients were chosen to explore the range of ef-346

fective coefficients: µ > 2×10−5 did not significantly change the root mean square er-347

ror, and µ & 1× 10−4 caused blow-up in the magnitude of the velocities. Coefficients348

below 2×10−6 demonstrated in preliminary tests to be qualitatively ineffective in forc-349

ing the simulation to the desired quantities, which was reasonable considering the decor-350

relation time scale was computed to be approximately 10 days (Wolfram et al., 2015).351

All time averages used in the analyses are taken over the last two weeks of the eight-week352

simulations.353

3 Results & Analysis354

In this section, we demonstrate the convergence of the CDA algorithm by analyz-355

ing velocity magnitudes, variance of the velocity difference, and the root mean square356

error (RMSE). Figures 1 and 2 present the horizontal velocity magnitudes along the four357

least dense isopycnal surfaces (columns). All data is interpolated to the 0.5◦×0.5◦ (Fig-358

ure 1) and 1.0◦ × 1.0◦ (Figure 2) observation grids for comparison. We note that, for359

all chosen nudging coefficients, the magnitude of the velocity in the CDA simulations is360

qualitatively indistinguishable from the reference simulation as represented on the 0.5◦×361
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0.5◦ and 1.0◦×1.0◦ observational grids. Figures 3 and 4 provide a clearer picture of the362

differences between the CDA and reference simulations by plotting the variance of the363

difference between the velocities in the CDA simulations and the reference simulation364

on the 0.5◦×0.5◦ and 1.0◦×1.0◦ grids, respectively. In these figures, we note that the365

stronger the positive relaxation coefficient µ, the better the convergence. Furthermore,366

confirming the results of Desamsetti et al. (2019), CDA performs as well as or better than367

nudging, with the most significant differences seen when the observations are given on368

the coarser 1.0◦×1.0◦ grid. Table 1 shows the exact relative improvement of the CDA369

algorithm RMSE with respect to the nudging RMSE. The RMSE for the CDA algorithm370

is approximately 20% better than the RMSE for nudging with the observations given on371

the 0.5◦×0.5◦ grid, and it is approximately 30% better than the RMSE for nudging with372

the observations given on the 1.0◦ × 1.0◦ grid.373

Remark. In our simulations nudging is not only less accurate but it is also less ro-374

bust than the CDA algorithm. Specifically the simulation fails with the temperature vari-375

able becoming NaN in the case where µ = 1×10−4 with observations given on the 1.0◦×376

1.0◦ grid. The CDA algorithm tested with the same choices for µ given the same obser-377

vations did not have this issue, but it also did not significantly improve the RMSE com-378

pared to the case where µ = 2× 10−5.379

Remark. Future work should explore the optimality of mixed choices of µu and µφz .380

Analytically, the proof of convergence indicates that the stronger both µ’s are taken, the381

faster it converges, hence it is not clear that a mixed choice of µ’s would improve the con-382

vergence rate. However, the choice of numerical discretizations may affect the conver-383

gence. A preliminary test choosing µu = 5 × 10−5 and µφz = 1 × 10−4 with observa-384

tions given on the 0.5◦×0.5◦ grid improves the velocity RMSE and passive tracer dif-385

fusion along isopycnals.386

µ Grid % Improvement

2× 10−5 0.5◦ × 0.5◦ +23%
1× 10−5 0.5◦ × 0.5◦ +19%
2× 10−6 0.5◦ × 0.5◦ +5%

2× 10−5 1.0◦ × 1.0◦ +30%
1× 10−5 1.0◦ × 1.0◦ +29%
2× 10−6 1.0◦ × 1.0◦ +11%

Table 1. Relative Improvement of the CDA Algorithm Over Nudging
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Figure 5. RMSE of horizontal velocity, averaged every 2 weeks from the start of the data

assimilation simulations, with observational data given on a 1.0◦ × 1.0◦ grid and 0.5◦ × 0.5◦ grid,

respectively.
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Via the CDA algorithm, we expect to find the net effects of mesoscale eddies to be
improved in the data assimilation simulation. Hence, we analyze how the CDA algorithm
improves the effects of eddies via analysis of isopycnal diffusivity and eddy kinetic en-
ergy (EKE), defined by

EKE =
1

2

(
(u− u)2 + (v − v)2

)
,

where u = (u, v) is the horizontal velocity vector and the averaging is a time average387

over the final two weeks of the CDA simulation. We also analyze mass transport north388

and south of the jet to demonstrate the effects of resolution on the behavior of the dou-389

ble gyre and the CDA algorithm’s ability to capture the correct mass transport. Over-390

all, the CDA algorithm is determined to outperform the control simulation and produces391

results that are qualitatively similar to that of the high resolution reference simulation392

on the observation grids.393

In Figures 6 and 7, which show the simulated EKE, we note that the the accuracy394

as well as the distribution of EKE is significantly improved in the CDA simulation. We395

particularly note the spatial representation of the EKE in the data assimilation simu-396

lations is more representative of the reference simulation than the control simulation. This397

is confirmed quantitatively in Table 2, which presents the RMSE for the EKE, where CDA398

yields an improvement up to two orders of magnitude relative to the control simulation399

(an approximate 100% relative improvement).400

µ Grid RMSE % Improvement

2× 10−5 0.5◦ × 0.5◦ 5.37× 10−6 +96%
1× 10−5 0.5◦ × 0.5◦ 8.18× 10−6 +94%
2× 10−6 0.5◦ × 0.5◦ 3.70× 10−5 +73%
control 0.5◦ × 0.5◦ 1.36× 10−4 –

2× 10−5 1.0◦ × 1.0◦ 9.01× 10−6 +93%
1× 10−5 1.0◦ × 1.0◦ 1.39× 10−5 +89%
2× 10−6 1.0◦ × 1.0◦ 5.48× 10−5 +57%
control 1.0◦ × 1.0◦ 1.29× 10−4 –

Table 2. EKE RMSE with respect to the observations, with % improvement relative to the

control simulation.
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Next we analyze the impact of the CDA algorithm on isopycnal diffusivity. A pas-401

sive tracer was placed in a column in the middle of the jet near the western boundary,402

concentrated within a 100 km radius, and the tracer was evolved over two simulated weeks.403

Figures 8 and 9 show the averaged spread of the passive tracer over approximately 6 days404

starting 5 days into the simulation. Due to the qualitative similarity of the results for405

different µ’s, only the isopycnal diffusivity for µ = 1×10−5 is shown. The CDA simu-406

lations yields a diffusion more consistent with the reference simulation as compared to407

the control simulation. Table 3 presents the RMSE for the average tracer concentration,408

showing an improvement of an order of magnitude from the RMSE of the control sim-409

ulation. The percent improvement with respect to the control simulation ranges from410

about 60-80%.411

µ Grid RMSE % Improvement

2× 10−5 0.5◦ × 0.5◦ 0.048 82%
1× 10−5 0.5◦ × 0.5◦ 0.050 81%
2× 10−6 0.5◦ × 0.5◦ 0.073 72%
control 0.5◦ × 0.5◦ 0.263 –

2× 10−5 1.0◦ × 1.0◦ 0.021 75%
1× 10−5 1.0◦ × 1.0◦ 0.021 75%
2× 10−6 1.0◦ × 1.0◦ 0.034 60%
control 1.0◦ × 1.0◦ 0.084 –

Table 3. RMSE of tracer concentration with respect to the observations, with % improvement

of the CDA simulation relative to the control simulation.
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Next, we look at how the CDA algorithm improves the mass transport north and412

south of the jet. Averaging the meridional velocity over approximately two weeks, we413

plot the approximate mass transport across two latitudes north and south of the jet, 41◦414

N and 26◦ N, respectively. The mass transport through the jet was highly variable, caus-415

ing analyses to be highly sensitive to the choice of latitude for mass transport compu-416

tation. These latitudes were chosen far enough away from the jet so the mass transport417

would be less variable, and plots of mass transport at nearby latitudes were checked to418

verify the sensitivity to the choice of latitude. The fine scale features of the mass trans-419

port are better captured in all CDA simulations as compared to the control simulation,420

as demonstrated in Figures 10 – 13.421

Figure 10. Mass Transport (SvD) at 26◦ latitude, 1.0◦×1.0◦: The CDA algorithm better cap-

tures the finer-scale features as compared to the control simulation.
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Figure 11. Mass Transport (SvD) at 41◦ latitude, 1.0◦×1.0◦: The CDA algorithm better cap-

tures the finer-scale features as compared to the control simluation.

Figure 12. Mass Transport (SvD) at 26◦ latitude, 0.5◦×0.5◦: The CDA algorithm better cap-

tures the finer-scale features as compared to the control simulation.
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Figure 13. Mass Transport (SvD) at 41◦ latitude, 0.5◦×0.5◦: The CDA algorithm better cap-

tures the finer-scale features as compared to the control simulation.

Finally, we compare the computational cost of running the CDA and nudging al-422

gorithms. Table 4 shows the approximate amount of computational runtime in seconds423

it takes to run the CDA and nudging simulations for approximately two simulation weeks424

on a large-scale HPC platform (specifically, the runs were done on 2 nodes with 36 In-425

tel Xeon Broadwell E5-2695 processors and 128 GB of memory per node). The runtime426

is approximated on the order of 104, as fluctuations in runtime are large and highly de-427

pendent on how many other jobs are running. We note that, of course, CDA is slower428

than nudging due to the extra interpolation to the external grid. However, the consis-429

tent improvement in simulation fidelity of CDA over nudging is significant, with the im-430

provement more marked in the setting where fewer observations are used. Furthermore,431

the computational time for CDA is not currently optimal, and could be improved by par-432

allelizing the operation of interpolation of the model data to the observed grid and back.433

We also note that it only took four simulation weeks to equilibrate the data assimila-434

tion simulations, whereas it took 5 1/2 simulation years to equilibrate the control sim-435

ulation. Hence, if one has observable data, assimilating said data using the CDA algo-436

rithm is faster and more accurate than running a model without data assimilation.437

DA Method Grid Appx. Runtime (s)

CDA 0.5◦ × 0.5◦ 4000
Nudging 0.5◦ × 0.5◦ 1000

CDA 1.0◦ × 1.0◦ 3000
Nudging 1.0◦ × 1.0◦ 1000
Control – 100

Table 4. Approximate Computational Cost for Two Simulation Weeks
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4 Conclusions and Future Work438

In this work, we presented the new CDA algorithm, its theoretical and computa-439

tional advantages, and its advantages in comparison to the related data assimilation scheme440

of nudging. The CDA algorithm was demonstrated to qualitatively recapture the net ef-441

fects of the eddy-resolving resolution flow field at coarser resolution, and improvement442

was seen in all measures of eddy effects as compared to the low resolution simulation.443

The horizontal velocity RMSE for the CDA algorithm was an order of magnitude bet-444

ter than the control simulation, and demonstrated a 10% – 30% improvement over the445

nudging simulation (see Figure 3 and Table 1)). The eddy kinetic energy, isopycnal dif-446

fusivity, and mass transport were also qualitatively identical to that of the high resolu-447

tion simulation on the observation grids, with improvements in error between 60% and448

100% relative to the control simulation. In summary, the CDA algorithm improved all449

metrics in the lower resolution simulation in very little simulated time. The theoretical450

support, computational recovery of mesoscale eddy effects, and computational speed of451

the algorithm support the conclusion that the CDA algorithm is a potentially viable al-452

gorithm for ocean models and should be explored further.453

Future Directions454

Since the CDA algorithm is a new data assimilation method, a number of factors455

need to be explored. For example, the choice of the positive relaxation coefficient µ is456

constant in this study, but it is common practice for the nudging coefficient to vary in457

space. To the best of the authors’ knowledge, only three versions of the CDA algorithm458

with a varying µ have been computationally explored in Desamsetti et al. (2019), in Zerfas459

(2019), and in Larios and Pei (2017); Hudson and Jolly (2019). Another modification460

that can be explored would follow from Foias et al. (2016), where the observations at time461

tn are assimilated over a time window [tn, tn+m), m > 1, addressing the fact that most462

datasets have data recorded less frequently than a typical timestep for a simulation.463

Another avenue of further research would be to explore assimilating some instead464

of all state variables. This has been explored theoretically in, e.g., Farhat et al. (2015,465

2016a, 2016b, 2016c, 2017) and computationally in, e.g., Altaf et al. (2017). Assimilat-466

ing variables such as only temperature and salinity are practical when assimilating raw467

data instead of reanalysis data, and while the CDA algorithm has shown promise in this468

direction, theoretical and computational studies need to be completed to show the ef-469

fectiveness of the CDA algorithm with respect to other data assimilation techniques. The470

authors have a publication in progress testing this in an idealized setting.471

To address the most important data assimilation needs in the climate community,472

the CDA needs to be tested in more real data settings and against other more promi-473

nent methods of data assimilation. Finally, comparisons of the CDA algorithm to more474

commonly used statistical data assimilation algorithms needs to be explored in both ideal475

and real data settings.476

Appendix A CDA vs Nudging: Discrete Setting with Mismatched Ob-477

servation and Model Grids478

In the continuous setting, the implementation of the CDA algorithm is straight-479

forward. However, approximating and evolving models on discrete numerical grids presents480

a new yet subtle challenge. When the observational grid is a subset of the model grid,481

the explanation given in Section 2.2 is straightforward as the transition from understand-482

ing the concept in continuous space can be directly translated to discrete space. Com-483

plications arise in the setting where the observational grid is not a subset of the model484

grid. As a caricature, consider the following one-dimensional illustration. We are given485

observations on the grid Ωobs (blue) and the simulation of the model is carried out on486
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Observational Grid Ωobs

Observations u|Ωobs

CDA Solution v|Ω0

Model Grid Ω0

Figure A1. 1D Illustration of observations on observational grid Ωobs (blue) and model solu-

tion as given on the model grid Ω0 (gray).

the grid Ω0 (gray), with spacing dx, for example. As we evolve the model, we only have487

the solution v|Ω0 . Hence, we have the following information presented in Figure 1.488

For the CDA algorithm, we need to have Iδ(u) and Iδ(v), the interpolation of these func-489

tions on Ωobs. It is easy enough to compute Iδ(u). The temptation here to save com-490

putational time is to assimilate Iδ(u)|Ω0
directly. However, this is simply nudging, putting491

us back in the setting of modeling vt = F (v) + µ(Iδ(u) − v). We need to know v on492

the observational grid in order to determine Iδ(v). However, since we only have v|Ω0 and493

Ωobs 6⊆ Ω0, we need approximate values of v on Ωobs in order to obtain an approxima-494

tion of Iδ(v). In general, the observational grid is more sparse than the model grid, and495

hence we assume the interpolation Idx(v) of v|Ω0
to be a sufficiently good approxima-496

tion of v in full space. This is illustrated in Figure 2.497

Observational Grid Ωobs

Iδ(u)

Appx CDA Solution Idx(v)

Model Grid Ω0

Figure A2. 1D Illustration of interpolation of observations to full space and approximation of

CDA solution on all of space, since it is only known on the model grid Ω0.

Now that we have an approximation of v, we take the points of Idx(v)|Ωobs
, and inter-498

polate to obtain Iδ(Idx(v)), an approximation of Ih(v). This is illustrated in Figures 3499

and 4.500
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Observational Grid Ωobs

Iδ(u)

Idx(v)

Idx(v)|Ωobs

Model Grid Ω0

Figure A3. 1D Illustration of Idx(v)|Ωobs , the values of Idx(v) on the observational grid.

Observational Grid Ωobs

Iδ(u)

Idx(v)

Iδ(Idx(v))

Model Grid Ω0

Figure A4. 1D Illustration of Idx(v)|Ωobs , the values of Idx(v) on the observational grid, and

the interpolating those values to obtain Iδ(Idx(v)).

Now that we have Iδ(u) and the approximation of Iδ(v) given by Iδ(Idx(v)). These func-501

tions are assimilated into the model on the model grid; these are the gray values in Fig-502

ure 5.503
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Observational Grid Ωobs

Iδ(u)
Iδ(u)|Ω0

Iδ(Idx(v))|Ω0

Iδ(Idx(v))

Model Grid Ω0

Figure A5. 1D Illustration of values of Iδ(u)|Ω0 and Iδ(Idx(v))|Ω0 .
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