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Abstract

Monitoring changes of seismic properties at depth can provide a first order insight into Earth’s dynamic evolution. Coda wave

interferometry is the primary tool for this purpose. This technique exploits small changes of waveforms in the seismic coda

and relates them to temporal variations of attenuation or velocity at depth. While most existing studies assume statistically

homogeneous scattering strength in the lithosphere, geological observations suggest that this hypothesis may not be fulfilled in

active tectonic or volcanic areas. In a numerical study we explore the impact of a non-uniform distribution of scattering strength

on the spatio-temporal sensitivity of coda waves. Based on Monte Carlo simulation of the radiative transfer process, we calculate

sensitivity kernels for three different observables, namely travel-time, decorrelation and intensity. Our results demonstrate

that laterally varying scattering properties can have a profound impact on the sensitivities of coda waves. Furthermore, we

demonstrate that the knowledge of the mean intensity, specific intensity and energy flux, governed by spatial variation of

scattering strength, is key to understanding the decorrelation, travel-time and intensity kernels, respectively. A number of

previous works on coda wave sensitivity kernels neglect the directivity of energy fluxes by employing formulas extrapolated

from the diffusion approximation. In this work, we demonstrate and visually illustrate the importance of the use of specific

intensity for the travel-time and scattering kernels, in the context of volcanic and fault zone setting models. Our results let us

foresee new applications of coda wave monitoring in environments of high scattering contrast.
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Abstract15

Monitoring changes of seismic properties at depth can provide a first order insight into16

Earth’s dynamic evolution. Coda wave interferometry is the primary tool for this pur-17

pose. This technique exploits small changes of waveforms in the seismic coda and relates18

them to temporal variations of attenuation or velocity at depth. While most existing stud-19

ies assume statistically homogeneous scattering strength in the lithosphere, geological20

observations suggest that this hypothesis may not be fulfilled in active tectonic or vol-21

canic areas. In a numerical study we explore the impact of a non-uniform distribution22

of scattering strength on the spatio-temporal sensitivity of coda waves. Based on Monte23

Carlo simulation of the radiative transfer process, we calculate sensitivity kernels for three24

different observables, namely travel-time, decorrelation and intensity. Our results demon-25

strate that laterally varying scattering properties can have a profound impact on the sen-26

sitivities of coda waves. Furthermore, we demonstrate that the knowledge of the mean27

intensity, specific intensity and energy flux, governed by spatial variation of scattering28

strength, is key to understanding the decorrelation, travel-time and intensity kernels, re-29

spectively. A number of previous works on coda wave sensitivity kernels neglect the di-30

rectivity of energy fluxes by employing formulas extrapolated from the diffusion approx-31

imation. In this work, we demonstrate and visually illustrate the importance of the use32

of specific intensity for the travel-time and scattering kernels, in the context of volcanic33

and fault zone setting models. Our results let us foresee new applications of coda wave34

monitoring in environments of high scattering contrast.35

Plain Language Summary36

To monitor the evolution of the dynamic Earth, seismologists use a part of the seis-37

mic record called ‘coda’, which is composed of waves that have bounced multiple times38

off heterogeneities of the crust. The coda is extremely sensitive to weak perturbations39

of propagation properties induced by Earth’s tectonic and volcanic activity. The correct40

physical modeling of coda waves is therefore key to unravel the rich information encoded41

in their waveforms. A limitation of current seismological monitoring techniques is the42

neglect of strong lateral variations of coda waves propagation properties documented by43

geological observations. Our work focuses specifically on this aspect. We provide a com-44

plete theoretical and numerical framework to model and understand the spatial and tem-45

poral sensitivity of coda waves to medium perturbations in complex geological settings.46
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Using simple but realistic models of a fault zone and a volcano, we illustrate the profound47

impact of non-uniform scattering properties on the coda wave sensitivity, which in turn48

determines the ability of seismologists to correctly retrieve the magnitude and location49

of physical changes in the crust. Our results let us foresee new applications of coda wave50

monitoring in environments of high scattering contrast, such as volcanic and fault zone51

settings.52

1 Introduction53

With the recent advancements in seismic sensor techniques and the rapid deploy-54

ment of (dense) seismic arrays over the last decade, there has been a surge in the num-55

ber of monitoring studies aiming to capture the dynamic evolution of the subsurface. Due56

to scattering, coda waves sample a large volume of the subsurface densely for long prop-57

agation times and are thus sensitive to weak changes of the medium. Consequently, coda58

waves may be more suitable to characterise temporal variations of the Earth’s crust than59

direct waves, which only sample a narrow volume along the ray path between the (vir-60

tual) source and detector. Poupinet et al. (1984) were first to demonstrate the feasibil-61

ity of monitoring weak changes in apparent velocity caused by fault activity in Califor-62

nia using coda waves. Poupinet et al. (1984) derived these global medium changes by63

measuring the phase shift between the coda of earthquake doublets. In numerical and64

lab experiments, the extreme sensitivity of the seismic coda to temporal medium changes65

has also been demonstrated by Snieder et al. (2002). Later, detection of temporal medium66

changes has been successfully applied using the coda of earthquake records or the coda67

of ambient noise cross-correlations in numerous settings including but not limited to: vol-68

canoes (e.g. Sens-Schönfelder & Wegler, 2006; Mordret et al., 2010; Brenguier et al., 2016;69

Hirose et al., 2017; Sánchez-Pastor et al., 2018; Mao et al., 2019; Obermann, Planes, et70

al., 2013), fault zones (e.g. Schaff & Beroza, 2004; Peng & Ben-Zion, 2006; Wu et al.,71

2009; Roux & Ben-Zion, 2014; Rivet et al., 2014; Brenguier et al., 2008; Chen et al., 2010),72

and CO2 and geothermal reservoirs (Hillers et al., 2020, 2015; Obermann et al., 2015).73

Although measurements of temporal medium changes are interesting in their own74

right, knowledge about their spatial location is necessary to gain more insight into the75

processes that occur at depth. Regionalization of data can yield a first order estimate76

on the spatial distribution, but a preferable approach is to perform a (linear) inversion77

using so-called sensitivity kernels. In loose terms, these spatial weighting functions pro-78
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vide information on the parts of the medium that have preferentially been sampled by79

the waves in a probabilistic sense. The first travel-time sensitivity kernels for coda wave80

interferometry have been introduced by Pacheco and Snieder (2005) under the diffusion81

approximation. Shortly after, Pacheco and Snieder (2006) provided probabilistic kernels82

for the single scattering regime. Both kernels are in the form of a spatio-temporal con-83

volution of mean intensities of the coda waves. Obermann, Planes, et al. (2013) applied84

those kernels to invert for structural and temporal velocity changes around the Piton de85

la Fournaise volcano on Reunion Island. To detect and locate medium changes caused86

by the Mw 7.9, 2008 earthquake in Wenchuan in China, Obermann et al. (2019) used87

a 3-D kernel combining the sensitivity of body and surface waves. Although the results88

of the authors were very promising, Margerin et al. (2016) raised questions about the89

formulas used to compute the sensitivity kernels, since the works rely on an extrapola-90

tion of a formula established in the diffusion regime. Margerin et al. (2016) demonstrated91

that knowledge of the angular distribution of the energy fluxes of coda waves is required92

for an accurate prediction of sensitivities, valid for an arbitrary distribution of hetero-93

geneities and all propagation regimes. The authors obtained this result by using a ra-94

diative transfer approach, which directly predicts specific intensities. Other developments95

on sensitivity kernels focus on the sensitivity as a function of depth. Obermann et al.96

(2016); Obermann, Planès, et al. (2013) showed that a linear combination of the 2-D sur-97

face wave and 3-D body wave kernels are a decent proxy to describe the sensitivity as98

function of lapse-time and depth. A formal approach to couple body and surface waves99

is provided by Margerin et al. (2019), leading to a specific formulation of kernels (Barajas,100

2021).101

Most of these studies on sensitivity kernels provide a solution for statistically ho-102

mogeneous scattering media, although the interest in extending the sensitivity kernels103

to non-uniform media is growing, which is especially interesting for monitoring volcanic104

and fault zone settings. Wegler and Lühr (2001) derived attenuation parameters around105

the Merapi volcano in Indonesia. The authors found a scattering mean free path (`) as106

low as 100 m for S waves in the frequency band of 4-20 Hz. They also reported that the107

scattering attenuation is at least one order of magnitude larger than the intrinsic atten-108

uation around Merapi. Later, Yoshimoto et al. (2006) estimated scattering attenuation109

in the north-eastern part of Honshu in Japan. For this volcanic area the authors anal-110

ysed the coda of earthquake records and reported a scattering coefficient of 0.01 km−1
111
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for the frequency of 10 Hz. Another study that analysed the coda of seismograms in a112

volcanic setting in Japan found the scattering mean free path for P and S waves to be113

as short as 1 km for the 8-16 Hz frequency band (Yamamoto & Sato, 2010). Recently,114

Hirose et al. (2019) derived a scattering mean free path ∼ 2 km at Sakurajima volcano115

in Japan, which is much smaller than in the surrounding rock. In a recent study on the116

western part of the North Anatolian Fault Zone (NAFZ) van Dinther et al. (2020) also117

found a strong contrast in scattering ( ∼ factor of 15), with ` = 10 km inside the fault118

zone and ` in the order of 150 km outside the fault zone. Gaebler et al. (2019) found sim-119

ilarly small scattering mean free path values along the northern strand of the NAFZ analysing120

the energy decay of earthquake records with a central frequency of 0.75 Hz.121

The first works considering non-uniform media are by Kanu and Snieder (2015a)122

and Kanu and Snieder (2015b) in which the authors use ensemble averaging of the coda123

envelopes modelled by employing the diffusion equation to numerically compute the decor-124

relation sensitivity kernels, which are interpreted as travel-time kernels, to image veloc-125

ity variations in 2-D acoustic heterogeneous media. Snieder et al. (2019) adjusted the126

approach to (1) a 2-D elastic case based on the diffusion equation and (2) a 2-D acous-127

tic case based on radiative transfer theory, for media with weak velocity variations. Build-128

ing on the work of Snieder et al. (2019) and assuming diffusive wave propagation, Duran129

et al. (2020) developed a numerical approach to derive elastic and acoustic decorrelation130

sensitivity kernels for 2-D heterogeneous scattering media. Recently, Zhang et al. (2021)131

modeled sensitivity kernels for elastic body waves in 2-D random heterogeneous scatter-132

ing media based on radiative transfer theory using a Monte Carlo approach. The authors133

use a similar probabilistic approach as is used in current study, but a different compu-134

tation method. Furthermore, the scattering contrasts considered in current study are larger.135

In this work we explore the impact of scattering distribution on coda wave sensi-136

tivity kernels for the acoustic scalar case. The parametric part of this study (Section 4.2)137

aids in the understanding of the kernels. Finally, we show examples of sensitivity ker-138

nels for realistic settings.139

2 Coda-wave Sensitivity Kernels140

When monitoring the subsurface, one aims to invert observations to gain informa-141

tion about the perturbation of medium properties. As the name suggests, the sensitiv-142
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ity kernels quantify the spatial and temporal sensitivity of a specific observable to changes143

in the medium. The kernels facilitate the reconstruction in 2-D or 3-D of the spatial vari-144

ation of a given physical parameter, such as the wave speed or scattering properties. Since145

different observations require the use of different kernels, we compute three types of sen-146

sitivity kernels: the travel time kernel Ktt, the scattering kernel Ksc and the decorre-147

lation kernel Kdc.148

The travel-time kernel, Ktt, relates the observed travel-time delay (or phase shifts)149

between data for different recording periods,which can be seen as apparent velocity changes,150

to the macroscopic true changes in elastic medium properties. In this study we use the151

kernel as defined by Margerin et al. (2016); Mayor et al. (2014):152

Ktt (r′, t; r, r0) = SD
∫ t

0

∫
SD

I (r′, t− t′,−n′; r) I (r′, t′,n′; r0) dt′dn′

I (r, t; r0)
(1)

where SD denotes the unit sphere in space dimension D, as well as its area. The153

intensity propagators I, for the intensities traveling from a source of forward intensity154

(r; in applications this can be seen as the ‘source’) to a source of backward intensity (r0;155

‘detector’), via a perturbation (r′), are based on the 2-D radiative transfer equation (RTE;156

Sato (1993); Paasschens (1997)). I will be presented in greater details later in this manuscript157

(see Section 4.1 for the description of the source of forward and backward intensity).158

Note that the intensity, or energy density, has dimension [L]−D (Paasschens, 1997)159

so that the kernel has dimension [t][L]−D. The kernels are a time density, such that they160

are equal to the time spent by the waves around a given point, per unit volume or sur-161

face. The numerator of Eq. (1) is a convolution between specific intensities of two sources,162

one source of forward intensity and one of backward intensity. A specific intensity is de-163

fined as the amount of energy flowing around direction n′, through a small surface el-164

ement dS located at point r and at a certain time t within a defined frequency band (e.g.165

Margerin, 2005). The validity of the kernels also holds for anisotropic scattering, although166

we consider only isotropic scattering in current work. Previously, Mayor et al. (2014) in-167

troduced a sensitivity kernel for the perturbation of intensity caused by a local change168

in absorption. In Margerin et al. (2016) this sensitivity kernel is reinterpreted probabilis-169

tically as the travel-time kernel.170
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A structural change in the subsurface, e.g. the growth of a fault, results in a per-

turbation of scattering. An extra scatterer creates new propagation paths for the waves,

which in turn slightly modifies the coda signal. As a consequence, one can observe a decor-

relation of the waveform in the recordings for different periods of time (Planès et al., 2014).

The decorrelation kernel, Kdc, relates this observation to the change in scattering of the

medium. The kernel takes into account the new propagation paths that have been cre-

ated by the addition of scatterers, and is defined as follows (Planès et al., 2014; Marg-

erin et al., 2016):

Kdc (r′, t; r, r0) =

∫ t

0

I (r′, t− t′; r) I (r, t′; r0) dt′

I (r, t; r0)
(2)

The intensities in Eq. (2) are mean intensities, therefore the decorrelation kernel is de-

pendent on the mean energy densities only and not on the directivity of the intensities.

Note that formula (2) is valid stricto sensu in the case where the structural change be-

haves as isotropic scatterers. In the scalar approximation employed in this work, this im-

plies that they are small compared to the probing wavelength. We emphasize that the

scattering properties of the reference medium may be completely arbitrary. Another ob-

servation for the same medium change, i.e. the scattering perturbation, is a change in

intensity δI. Since the observation is different than in the case of the decorrelation, one

needs another sensitivity kernel. Physically, a perturbation in scattering located in a vol-

ume dV (r′) has two effects on the intensity. (1) An energy loss, which can be quanti-

fied by evaluating the extra-attenuation of seismic phonons that cross dV (r′). This is

effectively what can be monitored with Ktt. (2) An increased probability of energy reach-

ing the detector due to the additional paths created by the additional scatterer. This

is effectively what Kdc provides us with. Therefore, the scattering sensitivity kernel Ksc,

as derived by Mayor et al. (2014), is defined as:

Ksc (r′, t; r, r0) = Kdc (r′, t; r, r0)−Ktt (r′, t; r, r0) (3)

Note that the scattering pattern of the new scatterers should be isotropic implying as171

above that they are small compared to the wavelength. A characteristic of this kernel172

is that the integral over all detection points r gives 0, implied by the conservation of en-173

ergy as demonstrated in the work of Mayor et al. (2014). We will also find in the results174

(e.g. Fig. 2) that the scattering kernels have both positive and negative sensitivities to175

scattering perturbations. In other words, the spatial distribution of intensities is mod-176
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ified while the total intensities remain unchanged. For an extension of formulas (1), (2)177

and (3) to coupled P and S waves, the reader is referred to Zhang et al. (2021).178

3 Calculation of Sensitivity Kernels: a Monte Carlo Simulation Ap-179

proach180

To compute the above defined sensitivity kernels we perform Monte Carlo simu-181

lations based on the 2-D RTE with isotropic scattering. This section is rather techni-182

cal in nature and may be read independently from the rest of the manuscript. We re-183

call that in a Monte Carlo approach (e.g. Margerin et al., 2000), the transport of energy184

is represented by random walks of discrete seismic “phonons” (Shearer & Earle, 2004)185

that undergo a sequence of collisions in a scattering and absorbing medium. In practice,186

the medium is often discretized onto elementary volumes where the number of phonons187

is monitored as a function of time to estimate the energy density. But it is also possi-188

ble to compute the energy density detected at a specific point of the medium by eval-189

uating the probability for the phonon to return to the detector at each scattering event190

(see e.g. Hoshiba, 1991, for a detailed treatment). In the present work, we adopt the lat-191

ter approach.192

While early applications focused mostly on the computation of energy envelopes,193

the introduction of sensitivity kernels based on RTE has stimulated the development of194

Monte Carlo approaches to compute the derivatives of seismogram envelopes with re-195

spect to attenuation model parameters. In a recent investigation of PKP precursors, Sens-196

Schönfelder et al. (2020) use Monte Carlo simulations to compute the forward and back-197

ward intensities propagating from the source to the perturbation and from the detector198

to the perturbation, respectively. The convolution integral in Eq. (2)-(3) is then eval-199

uated numerically. The method highlights very nicely the regions of the deep Earth con-200

tributing to the detection of precursors. Recently, Zhang et al. (2021) generalized the201

radiative transfer formulation of sensitivities to the case of elastic body waves. These202

authors illustrate numerically the impact of non-uniform attenuation properties on the203

spatio-temporal dependence of the kernels in 2-D elastic media. The numerical approach204

is similar to Sens-Schönfelder et al. (2020) that relies on the convolution of forward and205

backward (specific) intensities evaluated by the Monte Carlo method. In this work, we206

propose yet another computational approach to the computation of kernels in non-uniform207

scattering media that exploits the idea of differential Monte Carlo simulations.208
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Takeuchi (2016) introduced a differential Monte Carlo method where both the en-209

velope and its partial derivative are calculated in a single simulation. An interesting ap-210

plication of the method, highlighting both the lateral and depth dependence of atten-211

uation in Japan, has been provided by Ogiso (2019). In this work, we also employ the212

differential approach but in a way quite distinct from Takeuchi (2016). For clarity, we213

recall the basic ingredients of the method in the next section.214

3.1 Differential Monte Carlo Approach215

The central idea of the differential Monte Carlo method is best explained with an

example (see Lux & Koblinger, 1991, for a detailed treatment). Consider for instance

the impact of a perturbation of the scattering coefficient on the energy density. Suppose

that a seismic phonon has just been scattered at point r′ in a reference medium with scat-

tering coefficient g. The probability density function (pdf) of the position r of the next

collision point may be written as:

P (r; r′|g) = g(r)e
−

∫ r

r′
g(x)dx

(4)

where the integral is carried on the ray connecting the point r′ to the point r. Note that216

we allow the scattering coefficient to vary spatially in the reference medium. The dis-217

tribution of path length in the perturbed medium is obtained by the substitution g →218

g + δg in Eq. (4). In the differential Monte Carlo method, the envelopes in the refer-219

ence and perturbed medium are calculated simultaneously via a biasing scheme for the220

latter (Lux & Koblinger, 1991). To picture the idea, one may imagine a “true” phonon221

propagating in the reference medium and a “virtual” mate following exactly the same222

trajectory as the “true” phonon albeit in the perturbed medium. As the phonon prop-223

agates in the reference medium, the statistical weight of its virtual mate is updated to224

compensate exactly for the genuine frequency of occurrence of the path in the perturbed225

medium. As an example, let us consider the change of weight occurring after the phonon226

has left the collision point r′ until it is scattered again at point r. Denoting by w the cor-227

rection factor, we find:228
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w(r; r′) =
P (r; r′|g + δg)

P (r; r′|g)

=
(g(r) + δg(r))e

−

∫ r

r′
δg(x)dx

g(r)

An obvious condition of applicability is that g(r) > 0, implying that a collision

is indeed possible at the point r in the reference medium. We also remark that there is

no assumption on the ’smallness’ of δg in the derivation of (5). For the computation of

sensitivity kernels, we thus further require δg/g � 1 and perform a Taylor expansion

to obtain (Takeuchi, 2016; Ogiso, 2019):

w(r; r′) = 1 +
δg(r)

g(r)
−
∫ r

r′
δg(x)dx (5)

The interpretation of the above formula is as follows: as the virtual phonon propagates229

between the two collision points r′ and r, its weight decreases progressively following the230

integral term; at the collision point r, its weight undergoes a positive jump δg(r)/g(r).231

These two contributions may respectively be related to the loss and gain terms in Eq.232

(3).233

There are two difficulties in the practical application of formula (5). The first one234

becomes apparent when one discretizes the kernel onto a grid of pixels (in 2-D, or vox-235

els in 3-D): the path of the particle inside each pixel has to be carefully monitored to cal-236

culate the integral in Eq. (5). Such particle tracking can be at the origin of significant237

computational overhead. The other difficulty is inherent to the spatial variation of the238

scattering coefficient. Generating the exact path length distribution for the pdf (4) in-239

volves the computation of the line integral of g which may be very time consuming. In240

what follows, we propose a method that solves both of these issues by transferring all241

the sensitivity computation to collision points. A strength of the method is that parti-242

cle tracking is minimal. Furthermore, a completely arbitrary distribution of scattering243

properties -including discontinuities of the scattering coefficient- may be implemented244

transparently and in an “exact” fashion. The main drawback of the approach is that the245

introduction of statistical weights may result in an increase of the variance of the results.246

For the applications at hand, we did not find this issue to be limiting.247
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3.2 The Method of Null or Delta Collisions248

We begin by recalling a simple and very efficient method to simulate the transport

of energy in an arbitrarily scattering and absorbing medium, referred to as the method

of null or delta collisions (Lux & Koblinger, 1991). The starting point is the radiative

transfer equation:

(∂t + ck · ∇+ τ(r)−1 + ta(r)−1)e(t, r,k) = τ(r)−1

∫
p(k,k′)e(t, r,k′)dk′ (6)

where c, τ , ta and p(k,k′) refer to the energy velocity, the scattering mean free time, the

absorption time and the scattering pattern, respectively. The integral on the right-hand

side is carried over all the directions of propagation. We remark that Eq. (6) is equiv-

alent to the following modified transport Eq.:

(∂t + ck · ∇+ τ(r)−1 + ta(r)−1 + τδ(r)−1)e(t, r,k) =

τ(r)−1

∫
p(k,k′)e(t, r,k′)dk′ + τδ(r)−1

∫
δ(k,k′)e(t, r,k′)dk′ (7)

which features a new scattering process with pattern δ(k,k′) (the delta function on the249

unit sphere) and mean free time τδ(r). This new process is characterized by the prop-250

erty that it leaves the propagation direction unchanged. It is worth emphasizing that251

such delta-collisions or null-collisions do not modify the statistics of true physical scat-252

tering events. Because the scattering coefficient of delta-collisions is entirely arbitrary,253

we may always adjust it in a way such that τδ(r)−1 + τ(r)−1 + ta(r)−1 = τ−1
e , where254

the extinction time τe is fixed. By adding the new scattering process, we have in effect255

turned a possibly very complicated medium into a much simpler one where the extinc-256

tion length is constant. This method has been implemented by van Dinther et al. (2020)257

to model the scattering of seismic waves across the North Anatolian fault zone. The price258

to be paid is that one has to simulate more scattering events than in the original prob-259

lem. However, in the perspective of computing sensitivities, this is not necessarily a draw-260

back. Indeed, as shown below, all the contributions to the sensitivity come exclusively261

from collision points in the modified numerical scheme. Fig. 1 shows a graphical repre-262

sentation of this method.263

3.3 Sensitivity Computations264

We begin by noting that in the numerical simulations, absorption is treated as a

phonon capture event, which puts it on the same footing as a scattering event. Indeed,
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Figure 1. Graphical representation of the flexible Monte Carlo simulation employed in this

study. A “true” phonon is propagating through a reference medium from the source (yellow

star) to the detector (black triangle). The propagation path of the true phonon is depicted as a

solid line. A “virtual” phonon is propagating in a perturbed medium and follows the exact same

trajectory, depicted by the dashed line. Between source and detector, the phonons experience

delta and physical scattering events (or collisions), indicated by the open and black hexagonals

respectively. This implies that we simulate more collisions than there are physical collisions. At

every collision we (1) update the weights of the phonons, taking into account the non-uniformity,

and (2) compute the sensitivities. The red color highlights the last part of the trajectory toward

the detector; in the shown example after three scattering events. The regular grid is indicated

by the horizontal and vertical black lines. The simulation can take into account laterally varying

scattering properties, represented by the darker pixels. For the simulations this only implies that

the phonon weights at the collisions are updated differently.
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it is important to keep in mind that the extinction time incorporates the three possible

types of interactions: physical scattering, delta scattering and absorption. Rather than

terminating the phonon history after an absorption event, we assign a weight w to the

particle. At each collision w is multiplied by a factor equal to the local “survival” prob-

ability of the phonon 1−ta(r)−1/τ−1
e . That this procedure correctly models the expo-

nential decay of the intensity along its path may be demonstrated heuristically as fol-

lows. Consider two neighbouring points on the ray path of a seismic phonon and denote

by s a spatial coordinate on the ray. If the path length δs is sufficiently small, we may

neglect multiple collision events. In this scenario, either the phonon propagates freely

over δs, or it suffers from an additional collision upon which its weight is updated. Hence

we have on average:

w(s+ δs) = w(s)

(
1− δs

cτe

)
+ w(s)

(
1− ta(s)−1

τ−1
e

)
δs

cτe
(8)

where we approximate the scattering probability by (cτe)
−1δs. Using a Taylor expan-

sion of the left-hand side, simplifying and rearranging terms we obtain:

dw(s)

ds
= − w(s)

cta(s)
(9)

which proves the statement. The same line of reasoning will be used below to calculate265

the contribution of the path from the last scattering event to the detector.266

Thanks to these preliminaries, it is now straightforward to apply the differential

Monte Carlo method to our problem. As an illustration, let us consider the impact of

a scattering perturbation δτ(r)−1. Again it is conceptually convenient to consider two

phonons: a real phonon propagating in the reference medium and an imaginary phonon

propagating in the perturbed medium. We shall also require that the perturbed and un-

perturbed media have the same extinction time τe. Since this parameter can be arbitrar-

ily chosen, this condition can always be fulfilled. By imposing the equality of the extinc-

tion time in the reference and perturbed medium, we remove any change of the weight

of the virtual phonon in between two collisions. Furthermore, our choice imposes that

the rate of delta collisions in the perturbed medium be given by τ−1
δ − δτ(r)−1. As a

consequence, both delta collisions and physical scattering events contribute to the sen-

sitivity to a scattering perturbation. Following the same reasoning as in the derivation

of Eq. (5), the weight of the virtual phonon after a delta collision at point r is updated
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as follows:

w(r)→w(r)× τδ(r)−1 − δτ(r)−1

τ−1
e

× τ−1
e

τδ(r)−1

→w(r)

(
1− δτ(r)−1

τδ(r)−1

) (10)

This last equation highlights that the rate of imaginary collisions must always be strictly

positive. The same reasoning applied to a physical scattering event yields:

w(r)→ w(r)
(
1 + δτ(r)−1/τ(r)−1

)
(11)

Comparing Eq. (5) with Eq. (10)-(11), it is clear that what our method does in effect267

is to calculate the line integral in (5) by a Monte Carlo approach, where the imaginary268

collisions serve as sample points for the quadrature. It is however worth noting that we269

did not make any smallness assumption in the derivation of Eq. (10)-(11). The case of270

a perturbation of absorption may be treated exactly along the same lines. We find that271

at imaginary collisions, Eq. (10) applies with the substitution δτ(r)−1 → δta(r)−1.272

The last point to be discussed concerns the treatment of the return probability of273

the phonon from the last scattering event at r to the detector at d in the method of par-274

tial summations of Hoshiba (1991). The score (or contribution) of the phonon involves275

the factor e−
∫ d
r

(ta(x)−1+τ(x)−1)c−1dx which represents the probability for the phonon to276

propagate from r to d (or beyond) without absorption or physical collisions. It is clear277

that any perturbation of attenuation properties affect the line integral. We could of course278

compute this contribution by computing numerically the integral but we would then lose279

the benefits of the transfer of the sensitivity to collision points. To remedy the difficulty,280

we replace the numerical quadrature by the following Monte-Carlo procedure:281

1. Starting from position r, randomly select the distance L to a new collision point282

on the ray connecting the last scattering point to the detector. Recall that the pdf283

of L is simply given by (τec)
−1 exp(−(τec)

−1L).284

2. At the collision point, modify the weight of the phonon by the factor τδ(r)
−1/τ−1

e .285

3. Compute the factors affecting the sensitivities to scattering (or absorption) fol-286

lowing Eq. (10).287

4. Repeat (1) until the phonon has traveled beyond d288

Steps (1)-(2) simulate the propagation of the phonon from r to d in a way such that only289

delta collisions can occur. The process is enforced by decreasing the weight of the par-290

ticle by the factor τδ(r)
−1/τ−1

e at each collision. That the weight of the particle decreases291
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on average as desired can be easily established by following the same heuristic argument292

as in the derivation of Eq. (8). In step (3), we assume again that the total attenuation293

is the same in the reference and perturbed medium. Eq. (10) is therefore directly ap-294

plicable to the computation of the sensitvity to scattering (or absorption) perturbation295

on the path connecting r to d.296

In numerical applications, the kernels are discretized onto pixels whose dimensions297

fix the lower bound for the spatial resolution that may be achieved in an inversion. As298

a consequence, the discretized kernels introduce both spatial and temporal averaging as299

compared to their analytical counterparts (Mayor et al., 2014). A positive consequence300

is that all singularities are automatically regularized, which allows for a more straight-301

forward application of the kernels. Furthermore, whereas analytical kernels are attached302

to the uniform reference medium, the Monte-Carlo approach lends itself naturally to an303

iterative linearized inversion procedure. From a numerical perspective, the most impor-304

tant feature of our method is the high degree of flexibility, which allows one to very sim-305

ply model arbitrary non-uniform scattering and absorbing medium, including the pres-306

ence of discontinuities in the model parameters. We believe that this simplicity largely307

balances the slowdown entailed by the simulation of artificial scattering events.308

For the simulations shown in this manuscript we use a grid of 76-by-76 pixels, where309

each of the pixels has a dimension of 4-by-4 km. The kernel is evaluated every second,310

up to a maximum lapse-time of 120 s. The final temporal resolution, however, is 5 s, due311

to the application of a 5 s moving window to average the kernels and reduce the statis-312

tical fluctuations. The total number of phonons simulated for each model is 4 ×109. The313

distance between the sources, R, equals 32 km for most models (uniform and half-space314

case), with the placement of the sources at the center of the pixels. For all simulations315

the full grid space has a uniform value for the intrinsic quality factor Qunii = 100, based316

on values recently derived for a normal crustal setting in Turkey, in the vicinity of the317

Izmit rupture zone (e.g. van Dinther et al., 2020). The scattering mean free path varies318

depending on the model.319

4 Sensitivity Kernels for Non-uniform Scattering Media320

In this section we discuss the effect of the scattering distribution on the sensitiv-321

ity kernels. Guided by the results obtained in a volcanic setting, we introduce the phys-322
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𝑟’1		𝑟’2		𝑟’3	

(a) (b)

(d)

(g) (i)

(f)

(c)

(e)

(h)

Figure 2. Sensitivity kernels for uniform scattering media at 100 s lapse-time. The columns

show Ktt, Ksc and Kdc, respectively. The scattering mean free path increases from top to bot-

tom: `1, 2×`1, 8×`1, with `1 = 30 km. The inter-source distance, R0 = 32 km. The annotations

r′1- r′3 point to positive, negative and positive sensitivity along the line connecting the sources,

respectively. All kernels are normalised with respect to the maximum value. Note that for Ksc

to color bar is symmetric around zero, with red as negative and blue as positive sensitivities,

respectively.

ical interpretation for each of the three different kernels. The second context for which323

we investigate the implications of non-uniform scattering strength on the sensitivities324

is for a model with two half-spaces. This case is illustrated with the aid of two paramet-325

ric studies, which facilitate the interpretation of the kernels. We will finish this section326

with an application to a fault zone model.327

To facilitate the discussion we compare the results for all three non-uniform mod-328

els to the kernels for uniform media. The latter are shown in Fig. 2 at a lapse-time of329

100 s for increasing scattering strengths. The columns from left to right show Ktt,Ksc330
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Table 1. Overview of intensities and fluxes.

Symbol Description

Is Intensity from the source: forward intensity

Id Intensity from the detector: backward intensity

I ∆`
s,d Secondary and delayed intensity induced by a strong scattering region

I b
s,d Intensity along the ballistic path between source and detector

Js Energy flux from the source

Jd Energy flux from the detector

J∆`
s,d Secondary and delayed energy flux induced by a strong scattering re-

gion

Jb
s,d Energy flux along the ballistic path between source and detector

and Kdc, respectively. The results obtained for a reference medium, with `1= 30 km, is331

shown at the top row. The scattering mean free path varies over orders of magnitude332

in the Earth, therefore we compare the reference medium with weaker scattering media.333

The middle and lower rows of Fig. 2 show the results for increasing `: 2 ×`1 and 8 ×`1,334

respectively. The epicentral distance is set to R = 32 km. The numerical results shown335

in Fig. 2 will serve as guides to understand the more complex cases associated to non-336

uniform scattering properties.337

4.1 Volcanic Setting338

Fig. 3 shows the kernels for a source and receiver that are 47 km apart, at 40 s (up-339

per row) and 80 s (lower row) lapse-times, in the vicinity of a volcano. The volcano, char-340

acterized by strong scattering, has a scattering mean free path of 2 km and a radius of341

6 km. These values are based on the findings of Hirose et al. (2019) at the Sakurajima342

volcano in Japan. The surrounding crust has a weaker scattering strength with ` = 150343

km, and for simplicity the intrinsic absorption is considered uniform with Qi = 100.344

A couple of observations stand out from Fig. 3. First, the travel-time and decor-345

relation kernels are very dissimilar. Second, the volcano appears to be a reflector for the346

intensities at early lapse-times. To explain these observations and improve the under-347

standing of the kernels we will discuss all three kernels separately and compare them to348
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(a) (b)

(d) (f)

(c)

(e)

Figure 3. Sensitivity kernels for volcanic setting, for lapse-time of 40 s (upper) and 80 s

(lower). The columns show Ktt, Ksc and Kdc respectively. The volcano is depicted as a circle

with radius 6 km and `v = 2 km, outside the volcano ` = 150 km. The inter-source distance is

approximately 47 km. Note that axis extent is not the same for 40 s (±100 km) and 80 s (±150

km). All kernels are normalised with respect to the maximum value. The color bar for Ksc is

symmetric around zero.
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𝑰𝒔,𝒅∆𝓵
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- forward  - backward  - secondary

Figure 4. Depiction of the specific intensities controlling Ktt in a volcanic setting. The green

star depicts the source and the black triangle the receiver. The former and the latter are referred

to as source of forward and source of backward intensity, respectively. The grey circle shows the

location of the volcano. Specific intensity Is (Id) propagates from the source of forward intensity

(source of backward intensity) to the volcano, respectively. Back-scattered energy is indicated as

I∆`. It originates from one source and propagates via the volcano to the other source (and vice

versa), but it also has an energy contribution coming from one source and scatters back to the

same source. Both sources emit intensities into all directions, also on the direct path between

them, as indicated by Is and Id.
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the uniform model as reference, starting with the travel-time kernel, then the decorre-349

lation kernel and finally the scattering kernel.350

As defined in Eq. (1), Ktt is dependent on the dominant propagation direction of351

the waves. There are two specific intensities contributing to the travel-time kernel, com-352

ing from two different primary sources: (1) the forward intensity, from the source toward353

the perturbation; and (2) the backward intensity, from detector toward the perturba-354

tion. In the application part of this manuscript we refer to the first source as the “source355

of forward intensity” or “forward source”, while the latter will be referred to as the “source356

of backward intensity” or “backward source” from hereafter.357

Where the forward and backward intensities are simultaneously high and propa-358

gating in opposite direction, the travel-time kernel shows high sensitivities, as dictated359

by the convolution of specific intensities in the numerator of Eq. (1). In the uniform case,360

there are only two sources to be considered Is and Id. In the case of a localized pertur-361

bation with high scattering contrast, energy may be back-scattered by the heterogene-362

ity, giving rise to a secondary and delayed intensity I ∆`
s,d .363

The key intensities for the volcanic setting are shown in the Fig. 4. As a result of364

the highly scattering volcano, specific intensities propagate from the forward source to-365

wards the volcano (green Is), and scatter from the volcano to the source of backward in-366

tensity (green I ∆`
s,d ). Similarly, intensities propagate from the source of backward inten-367

sity to the volcano (black Id) and from the volcano to the forward source (black I ∆`
s,d ).368

For 40 s lapse-time, we can therefore explain the high sensitivities on the paths connect-369

ing the sources via the volcano, by the high specific intensities that are opposite in di-370

rection on those paths. For the uniform case we observe higher sensitivities around and371

between the sources, especially for strong scattering media the sensitivity on the direct372

path between the sources increases (Fig. 2a). This direct path is less favorable in the vol-373

canic setting, because the specific intensities are much higher on the paths that connect374

the sources of forward and backward intensity via the volcano. In other words, for early375

lapse-times the volcano acts as a secondary and delayed source of intensity and there-376

fore promotes an additional path favorable to energy transport between the primary sources,377

which is not present in the uniform case. For later lapse-time (80 s; Fig. 3d), Ktt resem-378

bles its equivalent for a uniform medium. Yet the imprint of the volcano remains as the379

strongly scattering zone prevents ballistic energy to travel through and causes a “shadow”380
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in the kernel for late lapse-times. The partly removed ballistic energies originating from381

both sources cause an ‘M’-shaped shadow to appear, which deforms and gradually dis-382

appears with lapse-time. At later lapse-times the effect of the volcano starts to disap-383

pear as the portion of multiply scattered energy increases, resulting in a probability in-384

crease for two specific intensities to propagate in opposite directions in these areas. An-385

imations of the three different kernels with increasing lapse-time for the volcanic setting386

can be found in the supporting information, Movie S1-S3.387

The decorrelation kernels appear rather different from their travel-time counter-388

parts. Indeed, Eq. (2) shows that Kdc does not depend on the specific intensities, but389

on the mean intensities instead. The decorrelation kernel will thus be high where the mean390

intensities emitted by the forward and backward sources are simultaneously high. This391

condition is far less stringent than the analogous one for the travel-time kernel. For this392

reason the travel-time and decorrelation kernel are dissimilar. The Kdc for the volcanic393

case at early lapse-time (40 s; Fig. 3c) shows high sensitivity around the sources and on394

the single scattering ellipse. Additionally, high sensitivity can be observed in the halos395

surrounding the forward source and volcano, and the backward source and volcano, re-396

spectively. Energy becomes rapidly diffuse when it enters into the volcano, therefore the397

high intensities inside the volcano are on the side that faces the sources; hence a bend398

in the single scattering ellipse can be observed (Fig. 3c). For later lapse-times (80 s; Fig.399

3f), Kdc appears similar to the uniform Kdc (Fig. 2i). Nevertheless, the imprint of the400

strongly scattering volcano remains, causing a shadow on the single-scattering ellipse of401

the decorrelation kernel.402

The last kernel to be considered is the scattering kernel (Fig. 3 b&e). In order to

understand its structure in the vicinity of a volcano, we will first discuss the pattern of

Ksc for the uniform case (e.g. Fig. 2e). As mentioned in Section 2, the scattering ker-

nel has positive and negative sensitivities. The signs in the kernels can be understood

in the following way. If we imagine point sources at the locations of the source and de-

tector that inject energy into the medium at time t = 0. The energy transport gives rise

to fluxes going from a source of forward intensity to a source of backward intensity (and

vice versa). At late lapse-times, which is at several scattering mean free times τ (where

τ = `/c with c as wave velocity), the energy is diffuse. Previously, it has been shown

in the literature that in the diffusion regime the scattering kernel is controlled by the scalar

product of the energy flux vectors (J) for sources located at the position of the forward/backward
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Figure 5. Graphical interpretation of the fluxes explaining the pattern of the scattering kernel

for a uniform scattering medium. Energy from the source (green star) is emitted in all directions,

indicated by the green circles. The green arrows depict the fluxes along the line connecting the

source and detector. Similarly, energy from the detector (black triangle) is emitted in all di-

rections, indicated by the gray circles. The black arrows depict fluxes from the detector in the

source-detector line. In the space between source and detector the fluxes have opposite direction,

resulting in negative sensitivity (red ‘-’). In the outside spaces, the fluxes from source and de-

tector have similar directions, resulting in positive sensitivity to scattering (blue ‘+’). The nodal

lines are depicted by the orange dashed line.

intensity sources (e.g. Arridge, 1995; Wilson & Adam, 1983; Mayor et al., 2014):

lim
t→+∞

Ksc (r; r′; r0; t) = D(1− g)

∫ t

0

Jfwd (r′; r; t− t′) · Jbwd (r′; r0; t′) dt′ (12)

with g denoting the mean cosine of the scattering angle. Note that Eq. (12) is not strictly403

valid quantitatively, although qualitatively it is correct. Hence, Eq. (12) is rather an ap-404

proximate than an exact formula, which in practice explains the pattern of the scatter-405

ing kernel accurately. It contains the essential physics and therefore we employ this for-406

mulation heuristically to analyse our results. Fig. 5 shows a schematic diagram of the407

fluxes in the scattering kernel for a uniform medium. The energy flux from the source408

flows away in all directions from the source and similarly for the detector. On the di-409

rect path between source and detector, these fluxes have opposite direction while on the410

outside the fluxes have similar directions. As a consequence of the scalar product in Eq.411

(12), the fluxes in opposite direction lead to an area of negative sensitivity to scatter-412

ing on the direct path. Here, the probability of energy reaching the other source is de-413

creased. On the outer side of the direct path between the sources, there is a positive sen-414

sitivity due to the scalar product of the fluxes in similar direction. In these positive ar-415

–22–



manuscript submitted to JGR: Solid Earth

eas the probability of energy reaching the other detector is increased. The line that di-416

vides the positive and the negative sensitivities in the vicinity of the source/detector is417

referred to as the nodal line (Fig. 5). To describe the pattern of the scattering kernel418

in more detail we imagine placing additional scatterers at three locations in Fig. 5. If419

an extra scatterer would have been placed left of the forward intensity source, the chances420

of additional energy reaching the backward intensity source would have been increased421

due to the possibility of back-scattering. Due to reciprocity, this same argument holds422

for an additional scatterer located right of the backward source. On the other hand, neg-423

ative scattering sensitivity between the two sources indicates that if an additional scat-424

terer would have been placed in the red area, the probability of energy coming from one425

source and reaching the other source would decrease.426

Now that we have discussed the positive and negative signs in Ksc for a uniform427

medium we continue the discussion about the volcanic case. Ksc will be high in abso-428

lute value where the actual energy fluxes are simultaneously large and aligned, either par-429

allel or anti-parallel. Consequently, an additional energy transport channel in the scat-430

tering kernel for early lapse-times (40 s; Fig. 3b) appears, connecting the two sources431

via the volcano. The negative sensitivity on the direct path between the sources is also432

present, albeit weaker than on the path via the volcano. Similarly as for Ktt, this is due433

to smaller energy current vectors on the direct path. Furthermore, we can observe sim-434

ilarities between the decorrelation and the scattering kernel, for both the early and late435

lapse-times. In particular, the single scattering ellipse and the halos of high sensitivity436

between either source and volcano, which are also present in Kdc, can be observed in Fig.437

3(b & e). Although Ksc for the volcanic setting at late lapse-time (80 s) resembles its438

equivalent for a uniform model, the effect of the volcano remains.439

4.2 Two Half-spaces Setting440

In the northeastern region of Honshu, Japan, Yoshimoto et al. (2006) estimated the441

spatial distribution of attenuation. These authors found that the contrast of properties442

between the front-arc and the back-arc is approximately equal to two for both absorp-443

tion and scattering. With this in mind, we explore the effect of non-uniform scattering444

properties on the coda wave sensitivities, in a medium composed of two half-spaces. A445

tectonic setting with a strike-slip fault that caused two different materials on each side446

of the fault to be in contact may also be considered in this context. For all half-space447
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𝑟’1		𝑟’2			𝑟’3			𝑟’4

Figure 6. Sensitivity kernels for two half-spaces at 100 s lapse-time. The columns show Ktt,

Ksc and Kdc, respectively. The left half-space has a fixed scattering mean free path of `1. The

scattering mean free path in the right half-space increases from top to bottom: 2×`1, 3×`1,

8×`1, with `1 = 30 km. The source-detector distance R0 is set to 32 km. The annotations r′1-

r′4 point to negative, positive, negative and positive sensitivity along the line connecting source

and detector, respectively. All kernels are normalised with respect to the maximum value. Note

that for Ksc the color bar is symmetric around zero, with red as negative and blue as positive

sensitivities, respectively.

models, `1 is the smallest scattering mean free path we consider, it is kept constant at448

30 km and consistently on the left side of the model. The right half-space has weaker449

scattering (`1 < `2), where `2 is chosen to differ by a factor of 2, 3, or 8 from `1. The450

interface delimiting the two half-spaces coincides exactly with the boundary between two451

pixels. d represents the distance from the forward intensity source to this interface.452

The sensitivity kernels with sources in opposite half-spaces are shown in Fig. 6, for453

t =100 s. From the top to the bottom row, we show the results for increasing scatter-454
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ing contrast between `1 (the reference half-space, on the left) and `2 (the right half space):455

`2 = 2 ×`1 (upper), `2 = 3 ×`1 (middle) and `2 = 8 ×`1(lower). The dashed line, placed456

at 6 km from the source of forward intensity, depicts the boundary between the two half-457

spaces. The inter-source distance is the same as for the uniform cases, R = 32 km. We458

can observe that all three kernels for all degrees of scattering contrast are asymmetric,459

with the asymmetry intensifying as the contrast between `1 and `2 increases. In the travel-460

time kernel there is a strong effect of back-scattering, especially for the case where `2
`1

461

= 8 (Fig. 6 g). The sensitivities appear higher in the strong scattering half-space. For462

the decorrelation kernels we can observe the increased difference between dominant trans-463

port regimes for increasing scattering contrasts. For example in Fig. 6 (i) the dominant464

type of wave propagation in the left half-space is diffusion. Therefore, the mean inten-465

sity and thus the sensitivity is concentrated in a larger area around the source. However,466

in the right half-space the propagation regime is essentially ballistic, consequently, strong467

sensitivities can be observed on the single scattering ellipse. The most striking obser-468

vation from Fig. 6 is the “flipped” pattern in the scattering kernels (w.r.t. the pattern469

for the uniform case), for `2
`1
≥ 3 (Fig. 6 e and h). In the strong scattering half-space470

(with `1), the sensitivity to an additional scatterer left of the source is negative (r
′1 in471

panel h), while it was positive for the uniform case (Fig. 2e). On the other side of the472

source (r
′2) it is positive, while for the uniform case it was negative. The sensitivity to473

an additional scatterer in the weaker scattering half-space (with `2) appears similar to474

that for the uniform case in the vicinity of the source, with negative sensitivity at r
′3

475

and positive at r
′4, regardless of the scattering strength or contrast.476

Fig. 6 shows that for a certain scattering contrast, the pattern of the scattering ker-477

nel changes significantly w.r.t. the uniform kernel. As explained for the volcanic setting,478

this is due to the active fluxes: from the forward source, Js, and the backward source,479

Jd, but also the flux governed by the contrast in scattering J∆`
s,d. In order to improve our480

understanding of the “flipped” scattering kernel for models with two half-spaces and to481

gain more insight into the factors that affect the active fluxes we perform two additional482

tests. In one test we take four models in which the scattering distribution of the medium483

is fixed, but the location of one of the sources rotates. In another parametric test we in-484

vestigate the effect of several parameters on the magnitude and directivity of each flux.485

If we denote the part of Js (Jd) flowing in the direction of the backward source (for-486

ward source), respectively, as the direct flux Jb
s,d. Then the flux at the sources is a com-487
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Figure 7. Graphical representation of the active fluxes and Ksc in case of a medium with

two half-spaces. The fluxes shown in green are from the source of forward intensity. The flux

Jb
s,d in green (black) is the part of the energy from the forward source (backward source) in the

direction of the backward source (forward source), respectively. The resulting flux at the forward

source, Js shown in green, (backward source, Jd shown in black) has contributions from Jb
s,d and

J∆`
s,d, respectively. J∆`

s,d is the flux induced by the contrast in scattering. The nodal line, depicted

in orange, separates positive and negative sensitivity to scattering and is perpendicular to the

resulting energy flux.
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Figure 8. Sensitivity kernels for a half-space setting at 100 s lapse-time. The scattering mean

free path for the left (right) half-space is fixed for all panels at `1 (8×`1), respectively. The ori-

entation of the line connecting the sources changes gradually from parallel to the boundary to

perpendicular to the boundary, from (a) - (d), respectively. To enhance visibility of the kernel

pattern the inter-source distance is larger, with R = 2 x R0. The distance of the leftmost source

from the boundary is fixed at 6 km.

bination of Jb
s,d and J∆`

s,d, as illustrated in Fig. 7. For the situation in Fig. 7, the mag-488

nitude of J∆`
s,d depends on the contrast of scattering between both half-spaces. The ori-489

entation of J∆`
s,d is perpendicular to the boundary of scattering and is directed from the490

stronger scattering half-space towards the weaker scattering half-space. The orientation491

of Jb
s,d depends on the positions of the sources, while its magnitude depends on the inter-492

source distance and lapse-time.493

Fig. 8 demonstrates how the direct flux and the flux induced by the scattering con-494

trast contribute to the pattern of the scattering kernel. In all four panels the scattering495

contrast is fixed, with `2
`1

= 8, and the orientation of J∆`
s,d is perpendicular to the scat-496

tering boundary. From panel (a) to (d) the location of the upper source changes, but its497
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(a) (b)

(d)(c)

𝛾𝛾

𝛾

𝛾

Figure 9. Sensitivity kernels for a half-space setting at 100 s lapse-time. Scattering mean

free path of left half-space for all panels is `1= 30 km. Source and detector are placed parallel

to half-space boundary. (a) ` of right half-space is 2×`1, R = R0 = 32 km and distance to half-

space boundary d = 6 km. (b) ` of right half-space is 8×`1, R = R0 and d = 6 km. (c) ` of right

half-space is 8×`1, R = 3 ×R0 and d = 6 km. (d) ` of right half-space is 8×`1, R = R0 and d

= 42 km. γ denotes the angle between the nodal line (orange dashed line) and the half-space

boundary. Note that the color bar is symmetric around zero.

distance to the lower source is kept constant at R = 64 km (2 ×R0). We rotate the line498

connecting the two sources from parallel to the boundary (Fig. 8a) to perpendicular to499

the boundary (Fig. 8d). This causes the orientation of Jb
s,d to rotate and therefore the500

kernel pattern to change from a “twisted” version of the uniform kernel (Fig. 8a and Fig.501

7) to a kernel with completely opposite sensitivity in the stronger scattering half-space502

(w.r.t. the uniform kernel), as we have already seen in Fig. 6 (h).503

There are multiple parameters that affect either direction or amplitude of Jb
s,d, J∆`

s,d,504

and/or the relative contribution of both fluxes and therefore the kernels; a selection is505

shown in Fig. 9. The effect in scattering contrast, and as a consequence on J∆`
s,d, can be506
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seen when comparing Fig. 9 (a) where `2 = 2 × `1 with Fig. 9 (b) where `2 = 8 × `1.507

If `2 in the right half-space increases from 2 (panel a) to 8 (panel b) the kernel looks more508

asymmetric. Not only is the sensitivity partly focused on the singly scattering ellipse for509

the weaker scattering half-space, but also in the vicinity of both sources we observe a510

deformation of the kernel w.r.t. the uniform case. The angle γ, between the half-spaces511

boundary and the nodal line, decreases. Note that the nodal line is always perpendic-512

ular to the resulting flux at the source, as show in Fig. 5 and 7. The change in γ is due513

to the larger J∆`
s,d, which is induced by the increasing scattering contrast. This alters the514

magnitude and direction of the flux, despite the unchanged orientation of the individ-515

ual fluxes J∆`
s,d and Jb

s,d. Another parameter that affects the pattern of Ksc is the inter-516

source distance, which directly affects the contribution of Jb
s,d to the flux. For a larger517

R the angle γ increases as can be observed when comparing the kernel for R = R0 (panel518

b) to R = 3×R0 (panel c).519

Additionally, when comparing Fig. 9(b) to Fig. 9(d) we observe that the distance520

of the sources to the boundary of scattering contrast, d, also plays an important role in521

the pattern of the kernel. The kernel for larger d (panel d) appears more similar to the522

kernel for uniform scattering (e.g. Fig. 2) than the kernel for smaller d (panel b). Thus523

the effect of the non-uniformity decreases with increasing d. The lack of sensitivity on524

the singly scattering ellipse (panel d) is a consequence of the energy being already dif-525

fuse before reaching the weaker scattering half-space. The two tests discussed above show526

that we can improve our interpretation of the scattering kernels by understanding the527

actual fluxes.528

Finally, Fig. 10 shows the effect of non-uniform scattering strength on the decor-529

relation, travel-time and scattering kernels for a model with sources far away from a bound-530

ary of scattering contrast. The sources are placed at a large distance (58 and 90 km) from531

the contrast of scattering inside the weaker scattering half-space, where `1 = 30 km and532

`2 = `1 × 8 km. In the travel-time kernel (Fig. 10a) the strong backscattering effect,533

caused by the contrast in scattering, results in a larger sensitivity towards the strong scat-534

tering half-space. This is due to the overlap of intensities from the sources, which go to-535

ward the left, with the reflected intensity from the half-space that goes to the right. This536

travel-time kernel is rather different from the travel-time kernel for the uniform case (Fig.537

2), where the sensitivity would have solely been around the two sources. The decorre-538

lation kernel shows concentrated sensitivities on the single scattering ellipse, as we have539
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(a) (b) (c)

Figure 10. Sensitivity kernels for a model with two half-spaces at 100 s lapse-time, for a

setting where the sources are far away from the boundary of scattering contrast (58 and 90 km,

respectively). The scattering mean free path in the right half-space is 8 × `1, where `1 = 30 km.

The columns show Ktt, Ksc and Kdc, respectively. All kernels are normalised with respect to the

maximum value. The color bar for Ksc is symmetric around zero.

seen in the uniform weakly scattering medium. The sensitivity of the single scattering540

ellipse in the strong scattering half-space is lower due to the stronger diffusion of energy541

in the left half-space. Furthermore, higher sensitivities can be explained between the bound-542

ary of scattering on the one hand, and the source on the other hand, by the increase of543

mean intensities in those areas. Fig. 10 (b) shows that the impact on the scattering ker-544

nel is also significant. The contribution of the specific intensities, as in the travel-time545

kernel, is clearly visible and results in strong negative sensitivities towards the stronger546

scattering half-space. Furthermore, we can observe the single scattering ellipse, as we547

have seen in the decorrelation kernels.548

The results in Fig. 10 thus show that even at large distance from a boundary of549

scattering contrast the effect of non-uniform scattering properties on the sensitivity ker-550

nels can be significant. It is therefore important to have knowledge about the distribu-551

tion of scattering for a large area around one’s area of interest, in order to locate changes552

of the subsurface correctly.553

4.3 Fault Zone Setting554

The last application we consider is a fault zone setting. The parameters are based555

on findings for the North Anatolian Fault (van Dinther et al., 2020). We consider a nar-556

row fault zone of width = 6.25 km, with ` = 10 km inside and ` = 150 km outside. Fig.557

11 shows the resulting kernels for 65 s (upper) and 100 s (lower) lapse-times, respectively.558
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(a) (b)

(d) (f)

(c)

(e)

Figure 11. Sensitivity kernels for fault zone setting with both sources on one side of the fault

(dashed lines), for lapse-times of 65 s (upper) and 100 s (lower). The columns show Ktt, Ksc and

Kdc, respectively. The width of the fault zone is 6.25 km. The scattering mean free path in and

outside the fault zone are `FZ = 10 km and ` = 150 km, respectively. The distance between the

two sources is approximately 93 km. All kernels are normalised with respect to the maximum

value. The color bar for Ksc is symmetric around zero.
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Note that due to the inter-source distance of ∼ 93 km in combination with a seismic ve-559

locity of 2.1 km s−1, the earliest lapse-times for which the kernels are evaluated are around560

45 s. The travel-time and scattering kernels may appear more complex than kernels shown561

for the other non-uniform media. In the travel-time kernel we observe two additional two-562

legged transport paths that connect the source and the detector. They are actually gen-563

erated at the intersections of the single scattering ellipse with the fault zone where the564

strong scattering acts as secondary sources. For each of these paths, the backward and565

forward intensities are in exactly opposite directions. As explained for the Ktt of other566

models, the overlap of the specific intensities of either primary and/or secondary sources567

(in opposite direction) causes high sensitivities in the travel-time kernels. For the fault568

zone setting, this results in multiple pathways that are favorable for energy transport569

between the two primary sources (Fig. 11 a & d). For early lapse-time (65 s) we can ob-570

serve a spot with even higher concentrated sensitivity, at the intersection of the energy571

transport paths. Furthermore, the geometry of these additional paths between the pri-572

mary sources changes with lapse-time, as can be more clearly observed in the animations573

in the supporting information (Movie S4).574

Fig. 11 (b & e) show similar observations for the scattering kernel, where the si-575

multaneously large and aligned energy fluxes create additional energy transport paths576

between the primary sources in the scattering kernel. The contribution of the high mean577

intensities is also visible in Ksc, which is similar to the halos of high sensitivities that578

are formed around the sources in the decorrelation kernel. Again Kdc does not resem-579

ble Ktt, and shows that the highly diffusive fault zone acts as a barrier for energy pass-580

ing through. Hence, the mean intensity is low on the right side of the fault zone in Fig.581

11 (f). In the supporting information, additional animations for Ksc (Movie S5) and Kdc582

(Movie S6) with lapse-time for the fault zone setting can be found.583

5 Concluding Remarks584

For monitoring the temporal evolution of the subsurface we need coda wave sen-585

sitivity kernels that linearly relate observed changes in recordings to physical medium586

changes. Here we compute travel-time, scattering and decorrelation kernels based on a587

flexible Monte Carlo method, which enables us to include non-uniformly distributed scat-588

tering properties. In this work we have shown that non-uniform scattering properties can589

have a profound and non-intuitive effect on coda wave sensitivity kernels. Hence, it could590

–32–



manuscript submitted to JGR: Solid Earth

be misleading to overlook the distribution of scattering properties in monitoring appli-591

cations. The actual impact on the kernels depends on a combination of lapse-time and592

mean free time, it is therefore important to have knowledge about the geology and an593

estimate on the scattering mean free path in the wider region that is targeted to be mon-594

itored.595

There are two unique energy sources considered in the kernel computation for ei-596

ther uniform or non-uniform cases, namely the one from the source and the one from the597

detector, also referred to as the source of forward intensity and of backward intensity,598

respectively. Yet we have shown that due to non-uniform scattering properties additional599

energy transport channels can appear between the two sources, which do not exist in the600

case of a uniform scattering medium. Therefore, the sensitivity kernels for non-uniform601

scattering media can appear rather complex. The physical interpretation of the three602

different kernels is as follows: (1) the decorrelation kernel is the most straightforward603

to interpret and has high sensitivities where the mean intensities are high; (2) the travel-604

time kernel requires that the forward and backward specific intensities are simultane-605

ously large and in opposite direction; (3) the scattering kernel combines the properties606

of both the decorrelation and travel-time kernel and has high absolute sensitivities where607

the energy fluxes are simultaneously large and parallel or anti-parallel. Furthermore, the608

pattern of positive and negative sensitivities in the scattering kernel is controlled by the609

scalar product of the current fluxes from the forward and backward sources. The inter-610

pretation of the scattering kernel is more intuitive when considering the dominant con-611

tributions to the energy fluxes.612

There are two types of fluxes contributing to the resulting fluxes around the two613

sources: (1) the direct flux between the forward and backward sources, and (2) the flux614

induced by the non-uniformity of scattering strength. The direction and magnitude of615

these two fluxes in turn depend on several parameters including distance from the bound-616

ary of scattering contrast, inter-source distance, orientation of the sources w.r.t. each617

other and the scattering contrast. In order to fully understand the scattering kernels,618

it requires knowledge of these actual fluxes, primarily from the sources and secondar-619

ily governed by the distribution of scattering, because the magnitude and direction of620

the fluxes may lead to additional pathways for energy transport between the two unique621

sources. Regarding Eq. (12), the interpretation of the energy propagation as energy fluxes622

is only valid in the diffusion regime. Yet with our findings it appears that this interpre-623
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tation may be extended to any propagation regime. However, more rigorous mathemat-624

ical work is required to prove this.625

Finally, this study visually demonstrates the difference between travel-time and decor-626

relation kernels, although mathematically this has already been shown by Margerin et627

al. (2016). Therefore, it emphasises that one needs to be careful with uncontrolled ap-628

proximations. In our context, generic formulas derived in the diffusion regime cannot be629

extended to the ballistic regime by simply substituting the heat diffusion Green’s func-630

tion with a more accurate Green’s function derived from radiative transport theory. The631

key issue is that diffusion theory does not allow to distinguish between decorrelation and632

travel-time kernels because it relies on average intensities. This deficiency cannot be fixed633

a-posteriori.634

Acknowledgments635

We acknowledge the support from the European Research Council (ERC) under the Eu-636

ropean Union’s Horizon 2020 research and innovation program (grant agreement No 742335,637

F-IMAGE). This work was granted access to the HPC resources of CALMIP supercom-638

puting center under the allocation 2020-p19038, where the majority of the simulations639

have been run. Some of the computations presented in this paper were performed us-640

ing the CIMENT infrastructure (https://ciment.ujf-grenoble.fr), which is supported by641
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1. Captions for Movies S1 to S6

Introduction As supporting information, we provide a total of six movies in which the

travel-time, decorrelation and scattering sensitivity kernels are shown with increasing

lapse-time for a volcanic (S1-S3) and fault zone setting (S4-S6).
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Movie S1. Travel-time sensitivity kernel, Ktt, for volcanic setting. The volcano is de-

picted as a circle with radius 6 km and a scattering mean free path `v = 2 km, outside the

volcano ` = 150 km. The source-detector distance is approximately 47 km. The kernels

are normalised with respect to the maximum value.

Movie S2. Decorrelation sensitivity kernel, Kdc, for volcanic setting. The volcano is

depicted as a circle with radius 6 km and a scattering mean free path `v = 2 km, outside

the volcano ` = 150 km. The source-detector distance is approximately 47 km. The

kernels are normalised with respect to the maximum value.

Movie S3. Scattering sensitivity kernel, Ksc, for volcanic setting. The volcano is depicted

as a circle with radius 6 km and a scattering mean free path `v = 2 km, outside the

volcano ` = 150 km. The source-detector distance is approximately 47 km. The kernels

are normalised with respect to the maximum value. The color bar is symmetric around

0.

Movie S4. Travel-time sensitivity kernel for fault zone setting with both sources on one

side of the fault (dashed lines). The width of the fault zone is 6.25 km. The scattering

mean free path in and outside the fault zone are `FZ = 10 km and ` = 150 km, respectively.

The distance between the two sources is approximately 93 km. All kernels are normalised

with respect to the maximum value.

Movie S5. Scattering sensitivity kernel for fault zone setting with both sources on one

side of the fault (dashed lines). The width of the fault zone is 6.25 km. The scattering

mean free path in and outside the fault zone are `FZ = 10 km and ` = 150 km, respectively.
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The distance between the two sources is approximately 93 km. All kernels are normalised

with respect to the maximum value. The color bar is symmetric around 0.

Movie S6. Decorrelation sensitivity kernel for fault zone setting with both sources on

one side of the fault (dashed lines). The width of the fault zone is 6.25 km. The scattering

mean free path in and outside the fault zone are `FZ = 10 km and ` = 150 km, respectively.

The distance between the two sources is approximately 93 km. All kernels are normalised

with respect to the maximum value.
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