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Abstract

We report the results of an extensive experimental campaign dedicated to the analysis of turbulent dispersion owing to the

circulations in tide dominated estuaries, characterized by a compound cross section (a main channel and lateral tidal flats).

Following the classification suggested by Toffolon et al. (2006), we concentrate our attention on weakly-convergent and weakly-

dissipative estuaries, where the internal waters communicate with the open sea through an inlet mouth. Particle Image

Velocimetry is employed to measure two-dimensional surface velocity. Large scale macro-vortices, generated by vortex shedding

during the flood phase from the inlet barrier, tend to occupy the entire tidal flats width and, irrespective of the controlling

parameters, they are completely flushed out during the ebb phase. Flow decomposition based on averaging over the tidal

period enlightens the presence of an intense residual current, with shape influenced by the large-scale flood vortices. The

measured Eulerian surface velocity fields form the basis for a thorough Lagrangian analysis, which yields a clear picture of the

dispersion regimes. The presence of large-scale vortices and of an intense residual current strongly influences the Lagrangian

auto-correlation functions and the corresponding absolute dispersion time evolution. Looping auto-correlations are the signature

of both the periodic forcing and vortices, ultimately, leading to super diffusive regimes. Moreover, an asymptotic Brownian

regime is always found for the investigated range of parameters allowing for an estimate of the horizontal dispersion coefficients.

For the latter, we suggest a simplified algebraic formulation that well fits the experimental estimates.
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Abstract
We report the results of an extensive experimental campaign dedicated to the analysis
of turbulent dispersion owing to the circulations in tide dominated estuaries, character-
ized by a compound cross section (a main channel and lateral tidal flats). Following the
classification suggested by Toffolon et al. (2006), we concentrate our attention on weakly-
convergent and weakly-dissipative estuaries, where the internal waters communicate with
the open sea through an inlet mouth. Particle Image Velocimetry is employed to mea-
sure two-dimensional surface velocity. Large scale macro-vortices, generated by vortex
shedding during the flood phase from the inlet barrier, tend to occupy the entire tidal
flats width and, irrespective of the controlling parameters, they are completely flushed
out during the ebb phase. Flow decomposition based on averaging over the tidal period
enlightens the presence of an intense residual current, with shape influenced by the large-
scale flood vortices. The measured Eulerian surface velocity fields form the basis for a
thorough Lagrangian analysis, which yields a clear picture of the dispersion regimes. The
presence of large-scale vortices and of an intense residual current strongly influences the
Lagrangian auto-correlation functions and the corresponding absolute dispersion time
evolution. Looping auto-correlations are the signature of both the periodic forcing and
vortices, ultimately, leading to super diffusive regimes. Moreover, an asymptotic Brow-
nian regime is always found for the investigated range of parameters allowing for an es-
timate of the horizontal dispersion coefficients. For the latter, we suggest a simplified
algebraic formulation that well fits the experimental estimates.

Plain Language Summary

Estuaries are unique environments where inland freshwater carried by rivers meets
salty and warmer sea waters. The encounter of masses of water with such different char-
acteristics makes estuaries an extremely dynamic environment suitable for the prolifer-
ation of a great variety of ecosystems and biodiversity. Owing to their strategic geograph-
ical position estuaries have been and still are regions of great development for human
society. This poses new questions on the environmental impact of human activities and
their potential pressures. In this work, we investigate the dispersion processes using a
large scale physical model of natural estuaries, bounded by an inlet mouth, where tides
are the dominant drivers. A great effort has been devoted to trying to classify the be-
haviors of natural estuaries based on several physical characteristics and to estimate typ-
ical transport time scales. Here, we aim to analyze the dispersion regimes relying on 2D
velocity measurements at the free surface used as a basis for a Lagrangian analysis. We
will show how the presence of a tidal inlet generates complex flow patterns even with a
monochromatic tide. The resulting residual current is the main responsible for a net lon-
gitudinal dispersion that can reach high values of the corresponding dispersion coeffi-
cients.

1 Introduction

Estuaries are classically defined as a semi-enclosed and coastal body of water, com-
municating to the open sea, where freshwater coming from inland mixes with sea wa-
ter (Pritchard, 1956). The resulting density gradients (horizontal and vertical) have been
found as a major circulation driver in estuarine environments (MacCready & Geyer, 2009;
Geyer & MacCready, 2014). However, this original definition excludes several estuarine
configurations where freshwater input is negligible (Viero & Defina, 2016) or even ab-
sent for several months as for arid, tropical and subtropical basins. A great effort has
been also devoted to classifying estuarine regions depending on their geomorphology, den-
sity stratification or on the typical hydrodynamics (Valle-Levinson, 2010). Considering
the latter feature, circulation in estuaries and coastal bays is mainly driven by baroclinic
pressure gradients, tidal induced currents (periodic and stationary), wind stress and river
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inflow and the consequent plume. From a hydrodynamic point of view, tidal propaga-
tion within estuaries has received a great attention in the attempt to find the best phys-
ical parameters to describe them (Seminara et al., 2010; Toffolon et al., 2006; Cai et al.,
2012). The role of tidal circulation in estuarine mixing has been considered of less im-
portance for several decades (Geyer & MacCready, 2014). However, the so-called resid-
ual currents derived by averaging over a tidal period are now recognized to be a funda-
mental driver for mass transport and dispersion processes (Jay, 1991; Zimmerman, 1986)
owing to the strong and persistent straining and shearing (Ridderinkhof & Zimmerman,
1992). The time periodic character of the tides also generates dispersion mechanisms sus-
tained by different flow scales especially if related to the complex geometry of the real
estuaries. Several field measurements of longitudinal dispersion coefficient report a wide
range of values, spanning almost two order of magnitudes from 10 to 103 m2/s−1 (Fischer
et al., 1979; Monismith et al., 2002; Lewis & Uncles, 2003; Banas et al., 2004). More-
over, tides tend to produce no monotonic particle velocity correlation and Lagrangian
integral time scales as in classical statistically steady or homogenous turbulence (Enrile
et al., 2019) leading to possible particle looping trajectories. Looping-like particle tra-
jectories have been also studied in oceanic context and they are found to be related to
particular dispersion regimes (Berloff et al., 2002; Veneziani et al., 2004; Enrile et al.,
2019).

Two of the main open issues concern with the definition of typical transport time
scales, relevant for dispersion and water quality issues and the estimate of the disper-
sion coefficients that control longitudinal transport. Seeking a reliable definition of the
time scale for transport processes has led to use different measure such as residence time,
flushing time, age (see Cucco et al. (2009); Umgiesser et al. (2014); Viero and Defina (2016);
Yang et al. (2018) among many others). The tentative is to classify estuaries based on
these time scales and an example can be found in Umgiesser et al. (2014) where several
estuaries and coastal bays of the Mediterranean Sea have been compared. However, most
of these time scales are based on Eulerian concepts and quite a few on a Lagrangian ap-
proaches. Surprisingly, classical analyses in terms of single and multiple particle statis-
tics are very seldom applied to estuaries compared to oceanographic and atmospheric
applications (LaCasce, 2008). Attempts to study the dispersion processes under controlled
laboratory conditions in estuaries are very limited in literature (Kusumoto, 2008; Dronkers,
2019) although worth pursuing. In fact, controlled experiments with simple boundary
conditions provide a check of some of the main mechanisms which drive the dispersion
process, a goal quite difficult to achieve on the basis of field observations whose inter-
pretation is generally complicated by the large scale of the processes, the more irregu-
lar natural geometries and the simultaneous presence of a variety of features whose role
cannot be readily isolated. Moreover they provide an useful dataset to test reliability of
analytical and numerical models. In the present study, we aim to investigate the rele-
vant dispersion processes using a large scale physical model of a weakly-dissipative tide
dominated estuary (following the classification proposed by Toffolon et al. (2006)) char-
acterized by the presence of an inlet mouth that connects the outer sea to a compound
tidal channel. Flow is forced by tidal variation imposed at the outer basin. Real tides
are made of multiple constituents, semi-diurnal and diurnal, generated by different as-
tronomical forcing, solar and moon tides. In an attempt to understand the role of the
tidal constituents, we have designed this study with the aim to firstly investigate the role
of a single harmonic, objective of Part 1, and separately the role of two harmonics, rep-
resenting the semi-diurnal and diurnal components, with varying amplitudes (Part 2 of
the study). In Part 1, we provide a detailed description of the transient macro-vortices
generated at the inlet and the resulting residual current. The generation of flood-vortices
is compared with previous works (Nicolau del Roure et al., 2009) and extended consid-
ering the effect of the vorticity generation owing to the depth jump between the chan-
nel and the tidal flats (Brocchini & Colombini, 2004; Stocchino et al., 2011). Large scale
Particle Image Velocimetry is employed to measure two dimensional surface velocity fields
providing a high spatial and temporal description of the flow. A detailed Lagrangian anal-
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ysis of the typical integral scales and single particle statistics, varying the controlling pa-
rameter, is performed and provides a clearer picture of the processes occurring in weakly-
dissipative estuaries. Finally, an analytic formula for the horizontal diffusion coefficient
as a function of the friction parameter is suggested in a simple form. We leave for Part
2 the effects on the dispersion regimes in the case of two harmonics tides and the com-
parison with the one constituent case.

2 Experimental set-up and measuring techniques

The experiments were performed in a physical model in the hydraulic Laboratory
of the Department of Civil, Chemical and Environmental Engineering of the University
of Genova, Italy. A sketch of the overall experimental setup is shown in Figure 1. The
experimental apparatus consists of a tidal channel, closed at one end and connected to
a rectangular basin, representing the sea, at the other end. The tidal channel (23 m long)
is characterized by a symmetrical compound cross-section with a deep main channel and
lateral flats with an overall width equal to wch = 2.42 m. The main channel has a 2.5�
longitudinal slope and a rectangular cross section with a landward decreasing width, start-
ing from about 70 cm at the tidal inlet (wi) reaching about 11 cm at the channel end.
Consequently, the two tidal flats have a varying width between 0.86 m and 1.16 m on
each side. The main channel has a constant depth of 0.24 m. The basin is 6 m long and
2.20 m wide (wb), with a maximum depth hb = 0.5 m. Contrary to the tidal channel,
the bottom of the basin is horizontal. Tidal flats are closed at the inlet through two thin
vertical plates (li = 0.86 m) which separate them from the outer sea-basin. Hence wa-
ter exchange between the basin and the channel is allowed only at the inlet cross sec-
tion of the main tidal channel. The inlet opening has been maintained unaltered dur-
ing the experimental campaign. The estimate of the conductance coefficient C is about
12, which corresponds to a Manning’s resistance coefficient of about 0.0167 sm−1/3. The
present experiments have been performed keeping a constant mean water depth equal
to 0.36 m at the channel inlet. A monochromatic tide has been reproduced by impos-
ing regular volume waves with variable period and amplitude, generated by the periodic
motion of an oscillating cylinder inside an adjacent feeding tank. The cylinder is remotely
controlled using a digital signal acquisition/ generation system and a time law of the kind
η = a sin (ωt), where t is the time, η is the free surface elevation, a the tidal amplitude
and ω the tidal angular frequency also equal to ω = 2π/T with T being the tidal pe-
riod. To minimize wave reflections, a dissipative sloping mound was installed at the end
of the channel. During each experiment, water level and surface velocities have been mea-
sured. In particular, free surface elevation was monitored using four ultrasound gauges
(Honeywell model 946-A4V-2D-2C0-380E, with 30 cm range and an accuracy of 0.2%
of the full scale), placed on the axis of the channel respectively at a distance of 0, 4.75,
14.3 and 25 m from the wave maker (see Figure 1). Large Scale Particle Image Velocime-
try (LS-PIV) was employed to measure the two-dimensional time dependent surface ve-
locity fields u(x, y, t) = (u(x, y, t), v(x, y, t)), where, according to the notations of Fig-
ure 1, we denote by x the landward oriented longitudinal axis of the channel and by y
the lateral coordinate with origin located in the basin at a distance of 3 m from the chan-
nel inlet; u and v are the x and y components of the velocity u, respectively. It is worth
noting that, the large dimension of the interested area imposes specific equipment mod-
ifications with regards to the standard PIV technique. The channel water surface was
densely and uniformly seeded by polyethylene particles (940 kg m−3, mean dimension
3 mm) used as PIV tracers. LS-PIV acquisitions were recorded employing five high-resolution
GigaEthernet digital camera (Teledyne Dalsa Genie Nano C1280 and C2450). Depend-
ing on the camera model, the resolutions varied between 2448×2048 pixels and 1280×1024
pixels. 6-mm lens have been mounted on the cameras. Cameras were fixed on rigid sup-
ports placed at an elevation of 4 m from the bottom of the channel, pointing downwards,
as shown in Figure 1. Based on the camera arrangement, the field of view (FoV) for the
velocity measurements was such to cover a large area, including the inlet region, of about
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Figure 1. Sketch of the experimental set up and measuring systems.

13 × 2 m, extending from about the last 3 m of the basin to about the first 10 m of the
channel for the entire width, with cameras overlapping in the longitudinal direction of
about 20 %. Lighting was produced using eight 500W white light halogen lamps. The
LS-PIV acquisition frame rate was set equal to 10 fps. A single acquisition lasted for about
five tidal periods and, thus, each camera recorded between 5000 and 9000 images, de-
pending on the experimental parameters. The images from the five digital cameras have,
then, been processed in order to obtain a single panoramic image of the entire FoV be-
fore PIV analysis, performed using the software proVision-XSTM (Integrated Design Tools
Inc).

A total of 20 experiments have been performed varying the tidal period and am-
plitude, see Table 1 for the relevant experimental parameters. Note that experiments from
1 to 7 were used to test and set the experimental apparatus and parameters.

3 Scaling arguments and estuary classification

Dealing with large scale geophysical problems such as hydrodynamics and mixing
processes poses several challenges especially when the approach is based on laboratory
experiments. The typical dimensions of real estuaries and tidal channels are usually of
the order of several kilometers in the longitudinal and, possibly, in the transverse direc-
tion, and of several meters along the vertical. Thus, a proper scaling is necessary in or-
der to avoid spurious effects owing to the small scale of the laboratory facilities compared
with the prototype. In this section, we focus our attention on two main aspects: which
is the correct similitude to adopt and to what extent our measurements are transferable
to realistic context. Regarding the similitude, it is of paramount importance to firstly
define which are the physical parameters relevant to our process. The definition of the
correct dimensionless parameters for the hydrodynamic behavior of estuaries has been
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Table 1. Main experimental parameters and external parameters as reported in Toffolon et al.

(2006).

exp. a [m] Rh [m] T [s] Re χ γ

8 0.003 0.086 160 9485 0.06 1.02
9 0.005 0.085 160 20923 0.11 1.02
10 0.007 0.085 160 25845 0.16 1.02
11 0.010 0.085 160 29981 0.23 1.02
12 0.012 0.086 160 35902 0.27 1.02
13 0.002 0.087 100 17881 0.02 0.64
14 0.004 0.086 100 30853 0.06 0.64
15 0.007 0.086 100 33837 0.10 0.64
16 0.011 0.085 100 30984 0.15 0.64
17 0.017 0.086 100 43470 0.23 0.64
18 0.002 0.083 130 13783 0.03 0.83
19 0.003 0.084 130 23452 0.05 0.83
20 0.005 0.085 130 30541 0.08 0.83
21 0.007 0.086 130 36422 0.12 0.83
22 0.009 0.086 130 44764 0.15 0.83
23 0.002 0.084 180 8172 0.06 1.15
24 0.004 0.085 180 15930 0.10 1.15
25 0.006 0.085 180 14287 0.14 1.15
26 0.008 0.086 180 27268 0.19 1.15
27 0.010 0.086 180 35195 0.24 1.15

long debated in the literature. Several attempts to found simple scaling of the main pro-
cesses have been presented by Jay (1991), Savenije (1993) and Lanzoni and Seminara
(1998) among others. However, as noted by Toffolon et al. (2006), the selected param-
eters in the cited studies mixed different parameters with scales that depend on the evo-
lution of the process itself, whereas Toffolon et al. (2006) defined the governing param-
eters of the process based on external quantities. Note that as external we intend quan-
tities based simply on the geometry of the domain and on the main characteristics of the
tidal forcing. Therefore, we decided to follow the approach by Toffolon et al. (2006) us-
ing their convergence ratio parameter (γ), that is related to the planimetric scales of the
estuary, and the friction parameter (χ), defined as the ratio between friction and iner-
tia. These two dimensionless parameters are written as:

γ =
Lg

2πLb
, χ = ε

Lg
2πC2Rh

, with Lg = T
√
gRh, (1)

where ε = a/Rh is the non dimensional tidal amplitude, Rh is the mean hydraulic ra-
dius of the channel and Lb is the convergence length. Differently from the original def-
inition, we have introduced the hydraulic radius instead of the mean flow depth D, which
is more appropriate for complex cross-sections with tidal flats.

Based on the above choice, we have decided to design the present experiments pre-
serving the friction to inertia ratio χ and to impose a scale distortion along the three co-
ordinates. Scaling arguments will be resumed in the Section 5.2, where we describe the
dispersion regime with the aim to extend the laboratory measurements to natural es-
tuaries scales.

Since we have imposed a similitude based on the parameter χ, we are now inter-
ested to understand what kind of estuaries we are representing in our experiments based
on the classification reported in Toffolon et al. (2006). Figure 2 shows the values of the
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Figure 2. (χ, γ)-plane classification of several natural estuaries as reported in Lanzoni and

Seminara (1998), Toffolon et al. (2006), Cai et al. (2012) Gisen and Savenije (2015) and (Zhang

& Savenije, 2017), together with the present experiments. The thick red line represents the γ = χ

boundary, whereas the thick blue solid line the γ = χ1/3 law.

parameters χ and γ of several real estuaries (Toffolon et al., 2006; Lanzoni & Seminara,
1998; Cai et al., 2012; Gisen & Savenije, 2015; Zhang & Savenije, 2017) together with
those associated to the present experiments. Depending on the values of γ and χ estu-
aries fall in one of the four different parameter regions, being namely weakly/strongly
dissipative and weakly/strongly convergent. The red solid line indicates the case γ =
χ meaning that gravity and inertia have exactly the same weight and the blue solid line
represents the condition γ = χ1/3 whereby the gravitational effects balance the frictional
ones (Toffolon et al., 2006). Our experiments (blue diamonds) fall in the weakly dissi-
pative and weakly convergent region close to the boundary γ = 1, that represents the
balance between friction and inertia. Thus, the measurements presented in the rest of
the paper can be considered representative of the behavior of a real weakly dissipative
estuaries with an almost constant channel width. Finally, note that in our physical model
the channel has lateral tidal flats that might play an important role in the hydrodynamic
and dispersion processes.
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4 Eulerian analysis: time dependent flow and the generation of a resid-
ual current

In the present experiments, flow is forced by a given free surface tidal oscillation
at one end of the flume, mimicking the effect of astronomical tides at open sea far from
the estuary inlet. The periodic character of the forcing tide induces an unsteady flow field
whose intensity and characteristics depend on tide propagation within the estuary. In
general, the velocity field is three dimensional. Here we collect 2D free surface velocity
fields which are a good approximation of the real flow field, because shallow water ap-
proximation is usually assumed valid owing to the strong scale separation between the
vertical and planimetric dimensions. Moreover, the presence of an inlet always induces
the generation of large-scale shallow vortices owing to the emission of vorticity at its cor-
ners and the consequent development of shear layers (Nicolau del Roure et al., 2009; Vou-
riot et al., 2019). These macro-vortices are recognized to be 2D structures being much
wider than deep (Jirka, 2001) able to control the momentum, mass and sediments ex-
changes between the estuary and the outer sea (Wells & van Heijst, 2004; Blondeaux &
Vittori, 2020). Dispersion is also influenced by another process typical of periodic flows
in estuaries that plays a fundamental role over time scales of many tidal cycles, the so
called residual current that can be revealed applying a temporal decomposition (Jay, 1991;
Valle-Levinson, 2010). In the present experiments, by taking the average of the free sur-
face flow fields over a tidal period T , a corresponding steady current, whose intensity and
shape strongly depend on the external parameters and on the geometry of the estuary,
occurs. Note that, as it will be discussed below, the 3D character of the flow field and
the secondary flows, which in general are less important and limited to the bottom, are
instead responsible for the presence of the observed occurrence of the free surface resid-
ual current at the channel inlet. In this section we will firstly discuss the 2D free sur-
face unsteady flow and the consequent generation of inlet macro-vortices and, secondly,
the characteristics of the 2D free surface residual currents.

4.1 Time dependent velocity fields and the dynamics of inlet macro-vortices

We firstly analyze the measured two-dimensional Eulerian free surface velocity fields
u(x, t), obtained from the large scale PIV measurements, with the aim to distinguish re-
gions with different dynamical properties. To this end, the Eulerian fields have been post-
processed with the aim to identify vortical structures. Among the many techniques of
vortex identification, we employed the method based on the evaluation of the Okubo-
Weiss parameter (Okubo, 1970; Weiss, 1991). For steady or slowly time dependent flows,
the Okubo-Weiss criterion makes use of the eigenvalues of the local velocity gradient ten-
sor D, which can be written as D2 = λ0I, where the Okubo-Weiss parameter λ0 = −det(D)
is the product of the eigenvalues of D. However, it is better to write it in the form sug-
gested by Weiss (1991) as λ0 = 1

4 (S2 − ω2) where S2 = S2
n + S2

s is the total square
strain, sum of the normal (Sn) and shear (Ss) components, and ω2 is the square vortic-
ity. The sign of λ0 discriminates between locally hyperbolic flow regions (λ0 > 0 strain
dominated) and locally elliptical flow regions (λ0 < 0 rotation dominated). The lat-
ter are signature of coherent vortices.

Figure 3 reports examples of the 2D velocity fields with contours of the Okubo-Weiss
parameter for the experiment 26. In particular, panels a1)-d1) show four snapshots taken
during the flood phase, while panels a2)-d2) refer to the ebb phase. To help the iden-
tification of the main flow structures, we have focused on the area around the inlet, lo-
cated at x = 4 m. Note that the geometry of the inlet used in the present study is iden-
tical to the barrier island analyzed in Nicolau del Roure et al. (2009). In their study, how-
ever, the Authors tested different others configurations of the inlets in a shallow basin
without tidal flats with the aim to understand the trajectory of the vortex cores during
a tidal cycles. In the present case, the generation of the macro-vortices during the flood
phase is found to be controlled by the inlet corners that act as a source of vorticity that
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Figure 3. Free surface velocity fields at different times with superimposed the contours of the

Okubo-Weiss parameter λ0. Panels a1)-d1) during the flood phase and panels a2)-d2) during the

ebb phase. Note that domain reported is restricted to the region around the inlet. Data from

Experiment 26.

is then convected towards the tidal channel. From the time sequence shown in Figure
3 from a1) to d1), it is clearly visible that small scales vortices are emitted with a pe-
riod much shorted than the tidal one and, more interestingly, they tend to merge form-
ing the larger structures that occupy the entire tidal flats width, leaving a strong jet in
the center-line of the channel (red regions for λ0 > 0). The mechanism of vortex merg-
ing is shown in detail in the movie provided as supplementary material. The mechanisms
leading to the observed macro-vortices generation were already pointed out by Nicolau del
Roure et al. (2009), who described it as the entrainment of small scales vortices in the
main vortical structure. When a compound geometry is considered, the depth gradient
between the tidal flats and the main channel is a further source of vorticity generation.
This feature has been investigated by Brocchini and Colombini (2004), who derived the
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Figure 4. Example of the observation of transitional vortices at the flow depth jump be-

tween the main channel and the tidal flat. Vortices shown by negative values of the Okubo-Weiss

parameter. Data from Experiment 17.

vorticity and enstrophy equations for shallow flows giving rise to new terms proportional
to the span-wide depth jump. This mechanisms is fundamental for the generation of macro-
vortices in turbulent uniform flows (Stocchino & Brocchini, 2010; Stocchino et al., 2011)
and, also in case of periodic forcing as in our experiments, it could sustain the vortic-
ity generated at the inlet and along the main channel. However, in the periodic flow case,
differently from the uniform channel flow conditions, these vortices are transient struc-
tures depending on the intensity of the flood/ebb flow within the channel and far from
the inlet. Figure 4 shows an example of these vortices in the transition region between
the tidal flats and the main channel. It is worth noting that in our experiments the val-
ues of depth ratio parameter rh = ymc/ytf , defined as the ratio between the water depth
in the main channel ymc and the water depth in the tidal flat ytf (Stocchino et al., 2011),
vary according to the free surface variations in a tidal cycle, but are always larger than
3. This suggests that namely all experiments are in shallow water conditions. Notwith-
standing this, the inversion of the longitudinal velocities might be the reason of the tran-
sient behavior of the transitional vortices. As far as the typical dimensions of the inlet
macro-vortices are concerned, they are bounded on the span-wise direction between the
main channel and the side walls, whereas their stream-wise extension depends on the in-
tensity of the mean flow and, ultimately, on the friction parameter χ. In fact, the vor-
tices are found to be strongly elongated in the longitudinal direction and to scale from
1 to 5 li. During the ebb phase, see panels a2)-d2), an intense outward jet is formed and
penetrates into the basin for few meters. The jet is highly turbulent and small scale vor-
tices are generated and transported with the jet. Moreover, for the range of parameters
investigated, the flood macro-vortices are always flushed away during ebb. The condi-
tion by which the flood-vortices are flushed or trapped in the channel within a tidal pe-
riod is usually described in terms of a Strouhal numbers, defined as St = L/UT , where
L is a typical length scale related to the vortex shedding generation, U is a convective
velocity scale and T is the tidal period. The importance of the role of the Strouhal num-
ber or its inverse, namely the Keulegan-Carpenter parameter, in the dynamics of the tidal
macro-vortices or vortices generated by headlands has been recognized by several Au-
thors (Signell & Geyer, 1991; Davies et al., 1995; Wells & van Heijst, 2004; Nicolau del
Roure et al., 2009; Vouriot et al., 2019). In contexts similar to the present one, Wells and
van Heijst (2004) defined three classes of vortices depending on St built with the inlet
width and the tidal peak velocity. In particular a critical value, Stc = 0.13, discrimi-
nates between vortices that are completely flushed away in a tidal cycle (St < Stc) and
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Figure 5. Ebb-Flood dominance classification based on the value of the power ratio Π as a

function of the parameter χ.

vortices that do not completely decay within a cycle (St > Stc). In the present case,
we obtain values of St that exceed 0.13 only for the lowest tidal amplitude (exp. 8, 13,
18 and 23). However, even in those cases the flood-vortices are flushed away in the ebb
phase, contrary to the observation of Wells and van Heijst (2004), Nicolau del Roure et
al. (2009) and Vouriot et al. (2019). A possible explanation could be found in the com-
pound geometry that enhances ebb velocities. The presence of tidal flats have been thus
indicated as a source of ebb dominance (Kang & Jun, 2003). Different parameters can
be used to evaluate the ebb/flood asymmetry in tidal flows, e.g. ebb time (Kang & Jun,
2003). In the present study, we have employed the tidal power per unit mass P defined
as the time integral of the kinetic energy per unit mass. We have thus calculated the tidal
powers associated to the flood and ebb phases separately and then estimated the ratio
Π = Pebb/Pflood which indicates ebb or flood dominance whether it assumes values greater
or lower than unity. The tidal asymmetry relative to the present experiments is shown
in Figure 5 where Π is reported as a function of χ. Within the experimental errors in
computing the power ratio, all experiments, with only two exceptions (however charac-
terized by values of Π very close to unity), are ebb dominated, thus, confirming previ-
ous observations (Aubrey & Speer, 1985; Friedrichs & Madsen, 1992). In fact, linear mod-
els predict that for values of the relative tidal amplitude ε greater than 0.3 flood dom-
inance should be expected whereas the presence of tidal flats induces the flow to be ebb
dominated (Friedrichs & Aubrey, 1988; Fortunato & Oliveira, 2005). Fortunato and Oliveira
(2005) showed that tidal asymmetry and, thus, flood/ebb dominance, depends not only
on the relative tidal amplitude, but also on the depth ratio (tidal flats to main channel
water depth) and on the ratio between the main channel and tidal flats width. In gen-
eral, results of Figure 5 suggest that ebb dominance increases as the friction parameter
increases.
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Figure 6. Panels from a) to e): examples of free surface residual current fields for the experi-

ments from 13 to 17. Panel f): ratio of mean and max residual current velocity compared to the

peak tidal velocity as a function of the parameter χ.

4.2 Shape and intensity of the residual current

In the previous section we have described the time dependent 2D velocity fields gen-
erated by the monocromatic tidal oscillation and the consequent generation of large scale
vortical structures. We have also commented on the transient nature of the above macro-
structure. Indeed the flood-vortices grow and disappear in a single tidal cycle. However,
it is well known that the periodic oscillations due to tides not only generate a time de-
pendent flow, but also a steady current known as residual current. As far as the any kind
(sediment, nutrients and biogeochemicals) mass transport, it becomes relevant after sev-
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eral tidal cycles and this is mainly due to the appearance of the residual currents, often
referred to as “tidal pumping” that may lead to significant longitudinal dispersion (Zimmerman,
1986; Jay, 1991; Banas et al., 2004; Valle-Levinson, 2010).

The free surface residual current can be obtained averaging the time dependent free
surface velocity fields over a tidal period, decomposing the velocity fields as: u(x, t) =
u′(x, t)+U(x), where U(x) represents the Eulerian free surface residual current, no longer
time dependent (Jay, 1991), and the u′(x, t) is still a time dependent velocity field that
could be, in principle, further averaged over a typical Eulerian integral scale to filter out
the turbulent fluctuations (Valle-Levinson, 2010). In general, the net advection associ-
ated with tides may also vanish and the only net mass transport is then related to the
residual current.

Figures 6a)- 6e) report the velocity vectors with superimposed contour plot for the
magnitude (|U(x)|) of the 2D free surface residual current for a sequence of experiments
characterized by the same tidal period and different tidal amplitudes. Note that only a
portion of the entire domain is represented in the aforementioned Figure. As a general
comment, we observe that the resulting Eulerian residual current is perfectly symmet-
rical with respect to the main channel, as expected in a symmetrical domain. The flow
pattern is quite regular away from the inlet mouth and mainly governed by the presence
of two macro-vortices on the tidal flats and of smaller vortical structures on the basin
side. The normalized tidal amplitude ε increases from panel a) to panel e) influencing
both intensity and shape of the residual current. Indeed, intensity and dimension of the
tidal flats macro-vortices increase as ε increases. Variations of the tidal period are less
relevant in this case as the generation of the residual current is mainly due to the tidal
amplitude (maps of the residual current at different periods are uploaded as additional
material). Depending on the controlling parameters, the intensity of the residual cur-
rent could reach values up to the 80% of the maximum velocity registered in the unsteady
field. In Figure 6 panel f) we have reported the ratios of both the peak velocity of the
residual current, defined as the mean of the 10% of the maximum measured values, and
the mean residual current velocity with the peak tidal velocity measured at the inlet. The
shape of the fields of U(x) is strongly related to the macro structures presented in the
previous section. It seems that the transient flood-vortices averaged over a tidal cycle
leave their signature in the generation of the residual current. The stream-wise exten-
sion of the vortical structures shown in Figures 6a)- 6e) is identical to the maximum size
of the flood-vortices during the flood phase. It is worth noting that we are taking the
measurements of the free surface velocities and this is somehow acceptable since the flow
can be regarded as mainly 2D. However, by continuity, the time dependent flow and, thus,
also the residual current is a 3D field. Regarding the residual current this implies that
mass conservation is satisfied imaging that at both ends of the flume the flow is 3D and
that, at the bottom, the flow is reversed compared to the free surface layer. Finally, we
expect that the measured residual current strongly impacts on the Lagrangian mass trans-
port and, ultimately, on the dispersion regimes. Zimmerman (1986) already noted the
importance of the residual currents on the mass transport and that, in some cases, the
complexity of the flow patterns may lead to chaotic mixing (Ridderinkhof & Zimmer-
man, 1992; Beerens et al., 1994) and the appearance of complex fluid deformation pat-
terns that nowadays are recognized as Lagrangian coherent structures (Orre et al., 2006).

5 Lagrangian analysis and dispersion regimes

One of the main goals of the present study is to assess the dispersion processes oc-
curring in weakly dissipative tide dominated estuaries characterized by the presence of
an inlet mouth and a tidal channel with lateral flats. To this end, we started from the
Eulerian velocity fields (u(x, t)), described in the previous sections, and computed nu-
merical trajectories of material particles by integrating ẋ(t) = u(x, t) using a fourth-
order Runge-Kutta algorithm with adaptive step size. About 2×104 trajectories have
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been computed, from a regular grid seeding over a 10 m ×2 m region of the total mea-
suring domain. Computing numerical trajectories based on measured or computed Eu-
lerian velocity fields is a practice commonly adopted in dispersion studies, see among oth-
ers Lekien et al. (2005), Stocchino et al. (2011) and Enrile et al. (2020).

The numerical particle trajectories is then employed to estimate single particle statis-
tics (LaCasce, 2008). In particular, we define the absolute dispersion A2(t) and its trace,
the total absolute dispersion a2(t), as:

A2
ij(t) =

1

M

M∑
m=1

{
[xmi (t)− xmi (t0)]

[
xmj (t)− xmj (t0)

]}
a2(t) = Tr(A) (2)

where M is the number of particles and xm(t) is the position of the m-th particle at time
t and xm(t0) its initial position. Note that the time derivative of a2(t) provides the es-
timate of the total absolute diffusivity coefficient K(1)(t) (Provenzale, 1999; LaCasce,
2008). Classical dispersion regimes are identified based on the time dependence of the
total absolute dispersion following the theory of Taylor (1921), found to be valid in sev-
eral geophysical context (LaCasce, 2008). The so-called Lagrangian integral scale TLi

separates the quadratic and the linear time dependence of the absolute dispersion. It is
defined as the time integral of the Lagrangian autocorrelation function of the i-th La-
grangian velocity component uLi

as:

TLi
=

∫ +∞

0

Riidτ Rii(τ) =
1

M

∑
M

ρLii
(τ)√

ρLii
(0)ρLii

(0)
ρLii

(τ) = 〈uLi
(t)uLi

(t+ τ)〉.

(3)
where the brackets indicate an average over the entire duration of each trajectory and
uLi

is the i-th component of the Lagrangian velocity. In the rest of this section, we will
present the main results obtained from the experimental measurements in terms of the
above quantities discussing, in particular, the different dispersion regimes (Taylor, 1921).

5.1 Lagrangian Integral Scales

We start our analysis showing the computed autocorrelation functions and the cor-
responding Lagrangian integral time scales. The shape of the correlation function and
their integral, namely the Lagrangian Integral Scale, are strongly related to the expected
dispersion regimes (Taylor, 1921).

Figure 7 shows the autocorrelation functions Ruu (panel a) and b)) and Rvv (panel
c)) as functions of the normalised time, along with the corresponding Lagrangian time
scale TL normalized with the tidal period T as a function of the relative tidal amplitude
ε (panel d)) and of the parameter χ (panel e)), for all experiments. The flow is mainly
unidirectional as shown by the rapidly decaying of the spanwise autocorrelation Rvv; thus,
providing a small contribution to the overall value of TL. The streamwise autocorrela-
tion functions show a strong looping-like shape in all cases. The intensity of the nega-
tive and positive lobes is inversely dependent on the relative tidal amplitude ε (panel a))
for a fixed period. This is consistent with the fact that the periodic flow intensifies as
the amplitude increases, leading to a decrease in the Ruu. Tidal period variations for
a fixed amplitude produce smaller difference in the streamwise autocorrelation structure,
see panel b). The integral time scales show monotonic decrease as the relative amplitude
increases, and hence the friction parameter increase, see panel d) and e). The values of
TL are found to be in a range between 0.03 and 0.38 T for values of ε between 0 and 0.2,
and characterized by a rapid exponential decrease with the relative amplitude ε, for small
values of the latter parameter. Interestingly, it seems that the Lagrangian integral scale
attains an almost constant value for ε > 0.1 (or χ > 0.15). The fact that TL is always
smaller than the tidal period T implies that a diffusive regime, where the absolute dis-
persion depends linearly on time and a diffusivity coefficient can be defined, is likely to
occur after a much shorter time compared to the external time scale (T ). This also means
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Figure 7. Lagrangian autocorrelation functions and integral time scales as a function of the

tidal amplitude, period and the parameter χ. a) longitudinal autocorrelation function Ruu for

varying non dimensional tidal amplitude ε for a fixed value of the tidal period T = 100s. b) longi-

tudinal autocorrelation function Ruu for varying tidal period for a fixed value of non dimensional

tidal amplitude ε = 0.05. c)spanwise autocorrelation function Rvv for all experiments. d) Non

dimensional Lagrangian integral time scale TL/T as a function of the non dimensional tidal am-

plitude ε. e) Non dimensional Lagrangian integral time scale TL/T as a function of the parameter

χ.

that the tidal period is a good choice as a reference external scale for estuary classifi-
cation (Toffolon et al., 2006) but less significant to discriminate among the different dis-
persion regimes. A decorrelation time smaller than the tidal period has also been found
in dispersion analysis based on field data (Enrile et al., 2019). However, the periodic-
ity imposed by the tidal forcing could be responsible for the looping-like behavior of Ruu

and, as we will see in the next section, it might also affect the long time behavior of the
total absolute dispersion a2(t). Note that looping autocorrelation could be triggered also
by the presence of large scale vortical structures as noted in Berloff et al. (2002) and Veneziani
et al. (2004).

5.2 Single particle statistics and dispersion coefficients

This section represents the core of the present study. Indeed, our main interest was
to understand the possible dispersion regimes that a monochromatic tide is able to sus-
tain in a relatively complex geometry as the one used in the present physical model. Lon-
gitudinal dispersion is known to be produced or influenced by several mechanisms such
as shear dispersion owing to periodical flows, macro-vortices and a steady residual cur-
rent. We have seen how the interaction between a periodic tidal forcing, an inlet mouth
and a compound channel triggers a fairly complex flow where all the latter mechanisms
are active. The topological analysis of the flow based on the Okubo-Weiss criterion en-
lightened the presence of both elliptical (vortices at different scales) and hyperbolic re-
gions (intense shear structures) in the domain with a markedly non-stationary charac-
ter. It is worth mentioning that we have performed the single particle statistics analy-
sis, see equations 2, starting from two different Eulerian velocity fields, namely the com-
plete unsteady field (u(x, t)) and the associated residual current (U(x)). The reason will
be clear when we will discuss the time behavior of a2(t). A second important prelimi-
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Figure 8. a) Examples of the non dimensional absolute dispersion a2(t)/(ELT
2
L as a function

of non dimensional time t/TL for experiments 14, 15 and 16, dotted lines indicates the found

time laws for the dispersion regimes, dash-dotted lines the absolute dispersion derived from the

residual current fields. b) Non dimensional horizontal dispersion coefficients (K,Kx,Ky)/(EkTL))

as a function of the non dimensional tidal amplitude ε. c) Non dimensional horizontal dispersion

coefficients (K,Kx,Ky)/(EkTL)) as a function of the parameter χ. Dotted lines in panels b) and

c) represent the fitting laws reported in 5.

–16–



manuscript submitted to JGR: Oceans

nary comment refers to the kind of dispersion coefficients (K) we are going to estimate.
As noted by Besio et al. (2012) the output of the single particle statistics analysis might
produce coefficients that are related to several mixing processes and this depends on the
starting Eulerian field assumed to compute the trajectories of numerical particles. In the
present case, the only flow decomposition that we have performed is an average over the
tidal period in order to generate the residual fields and no other averages have been per-
formed (e.g. a moving average of the unsteady fields to isolate turbulent fluctuations).
This means that our procedure yields to the estimate of a longitudinal coefficient (Kx),
a transverse coefficient (Ky) and a total diffusive coefficient (K = Kx + Ky) that in-
clude also the turbulent diffusion contribution. All the dispersion properties will be pre-
sented in non dimensional form using as scaling quantity the ensemble averaged Lagrangian
kinetic energy per unit mass EL = 1/2〈(uL(x, t)2+vL(x, t)2)〉 and the Lagrangian in-
tegral scale TL. Figure 8 summarizes results of the single particle statistics for the en-
tire set of experiments. Panel a) displays the typical behavior of the time dependence
of the non dimensional absolute dispersion a2(t)/(ELT

2
L) for the unsteady velocity case

(solid lines) and for the residual current case (dash-dotted lines) against the non dimen-
sional time t/TL in three experiments taken as an example (exp. 14, 15 and 16). Con-
sidering the results for the absolute dispersion computed with the time dependent Eu-
lerian fields, different regimes are visible depending on the time. For time lower than TL
a ballistic regime is observed and, then, for O(t/TL) ∼ 1 a super diffusive regime ap-
pears and lasts for few integral time scales. Super diffusive regimes are usually related
to intense positive lobes in the auto-correlation functions (Berloff et al., 2002; Veneziani
et al., 2004), as also observed in the present experiments. High anticorrelation is observed
in all experiments, see Figure 7 panel a) and b), after the first zero of Ruu regardless the
controlling parameters and this yields to a regime where a2(t)/(ELT

2
L) ∝ (t/TL)α with

α ' 2−3. For longer times, t/TL > 10, the non dimensional absolute dispersion shows
an oscillating behavior with a periodicity proportional to the tidal period. Interestingly,
the oscillations hide a linear growth in time that is revealed by the absolute dispersion
computed using the residual current alone (dash-dotted lines). Indeed, for each exper-
iment, a2(t)/(ELT

2
L) computed using the field U(x) seems to smooth out the super dif-

fusive regime and the oscillations for longer times, displaying the standard picture of a
ballistic regime for time lower than few TL and a diffusive (linear regime) for longer times.
The net advection associated with the periodical velocity components is negligible and
particles are transported mainly by the residual currents that dominate, over long time,
the dispersion process. The dispersion coefficients (K,Kx,Ky) have been calculated per-
forming a linear regression of the non dimensional absolute dispersion for times t/TL >
10. The obtained values, scaled by ELTL, are plotted in Figure 8 as a function of the
relative tidal amplitude (ε), panel b), and as a function of the external parameter χ, panel
c). Note that the data are reported in a log-log plane. Not surprisingly the greater con-
tribution is given by the longitudinal coefficient Kx that turns out to be two order of mag-
nitudes greater than the spanwise coefficient Ky. The dimensionless dispersion coeffi-
cients can be nicely grouped along a power law trend with both ε and χ. Using a least
square fitting, we have obtained the following relations:

K

ELTL
= 0.2204ε−0.1756;

Kx

ELTL
= 0.2233ε−0.1574;

Ky

ELTL
= 0.0019ε−0.6682; (4)

K

ELTL
= 0.2437χ−0.1683;

Kx

ELTL
= 0.2425χ−0.1542;

Ky

ELTL
= 0.0039χ−0.5086;(5)

The goodness of fit R2 ranges from 0.48, for the Ky, to about 0.7 for the coefficients K
and Kx. The good fit obtained confirms that the choice of χ as a controlling external
parameter is suitable not only for the hydrodynamic characterization of the estuaries (Toffolon
et al., 2006) but also to globally describe the asymptotic dispersion regimes. Moreover,
the results suggest that for increasing friction parameter the non dimensional coefficients
tend to become almost constant and this is consistent also with results obtained in river
dispersion, whereas for increasing friction the dispersion coefficients tend to be indepen-
dent from the friction parameters itself (Webel & Schatzmann, 1984; Chau, 2000; Be-
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sio et al., 2012). For increasing χ, K/(ELTL) and its main contribution Kx/(ELTL) tend
to a value around 0.2-0.3 which is consistent with the measurements reported in the cited
works. It is now important to understand how the present experimental estimates can
be translated to realistic estuaries. Indeed, the observed values of K must be conveniently
rescaled in the prototype (an equivalent system with real estuaries dimensions). To this
end, let us denote by λV and λH the scaling factors for velocity and flow depth, respec-
tively defined as the ratio between the typical scale of velocity and flow depth in the pro-
totype and in the laboratory model. Hence, the scaling factor for the dispersive coeffi-

cients turn out to be λK = λ
1
2

V λH . Noting that the scaling factor for the velocity, can
be defined as the ratio between the scaling factors of longitudinal length and time, and
setting the time scaling factor in order to represent a semidiurnal or diurnal tide and us-
ing typical length scale of estuaries as reported in several works (Seminara et al., 2010;
Toffolon et al., 2006; Zhang & Savenije, 2017), we are able to built λK and, therefore,
to rescale the experimental estimates to reality. Depending on the controlling param-
eters, the present measurements suggest values of K in a range between 102 and 103 m2s−1.
Large variability in the diffusion coefficient is commonly observed in field measurements
in real estuaries with values comparable with our estimates (Fischer et al., 1979; Moni-
smith et al., 2002; Lewis & Uncles, 2003; Banas et al., 2004) . Several Authors also re-
port a strong variability of the longitudinal coefficient Kx with the distance from the in-
let, with larger values occurring near the ocean (Banas et al., 2004). In order to take into
account for this variability, simple scaling has been proposed such as Kx/(Ub) = ck where
U is a scale for the tidal induced velocity, b is the estuary width and ck is a constant es-
timated by a regression over the measurements. Banas et al. (2004) suggested that the
constant should assume values in a range between 0.05 and 0.1. This scaling is based on
a conceptual model where the major agents of dispersion are thought to be the macro-
vortices generated by the residual current (MacCready, 1999) that, as in the present ex-
periments, scale with the channel width. If we treat the present data using this simple
model, we obtain for the constant ck a median value equal to 0.023 and an estimate of
the first (25th) percentile and third (75th) percentile equal to 0.020 and 0.035, respec-
tively, which is fairly closed to the expected value. In real estuaries, this and other sim-
ilar scaling were suggested in order to take into account for the spatial variability along
the estuary. In fact, different mechanisms could modify the value of the longitudinal dis-
persion coefficient depending on the local hydrodynamics. The proposed relationship based
on the external friction parameter should, instead, describe the global response of an es-
tuary without considering a spatial dependency of the coefficient. Note that the abso-
lute dispersion shown in Figure 8 is based on a uniform initial deployment of numeri-
cal particles and, thus, it describes the dispersion processes averaged over the entire do-
main, disregarding local non-homogeneities.

6 Conclusions

In this first part of the study, we have reported the results obtained using a sin-
gle constituent tidal forcing on a large scale physical model of a basin (open ocean) con-
nected to a compound tidal channel through the presence of a barrier island. Large scale
PIV measurements of the 2D superficial time dependent velocity fields provided a huge
data set upon which a thorough Eulerian and Lagrangian analysis has been performed.
Flood-macrovortices are invariably observed for all experimental parameters. They are
clearly generated by the presence of the inlet mouth and are able to occupy the entire
tidal flats. An interesting process about the macro-vortices generation is the clear merg-
ing observed. This aspect, beyond the scope of the present study, would surely deserve
a detailed analysis for its important consequence on the turbulent energy cascade and,
thus, on the closure model of turbulent processes, especially momentum fluxes. More-
over, the compound geometry seems to sustain the generation of vorticity not only around
the inlet, but also along the main channel transition zone (boundary with the tidal flats)
forming transient vortical structures. In all cases, the flood-vortices are flushed out dur-
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ing the ebb phase regardless the Strouhal number. This apparent discrepancy with pre-
vious studies (Wells & van Heijst, 2004; Nicolau del Roure et al., 2009) could be ascribed
by the role of the compound geometry. Another striking Eulerian flow feature is the gen-
eration of an intense residual current, the shape of which is a reminiscence of the tran-
sient flood-vortices. Both the latter hydrodynamic features dominate the mixing pro-
cess forced by a single harmonic tide. Two sources of periodicity seem to play an impor-
tant role in defining the shapes of the Lagrangian autocorrelation functions and, ulti-
mately, the dispersion regimes. Looping-like streamwise autocorrelations showed impor-
tant negative lobes, soon after the first zero-crossing, forcing the system to respond with
a super-diffusive regime, after a first short ballistic regime, that lasts for few Lagrangian
integral time scales. For the range of external parameters investigated herein, a diffu-
sive (Brownian) regime is always observed allowing for an estimate of horizontal disper-
sive coefficients. The present estimates confirm the order of magnitudes of dispersive co-
efficients observed in the field and also their great variability. Moreover, the results sug-
gest that the external parameter χ may successfully represent most of the observed vari-
ability. This is further demonstrated by the reasonably good fitting laws here suggested.
We leave to the companion Part 2, the investigation of the effects of multiple harmon-
ics on the flow field and dispersion processes. This second part of the study will allow
to extend our analysis to more realistic contexts where more likely tidal flow is gener-
ated by the contemporary coexistence of semi-diurnal and diurnal constituents.

Acknowledgments

This research has not been supported by external funding. The Authors declare no con-
flict of interests. All results are based on large scale PIV measurements, owing to the
excessive dimensions of the data set no web repository has been prepared. Data Man-
agement Repository available at doi: https://doi.org/10.5281/zenodo.5006375.

References

Aubrey, D., & Speer, P. (1985). A study of non-linear tidal propagation in shallow
inlet/estuarine systems part i: Observations. Estuarine, Coastal and Shelf Sci-
ence, 21 (2), 185–205.

Banas, N., Hickey, B., MacCready, P., & Newton, J. (2004). Dynamics of willapa
bay, washington: A highly unsteady, partially mixed estuary. Journal of Physi-
cal Oceanography , 34 (11), 2413–2427.

Beerens, S., Ridderinkhof, H., & Zimmerman, J. (1994). An analytical study of
chaotic stirring in tidal areas. Chaos, Solitons & Fractals, 4 (6), 1011–1029.

Berloff, P. S., McWilliams, J. C., & Bracco, A. (2002). Material transport in oceanic
gyres. part i: Phenomenology. Journal of Physical Oceanography , 32 (3), 764–
796.

Besio, G., Stocchino, A., Angiolani, S., & Brocchini, M. (2012). Transversal and lon-
gitudinal mixing in compound channels. Water Resources Research, 48 (12).

Blondeaux, P., & Vittori, G. (2020). Modeling transverse coastal bedforms at
anna maria island (florida). Journal of Geophysical Research: Oceans, 125 (7),
e2019JC015837.

Brocchini, M., & Colombini, M. (2004). A note on the decay of vorticity in shallow
flow calculations. Physics of Fluids, 16 (7), 2469–2475.

Cai, H., Savenije, H. H., & Toffolon, M. (2012). A new analytical framework for
assessing the effect of sea-level rise and dredging on tidal damping in estuaries.
Journal of Geophysical Research: Oceans, 117 (C9).

Chau, K. W. (2000). Transverse mixing coefficient measurements in an open rectan-
gular channel. Advances in Environmental Research, 4 (4), 287–294.

Cucco, A., Umgiesser, G., Ferrarin, C., Perilli, A., Canu, D. M., & Solidoro, C.
(2009). Eulerian and lagrangian transport time scales of a tidal active coastal

–19–



manuscript submitted to JGR: Oceans

basin. Ecological Modelling , 220 (7), 913–922.
Davies, P. A., Dakin, J. M., & Falconer, R. A. (1995). Eddy formation behind a

coastal headland. Journal of Coastal Research, 154–167.
Dronkers. (2019). Estuarine dispersion: dye experiments in the eastern scheldt scale

model. http://www.coastalwiki.org/wiki/Estuarine dispersion: dye experiments
in the Eastern Scheldt scale mode.

Enrile, F., Besio, G., & Stocchino, A. (2020). Eulerian spectrum of finite-time lya-
punov exponents in compound channels. Meccanica, 55 (9), 1821–1828.

Enrile, F., Besio, G., Stocchino, A., & Magaldi, M. G. (2019). Influence of initial
conditions on absolute and relative dispersion in semi-enclosed basins. Plos
one, 14 (7), e0217073.

Fischer, H. B., List, J. E., Koh, C. R., Imberger, J., & Brooks, N. H. (1979). Mixing
in inland and coastal waters. Academic press.

Fortunato, A. B., & Oliveira, A. (2005). Influence of intertidal flats on tidal asym-
metry. Journal of Coastal Research, 21 (5 (215)), 1062–1067.

Friedrichs, C. T., & Aubrey, D. G. (1988). Non-linear tidal distortion in shallow
well-mixed estuaries: a synthesis. Estuarine, Coastal and Shelf Science, 27 (5),
521–545.

Friedrichs, C. T., & Madsen, O. S. (1992). Nonlinear diffusion of the tidal signal in
frictionally dominated embayments. Journal of Geophysical Research: Oceans,
97 (C4), 5637–5650.

Geyer, W. R., & MacCready, P. (2014). The estuarine circulation. Annual review of
fluid mechanics, 46 , 175–197.

Gisen, J. I. A., & Savenije, H. H. (2015). Estimating bankfull discharge and depth in
ungauged estuaries. Water Resources Research, 51 (4), 2298–2316.

Jay, D. A. (1991). Green’s law revisited: Tidal long-wave propagation in channels
with strong topography. Journal of Geophysical Research: Oceans, 96 (C11),
20585–20598.

Jirka, G. (2001). Large scale flow structures and mixing processes in shallow flows.
J. Hydr. Res., 39 , 567–573.

Kang, J., & Jun, K. (2003). Flood and ebb dominance in estuaries in korea. Estuar-
ine, Coastal and Shelf Science, 56 (1), 187–196.

Kusumoto. (2008). Laboratory experiments of tidal dispersion around irregular
boundaries. Phd Thesis.

LaCasce, J. (2008). Statistics from lagrangian observations. Progress in Oceanogra-
phy , 77 , 1-29.

Lanzoni, S., & Seminara, G. (1998). On tide propagation in convergent estuaries.
Journal of Geophysical Research: Oceans, 103 (C13), 30793–30812.

Lekien, F., Coulliette, C., Mariano, A., Ryan, E., Shay, L., Haller, G., & Marsden, J.
(2005). Pollution release tied to invariant manifolds: A case study for the coast
of florida. Phys. D , 210 , 1–20.

Lewis, R. E., & Uncles, R. J. (2003). Factors affecting longitudinal dispersion in es-
tuaries of different scale. Ocean Dynamics, 53 (3), 197–207.

MacCready, P. (1999). Estuarine adjustment to changes in river flow and tidal mix-
ing. Journal of Physical Oceanography , 29 (4), 708–726.

MacCready, P., & Geyer, W. R. (2009). Advances in estuarine physics.
Monismith, S. G., Kimmerer, W., Burau, J. R., & Stacey, M. T. (2002). Struc-

ture and flow-induced variability of the subtidal salinity field in northern san
francisco bay. Journal of physical Oceanography , 32 (11), 3003–3019.

Nicolau del Roure, F., Socolofsky, S. A., & Chang, K.-A. (2009). Structure and
evolution of tidal starting jet vortices at idealized barotropic inlets. Journal of
Geophysical Research: Oceans, 114 (C5).

Okubo, A. (1970). Horizontal dispersion of floatable particles in the vicinity of veloc-
ity singularities such as convergences. In Deep sea research and oceanographic
abstracts (Vol. 17, pp. 445–454).

–20–



manuscript submitted to JGR: Oceans

Orre, S., Gjevik, B., & LaCasce, J. H. (2006). Characterizing chaotic dispersion in a
coastal tidal model. Continental Shelf Research, 26 (12-13), 1360–1374.

Pritchard, D. W. (1956). The dynamic structure of a coastal plain estuary. J. Mar.
Res, 15 (1), 33–42.

Provenzale, A. (1999). Transport by coherent barotropic vortices. Ann. Rev. Fluid
Mech., 31 , 55–93.

Ridderinkhof, H., & Zimmerman, J. (1992). Chaotic stirring in a tidal system. Sci-
ence, 258 (5085), 1107–1111.

Savenije, H. H. (1993). Determination of estuary parameters on basis of lagrangian
analysis. Journal of Hydraulic Engineering , 119 (5), 628–642.

Seminara, G., Lanzoni, S., Tambroni, N., & Toffolon, M. (2010). How long are tidal
channels? Journal of Fluid Mechanics, 643 , 479.

Signell, R. P., & Geyer, W. R. (1991). Transient eddy formation around headlands.
Journal of Geophysical Research: Oceans, 96 (C2), 2561–2575.

Stocchino, A., Besio, G., Angiolani, S., & Brocchini, M. (2011). Lagrangian mixing
in straight compound channels. Journal of Fluid Mechanics, 675 , 168.

Stocchino, A., & Brocchini, M. (2010). Horizontal mixing of quasi-uniform, straight,
compound channel flows. J. Fluid Mech., 643 , 425–435.

Taylor, G. (1921). Diffusion by continuous movement. Proc. Lond. Math. Soc., 20 ,
196-212.

Toffolon, M., Vignoli, G., & Tubino, M. (2006). Relevant parameters and finite am-
plitude effects in estuarine hydrodynamics. Journal of Geophysical Research:
Oceans, 111 (C10).

Umgiesser, G., Ferrarin, C., Cucco, A., De Pascalis, F., Bellafiore, D., Ghezzo, M.,
& Bajo, M. (2014). Comparative hydrodynamics of 10 mediterranean lagoons
by means of numerical modeling. Journal of Geophysical Research: Oceans,
119 (4), 2212–2226.

Valle-Levinson, A. (2010). Contemporary issues in estuarine physics. Cambridge
University Press.

Veneziani, M., Griffa, A., Reynolds, A. M., & Mariano, A. J. (2004). Oceanic turbu-
lence and stochastic models from subsurface lagrangian data for the northwest
atlantic ocean. Journal of physical oceanography , 34 (8), 1884–1906.

Viero, D. P., & Defina, A. (2016). Water age, exposure time, and local flushing time
in semi-enclosed, tidal basins with negligible freshwater inflow. Journal of Ma-
rine Systems, 156 , 16–29.

Vouriot, C. V., Angeloudis, A., Kramer, S. C., & Piggott, M. D. (2019). Fate of
large-scale vortices in idealized tidal lagoons. Environmental Fluid Mechanics,
19 (2), 329–348.

Webel, G., & Schatzmann, M. (1984). Transverse mixing in open channel flow. Jour-
nal of Hydraulic Engineering , 110 (4), 423–435.

Weiss, J. (1991). The dynamics of enstrophy transfer in two-dimensional hydrody-
namics. Physica D , 48 , 272–294.

Wells, M., & van Heijst, G. (2004). Dipole formation by tidal flow in a channel.
In International symposium on shallow flows. balkema publishers, delft (pp.
63–70).

Yang, Y., Chui, T. F. M., Shen, P. P., Yang, Y., & Gu, J. D. (2018). Modeling
the temporal dynamics of intertidal benthic infauna biomass with environ-
mental factors: Impact assessment of land reclamation. Science of The Total
Environment , 618 , 439–450.

Zhang, Z., & Savenije, H. H. (2017). The physics behind van der burgh’s empirical
equation, providing a new predictive equation for salinity intrusion in estuar-
ies. Hydrology and Earth System Sciences, 21 (7), 3287–3305.

Zimmerman, J. (1986). The tidal whirlpool: a review of horizontal dispersion by
tidal and residual currents. Netherlands Journal of Sea Research, 20 (2-3), 133–
154.

–21–



manuscript submitted to JGR: Oceans

Dispersion processes in weakly dissipative estuaries:
Part 1. Single harmonic tide.

A. De Leo1, N. Tambroni1, and A. Stocchino2

1Dipartimento di Ingegneria Civile, Chimica e Ambientale, Università degli Studi di Genova, via
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Figure 1. Data from Experiment 8.

Figure 2. Data from Experiment 9.

Figure 3. Data from Experiment 10.

Figure 4. Data from Experiment 11.

Figure 5. Data from Experiment 12.
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Figure 6. Data from Experiment 13.

Figure 7. Data from Experiment 14.

Figure 8. Data from Experiment 15.

Figure 9. Data from Experiment 16.

Figure 10. Data from Experiment 17.
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Figure 11. Data from Experiment 18.

Figure 12. Data from Experiment 19.

Figure 13. Data from Experiment 20.

Figure 14. Data from Experiment 21.

Figure 15. Data from Experiment 22.
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Figure 16. Data from Experiment 23.

Figure 17. Data from Experiment 24.

Figure 18. Data from Experiment 25.

Figure 19. Data from Experiment 26.

Figure 20. Data from Experiment 27.
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Figure 21. Data from Experiment 28.

Figure 22. Data from Experiment 29.

Figure 23. Data from Experiment 30.

Figure 24. Data from Experiment 31.

Figure 25. Data from Experiment 32.
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