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Abstract

The Marine Biogeochemistry Library (MARBL) is a prognostic ocean biogeochemistry model that simulates marine ecosystem

dynamics and the coupled cycles of carbon, nitrogen, phosphorus, iron, silicon, and oxygen. MARBL is a component of

the Community Earth System Model (CESM); it supports flexible ecosystem configuration of multiple phytoplankton and

zooplankton functional types; it is also portable, designed to interface with multiple ocean circulation models. Here, we

present scientific documentation of MARBL, describe its configuration in CESM2 experiments included in the Coupled Model

Intercomparison Project version 6 (CMIP6), and evaluate its performance against a number of observational datasets. The

model simulates an air-sea CO2 flux and many aspects of the carbon cycle in good agreement with observations. However, the

simulated integrated uptake of anthropogenic CO2 is weak, which we link to poor thermocline ventilation, a feature evident in

simulated chlorofluorocarbon distributions. This also contributes to larger-than-observed oxygen minimum zones. Moreover,

radiocarbon distributions show that the simulated circulation in the deep North Pacific is extremely sluggish, yielding extensive

oxygen depletion and nutrient trapping at depth. Surface macronutrient biases are generally positive at low latitudes and

negative at high latitudes. CESM2 simulates globally-integrated net primary production (NPP) of 48 Pg C yr-1 and particulate

export flux at 100 m of 7.1 Pg C yr-1. The impacts of climate change include an increase in globally-integrated NPP, but

substantial declines in the North Atlantic. Particulate export is projected to decline globally, attributable to decreasing export

efficiency associated with changes in phytoplankton community composition.
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Key Points:13

• MARBL is the ocean biogeochemistry component of the Community Earth Sys-14

tem Model (CESM)15

• MARBL is a flexible, plankton functional type model with a modular architec-16

ture supporting portability across ocean circulation models17

• CESM2 CMIP6 solutions contain significant biogeochemical biases linked to un-18

derlying physics19
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Abstract20

The Marine Biogeochemistry Library (MARBL) is a prognostic ocean biogeochemistry21

model that simulates marine ecosystem dynamics and the coupled cycles of carbon, ni-22

trogen, phosphorus, iron, silicon, and oxygen. MARBL is a component of the Commu-23

nity Earth System Model (CESM); it supports flexible ecosystem configuration of mul-24

tiple phytoplankton and zooplankton functional types; it is also portable, designed to25

interface with multiple ocean circulation models. Here, we present scientific documen-26

tation of MARBL, describe its configuration in CESM2 experiments included in the Cou-27

pled Model Intercomparison Project version 6 (CMIP6), and evaluate its performance28

against a number of observational datasets. The model simulates an air-sea CO2 flux and29

many aspects of the carbon cycle in good agreement with observations. However, the sim-30

ulated integrated uptake of anthropogenic CO2 is weak, which we link to poor thermo-31

cline ventilation, a feature evident in simulated chlorofluorocarbon distributions. This32

also contributes to larger-than-observed oxygen minimum zones. Moreover, radiocarbon33

distributions show that the simulated circulation in the deep North Pacific is extremely34

sluggish, yielding extensive oxygen depletion and nutrient trapping at depth. Surface macronu-35

trient biases are generally positive at low latitudes and negative at high latitudes. CESM236

simulates globally-integrated net primary production (NPP) of 48 Pg C yr�1 and par-37

ticulate export flux at 100 m of 7.1 Pg C yr�1. The impacts of climate change include38

an increase in globally-integrated NPP, but substantial declines in the North Atlantic.39

Particulate export is projected to decline globally, attributable to decreasing export ef-40

ficiency associated with changes in phytoplankton community composition.41

Plain Language Summary42

Numerical models of the ocean carbon cycle and biogeochemistry play a key role43

in understanding the fate of human carbon dioxide emissions and the magnitude of ex-44

pected climate change over the next several decades to a century. Models are needed to45

quantify changes in the carbon reservoirs of the ocean and atmosphere and to explore46

interactions between climate change and carbon reservoirs that could amplify or damp47

future warming. This paper presents the Marine Biogeochemistry Library (MARBL),48

which is an ocean biogeochemistry model coupled to the Community Earth System Model49

(CESM). MARBL was designed to be compatible with multiple ocean models, a design50

motivated by an interest in building a diverse community of researchers around the de-51

velopment of MARBL. This paper presents a technical description of MARBL and an52

evaluation of the ocean biogeochemical simulation in CESM version 2. Overall, the model53

captures large-scale biogeochemical distributions, though several important biases are54

highlighted, including those dependent on the representation of circulation. MARBL pro-55

vides a robust platform for researchers to address critical questions related to the im-56

pacts of climate variability and change on marine ecosystems.57

1 Introduction58

The ocean comprises the largest active carbon reservoir on Earth, storing approx-59

imately 38,000 Pg C of natural CO2, nearly all of it as dissolved inorganic carbon (DIC).60

The ocean has also absorbed about 30% of anthropogenic CO2 emissions (152 Pg through61

2007) since the beginning of the industrial revolution (Sabine et al., 2004; Gruber et al.,62

2019)—and this sink will remain an important control on the airborne fraction of CO263

emissions (Jones et al., 2013). Given this fundamental importance, Earth system mod-64

els (ESMs) include ocean biogeochemistry models (OBMs) that seek to represent the ocean65

carbon cycle mechanistically, enabling future projections inclusive of carbon-climate feed-66

backs (Friedlingstein et al., 2006). As these models have matured, there has been increas-67

ing recognition of their relevance to questions beyond biogeochemistry, and in particu-68

lar related to ocean ecosystems in the context of climate variability and change (Bopp69
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et al., 2013; Stock et al., 2011; Tommasi et al., 2017). This paper describes the Marine70

Biogeochemistry Library (MARBL), which is the ocean biogeochemistry component for71

the Community Earth System Model, version 2 (CESM2) (Danabasoglu et al., 2020).72

We document MARBL and evaluate the ocean biogeochemistry simulations in the fully-73

coupled CESM2 integrations submitted to the Coupled Model Intercomparison Project74

phase 6 (CMIP6) (Eyring et al., 2016).75

In CESM2, MARBL was configured to invoke an updated version of what has pre-76

viously been known as the Biogeochemistry Elemental Cycle (BEC) model (Moore et77

al., 2002, 2002a, 2004, 2013). MARBL is a modularized code base, however, consisting78

of a self-contained, independent Fortran library that interfaces with an ocean general cir-79

culation model (OGCM) through an explicit driver layer. This explicit design decision80

enables interoperability between MARBL and di↵erent physical models (see section 2.1).81

Moreover, MARBL has some flexibility with respect to the configuration of its ecosys-82

tem, supporting simulation of an arbitrary number of zooplankton and phytoplankton83

functional types (PFTs).84

The BEC model has been under development for more than two decades, with ini-85

tial roots in a one-dimensional configuration applied to represent the seasonal cycle of86

upper ocean primary production at the Joint Global Ocean Flux Study (JGOFS), Bermuda87

Atlantic Timeseries Study site (Doney et al., 1996). This formulation was extended by88

Moore et al. (2002) to include three phytoplankton functional types, multiple nutrient89

co-limitation (N, P, Si, Fe), nitrogen fixation, and calcification. At this point, the model90

was run in the mixed-layer on a global grid, but there was no lateral exchange and nu-91

trient concentrations below the mixed layer were specified from an observationally-based92

climatology (Moore et al., 2002). The Moore et al. (2002) model was capable of repro-93

ducing the dominant patterns of primary production, nitrogen fixation, and export, in-94

cluding the observed high nitrate, low chlorophyll (HNLC) conditions in the Southern95

Ocean, Subarctic Northeast Pacific, and equatorial Pacific (Moore et al., 2002a). Moore96

et al. (2004) implemented the BEC model in a three-dimensional global OGCM for the97

first time, demonstrating skillful biogeochemical solutions under prognostic flow forced98

by meteorological fields from atmospheric reanalysis data. This implementation also en-99

abled running the model in a “fully-coupled” context, in which atmospheric and ocean100

general circulation models exchange information via a flux coupler. A series of studies101

examined BEC solutions in the Community Climate System Model, version 3 (CCSM3)102

(Collins et al., 2006; Yeager et al., 2006). These include examinations of the e↵ect of at-103

mospheric nutrient deposition (Moore & Doney, 2007; Moore et al., 2006; Krishnamurthy104

et al., 2007, 2009, 2010; Han et al., 2008; Doney et al., 2007; Mahowald et al., 2011), climate-105

change impacts on ecosystems (Marinov et al., 2010), carbon-climate feedbacks (Thornton106

et al., 2009), the mechanisms driving carbon fluxes (Lovenduski et al., 2008; Wang et107

al., 2012; Doney et al., 2009) and the impacts of volcanic forcing on ocean biogeochem-108

istry (Rothenberg et al., 2012). The Community Climate System Model evolved into the109

Community Earth System Model, and the BEC model was released to the community110

in this context. Moore et al. (2013) documented the marine ecosystem response to cli-111

mate change in CESM1; Long et al. (2013) described the simulation of the present-day112

ocean carbon sink and Lindsay et al. (2014) examined the fully-coupled carbon cycle in113

CESM1. In addition to projections out to 2100, CESM1 was used to conduct Extended114

Representative Concentration Pathway (RCP) scenario integrations out to the year 2300115

(Moore et al., 2018; Randerson et al., 2015). A version of CESM1 was used to conduct116

a large ensemble (CESM-LE) experiment (Kay et al., 2015), which included ocean bio-117

geochemistry simulated by BEC. The CESM-LE enabled a series of studies that explic-118

itly separated natural variability from anthropogenic forced trends in ocean biogeochem-119

istry (Long et al., 2016; Lovenduski et al., 2015, 2016; McKinley et al., 2016; Krumhardt120

et al., 2017; Eddebbar et al., 2019). BEC has also been used in Decadal Prediction ex-121

periments with CESM1 (Yeager et al., 2012), and a handful of studies have examined122

–3–
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predictability of ocean biogeochemical dynamics in this framework (e.g., Krumhardt et123

al., 2020; Lovenduski et al., 2019; Yeager et al., 2018).124

Our objectives in this paper are to document MARBL and specifically its config-125

uration in the CESM2 integrations submitted to CMIP6. MARBL development has con-126

tinued since the CMIP6 integrations were conducted, and there a handful of MARBL127

features that were not enabled in the CMIP runs. We refer to the CMIP6 configuration128

of MARBL, the default configuration in CESM2.1, as MARBL-CESM2.1 to explicitly129

note the associated model version and its configuration. That is, statements made about130

MARBL hold for all configurations of MARBL, as it was released in CESM2.1, and state-131

ments about MARBL-CESM2.1 hold for the default configuration in that release.132

2 Model description133

2.1 Flexible implementation134

MARBL is a stand-alone Fortran library designed to be implemented in multiple135

OGCMs. The MARBL framework can be best understood by reference to the prognos-136

tic equation governing the evolution of an arbitrary passive tracer � in an OGCM:137

@�

@t
+r · (u�)�r · (Kr�) = J�(x), (1)

where the terms on the left hand side (LHS) are the time-tendency, resolved three-dimensional138

advection by the simulated velocity field, u, and di↵usion determined by the di↵usiv-139

ity K. J�(x) is the sum of sources-minus-sinks for �, computed as a function of the model140

state vector, x; air-sea, benthic, or riverine fluxes provide boundary conditions. MARBL141

computes the source/sink terms and interfaces with an OGCM through an explicit driver142

layer, such that multiple OGCMs that have implemented the MARBL-driver can call143

the identical MARBL code. The OGCM computes the LHS of Eq. (1) and handles time-144

integration. MARBL has been implemented in the Parallel Ocean Program version 2 (POP2;145

the CESM2 ocean component) (Danabasoglu et al., 2012), the Model for Prediction Across146

Scales, Ocean (MPAS-O) (Ringler et al., 2013; Burrows et al., 2020), and the Modular147

Ocean Model, version 6 (MOM6) (Adcroft et al., 2019), which will be the ocean com-148

ponent in CESM3. MARBL is fully configurable at run-time, and is flexible enough to149

accommodate a variable number of plankton functional types and ecosystem configura-150

tions. MARBL is developed via an open-development process on GitHub, including con-151

tinuous integration and testing, as well as tools supporting appropriate configuration in152

CESM integrations. The repository can be found at https://github.com/marbl-ecosys/153

MARBL.154

2.2 Ocean biogeochemistry formulations155

MARBL allows for easy addition of phytoplankton and zooplankton groups to the156

ecosystem. Both are treated as arrays, so to add a phytoplankton or zooplankton group157

simply requires specifying their parameter values in an input file. Key biogeochemical158

processes are built into MARBL, allowing the user to specify the biogeochemical func-159

tions associated with each phytoplankton group (i.e., calcifier, silicifier, capable of N fix-160

ation, etc.). This facilitates supporting multiple ecosystem configurations spanning a range161

in complexity. Here we focus on the implementation in CESM2 CMIP6 integrations, which162

preserved the ecosystem configuration in CESM1: MARBL-CESM2.1 includes one zoo-163

plankton group, three explicit phytoplankton functional groups (diatoms, diazotrophs,164

“small” pico/nano phytoplankton), and one implicit group (calcifiers). MARBL-CESM2.1165

thus simulates 32 tracers, comprising 17 non-living constituents (dissolved inorganic car-166

bon, alkalinity, nutrients, oxygen, and dissolved organic matter) and 15 tracers associ-167

ated with living biomass. Carbonate chemistry is fully-explicit, and there are two par-168
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allel carbonate systems (e.g., with preindustrial and contemporary atmospheric CO2),169

which enables cleanly computing anthropogenic CO2 concentrations.170

2.2.1 Phytoplankton growth171

The source/sink term of the phytoplankton group (JPi) is172

JPi = µiPi �G(P 0
i )�miTfP

0
i �A(P 0

i ) (2)

where the terms on the right-hand side represent growth, and sinks due to grazing (G),173

linear mortality (mi) and aggregation (A). The loss terms are dependent on a P 0
i , which174

is the phytoplankton concentration in excess of a temperature- and depth-dependent thresh-175

old. The C-specific growth rate, µi, is parameterized as the product of the resource-unlimited176

growth rate (µref ) at a reference temperature (30�C), and temperature (Tf ), nutrient177

limitation (Vi) and light availability (Li) functions:178

µi = µrefTfViLi. (3)

The temperature dependence formulation,179

Tf = 1.7

⇣
T�30�C

10�C

⌘

, (4)

is based on results from Sherman et al. (2016).180

Light-limitation is computed as a function of irradiance, I (W m�2), using a mod-181

ified form of the Geider et al. (1998, 1997) dynamic growth model,182

Li = 1� exp

✓
�↵Chl

i ✓Ci I

µrefTfVi

◆
, (5)

where ↵Chl
i (g C m2 (g Chl W s)�1) is the initial slope of the chlorophyll-a (Chl) spe-183

cific photosynthesis-irradiance (PI) curve and ✓Ci is the chlorophyll to carbon ratio (g184

Chl:g C). This equation represents the growth rate as a function of the ratio between185

the supply of energy for photosynthesis in the form of instantaneous light harvesting ca-186

pacity (↵Chl
i ·✓Ci · I), and the demand for growth in terms of the maximum photosyn-187

thetic rate constrained by temperature and nutrient limitation (µref ·Tf ·Vi). The chloro-188

phyll to carbon ratio, ✓Ci , evolves prognostically in the model, thereby providing a rep-189

resentation of photoadaptation. The source/sink term for chlorophyll is190

JChl = ⇢Chl

✓
µi

rC:N✓C

◆
(6)

where rC:N is the carbon to nitrogen stoichiometry of phytoplankton (see below) and ⇢Chl191

is the dimensionless chlorophyll synthesis term (Geider et al., 1998), computed as192

⇢Chl = ✓Nmax,i
µi

↵Chl
i ✓Ci I

. (7)

Photosynthetically available radiation (I) is assumed to be 45% of incoming short-193

wave radiation (Doney et al., 1996). CESM simulates a subgrid-scale sea-ice thickness194

distribution and computes shortwave penetration independently for each ice thickness195

category, yielding multiple sub-columns with di↵erent light levels. MARBL computes196

all light-dependent terms on each sub-column independently, and then computes the grid-197

cell mean terms by taking an area-weighted average across sub-columns (Long et al., 2015).198

Since the photosynthesis equations are non-linear, this order of operations reduces nu-199

merical artifacts that arise where light fields are heterogeneous. Long et al. (2015) showed200

that this approach dramatically reduces biases in the simulation of high-latitude spring201

blooms relative to photosynthesis computed on grid-cell mean light.202
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Phytoplankton nutrient requirements vary by taxa; diatoms (diat) require N, P,203

Si, and Fe, where as small phytoplankton (sp) and diazotrophs (diaz) do not assimilate204

Si and diazotrophs are not limited by N. Nutrient limitation is computed using Leibig’s205

law of the minimum, such that206

Vdiat = min
�
V N
diat, V

P
diat, V

Si
diat, V

Fe
diat

�
,

Vsp = min
�
V N
sp, V

P
sp, V

Fe
sp

�
, and

Vdiaz = min
�
V P
diaz, V

Fe
diaz

�
.

(8)

Nutrient limitation is represented according to Michaelis-Menten kinetics, where207

V Fe
i =

Fe

Fe +KFe
i

and V Si
i =

SiO3

SiO3 +KSiO3
i

. (9)

However, phytoplankton can alternatively assimilate nitrate (NO3) and ammonium (NH4),208

following the substitutable model of O’Neill et al. (1989), such that209

V NO3
i =

NO3/K
NO3
i

1 + NO3/K
NO3
i +NH4/K

NH4
i

;

V NH4
i =

NH4/K
NH4
i

1 + NO3/K
NO3
i +NH4/K

NH4
i

; and

V N
i = V NO3

i + V NH4
i .

(10)

All taxa are capable of assimilating both phosphate (PO4) and semi-labile (see below)210

dissolved organic phosphate (DOP); a similar approach is used to compute limitation211

terms for these constituents.212

Nutrient assimilation ratios are fixed for C:N according to Anderson and Sarmiento213

(1994) (117:16), but permitted to vary for P, Fe, and Si. P:C uptake for all PFTs is com-214

puted according to a modified version of the linear model of Galbraith and Martiny (2015).215

P:C uptake rates are linked to ambient phosphate concentrations, with P:C increasing216

linearly with increasing available phosphate, until a maximum P:C value is reached (Wang217

et al., 2019). The dynamic Fe:C ratios follow a similar formulation, with Fe:C ranging218

between specified minimum and maximum values as a function of ambient iron concen-219

tration (Moore et al., 2004). The Si:C uptake ratio for the diatoms is a function of both220

ambient iron and silicate concentrations, whereby low iron increases Si:C uptake and low221

silicate decreases the Si:C uptake ratio for new growth (Moore et al., 2004). As ambi-222

ent nutrients concentrations change over time, phytoplankton nutrient assimilation ra-223

tios respond, leading to changes in the stoichiometry of phytoplankton biomass.224

Loss of phytoplankton due to aggregation is parameterized as225

A(P 0
i ) = aiP

01.75
i (11)

but constrained to fall between imposed minimum, amin
i ·P 0

i , and maximum, amax
i ·P 0

i ,226

rates.227

MARBL includes a representation of phytoplankton calcification as well as opal pro-228

duction by diatoms; these materials play an important role in mediating particulate or-229

ganic carbon export (see below). Calcification in MARBL-CESM2.1 is treated implic-230

itly as a varying fraction of the small phytoplankton NPP, similar to the approach in CESM1231

(Moore et al., 2004). Baseline calcification is 7% of small phytoplankton NPP, but is de-232

creased as nutrient limitation increases by multiplying calcification by the nutrient lim-233

itation term squared (Vsp
2). This decline in calcification under severe nutrient limita-234

tion aims to represent competition between calcifying coccolithophores and smaller pi-235

coplankton; calcification is thus reduced in the oligotrophic gyres where picoplankton236

have an advantage due to their larger cell surface-area-to-volume ratios (Moore et al.,237
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2002). Calcification is linearly reduced at temperatures below 4�C, reflecting the fact that238

coccolithophores are rare in polar waters (Iglesias-Rodŕıguez et al., 2002; Holligan et al.,239

2010). When small phytoplankton biomass exceeds 2.5 mmol C m�3, calcification is scaled240

up to 40% of small phytoplankton production, providing a representation of enhanced241

calcification associated with blooms of the coccolithophore Emiliania huxleyi. Opal for-242

mation by diatoms is computed by multiplying diatom production by Si:C elemental ra-243

tio, which modified by Fe and Si ambient conditions, as described above.244

2.2.2 Zooplankton245

MARBL-CESM2.1 has one zooplankton class that grazes on phytoplankton accord-246

ing to a Holling Type II relationship247

G(P 0
i ) = gmax

i · Tf ·
✓

P 0
i

P 0
i +KP

i

◆
Z (12)

The values of half-saturation constants, KP
i , are identical for each phytoplankton taxa248

in MARBL-CESM2.1; the maximum grazing rates, gmax
i , vary, however, with diatoms249

experiencing the lowest grazing pressure. The temperature dependence of grazing, Tf ,250

is the same as for phytoplankton growth and mortality. The source/sink equation for zoo-251

plankton is thus252

JZ = �diatG(P 0
diat) + �spG(P 0

sp) + �diazG(P 0
diaz)�mZTfZ

0 � aZTfZ
01.5 (13)

where �i is a gross growth e�ciency coe�cient (Straile, 1997) and the last two terms on253

the right-hand side represent linear and aggregation mortality, respectively (see Table 1).254

Z 0 is the zooplankton concentration in excess of a depth-dependent threshold.255

Zooplankton ingestion is partitioned into three fractions: converted to zooplank-256

ton biomass (�i), lost to egestion, and lost to respiration. The fraction of egestion losses257

(roughly 30% of ingestion, 45% for diatom prey) partitioned to sinking detritus varies258

by phytoplankton prey type, such that 10% and 38% of ingested diazotrophs and diatoms259

goes to POC, respectively. The fraction of the grazed small phytoplankton material routed260

to sinking particulate material varies as a function biomass, with reductions in the frac-261

tion exported at low biomass. The remainder of the egestion losses are partitioned to262

DOC (6% of ingestion for all phytoplankton types) and DIC (the remainder). Zooplank-263

ton respiration losses are assumed to be primarily a function of ingestion (40% for small264

phytoplankton and diazotrophs, and 30% for diatoms). The di↵erential routing of zoo-265

plankton grazing is aimed at simulating various types of zooplankton (microzooplank-266

ton, mesozooplankton) within a single, “adaptive zooplankton” class.267

Following Doney et al. (1996), zooplankton losses include linear and “quadratic”268

(here, “aggregation”) loss terms. The linear losses represent a combination of metabolic269

and reproductive losses, as well as non-predatory mortality, while the aggregation losses270

approximately represent predation by unresolved higher trophic level predators (Fasham,271

1995). The loss coe�cients mZ and aZ are tuned to be consistent with overall mortal-272

ity rates used in previous versions of the model (Doney et al., 1996; Moore et al., 2004,273

2013). The routing of zooplankton losses to DIC, DOC, and POC are computed simi-274

larly for both linear and aggregation mortality losses; though, to simulate the e↵ect of275

various zooplankton types, there are di↵erential losses to POC based on phytoplankton276

prey type. 12% of zooplankton losses originating from grazing on small phytoplankton277

and diazotrophs, and 24% originating from grazing on diatoms, are routed to POC. Of278

the remainder, 6% is partitioned to DOC, which approximates the fraction of the semi-279

labile losses, and the remainder is routed to DIC.280
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Table 2. Remineralization length scales (in meters) for sinking particulate matter as a function

of depth. The 100 m value is also used above that depth, and the 1000 m value is also used at

deeper depths; for all values in between, the length scale is linearly interpolated from the values

in the table.

depth (m) POC SiO2 CaCO3

100 100 650 500
250 360 2340 1800
500 470 3055 2350

1000 480 3120 2400

2.2.3 Detrital organic pools281

There is no explicit sinking particulate organic matter (POM) tracer in MARBL;282

rather, sinking POM is simulated implicitly following Armstrong et al. (2002). In this283

formulation, sinking POM is redistributed in the water column as it is produced in each284

numerical timestep, with no time lag between surface production and deep remineral-285

ization. The redistribution follows the analytical solution to a first-order di↵erential equa-286

tion expressing POM flux as a function of a sinking velocity and remineralization rate,287

which together can be described by a remineralization length scale (Sarmiento & Gru-288

ber, 2006). Sinking POM is subject to ballasting by mineral dust, biogenic CaCO3 and289

Si, which enhance the e�ciency of export (Armstrong et al., 2002). Remineralization length-290

scales vary as a function of depth in MARBL, enabling a representation of the increas-291

ingly recalcitrant composition of sinking material at depth (Sarmiento & Gruber, 2006;292

Lima et al., 2014). In the CMIP6 integrations, the remineralization length scale was spec-293

ified as 100 m for the upper 100 m, increasing by a factor of 4.8 by 1000 m (see Table294

2 for the precise formulation). Remineralization length scales are also increased linearly295

in the presence of low oxygen (< 45 mmol m�3). Remineralization rates have no depen-296

dence on temperature.297

MARBL simulates 6 dissolved organic matter (DOM) pools, including semi-labile298

(SLDOM) and refractory dissolved organic (RDOM) carbon, nitrogen, and phosphorus299

(DOP) (Letscher & Moore, 2015; Letscher et al., 2015). MARBL does not include an300

explicit heterotrophic bacteria pool and thus does not capture the part of the “micro-301

bial loop” associated with assimilation of DOM by bacteria that are grazed by micro-302

zooplankton (Azam et al., 1983). The parameters controlling DOM cycling were opti-303

mized in an o✏ine tracer-transport framework constrained by DOM observations (Letscher304

et al., 2015). Preferential remineralization of DOP leads to a DOM pool enriched in C305

and N relative to the composition of phytoplankton (Letscher & Moore, 2015). Both SLDOM306

and RDOM pools are produced from phytoplankton and zooplankton losses (mortality307

and aggregation; see above), as well as from grazing due to incomplete assimilation of308

grazed material. 6% of both the phytoplankton losses and grazing fluxes is routed to DOM309

and the fractional allocation of this material that flows to semi-labile and refractory pools310

is controlled via a fixed parameter. The refractory DOM pools also receive 6% of the POM311

remineralization flux. DOM remineralization has no explicit temperature dependence.312

DOM pools are remineralized at a rate determined by ambient light levels; remineral-313

ization rates for SLDOM are significantly higher in the dark (Letscher et al., 2015). The314

opposite is true for RDOM, where remineralization is enhanced in the presence of light315

due to photodegradation by ultraviolet light. SLDOM pools cycle with rates on the or-316

der of years; the RDOM pools have remineralization timescales of years at the surface317

increasing to many millenia at depth. Semi-labile DOP has an additional sink in the up-318
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per ocean associated with its use as a P source sustaining phytoplankton nutrient require-319

ments when phosphate concentrations are low (Letscher et al., 2015).320

2.2.4 Nitrogen cycle321

MARBL simulates the marine nitrogen cycle with inputs from rivers, atmospheric322

deposition, and prognostic N fixation; losses of N include water column and sedimentary323

denitrification as well as ammonia emissions from the sea surface. Nitrogen fixation is324

simulated based on a fixed ratio of 1.25 between diazotroph N fixation and C fixation,325

which depends on adequate light and Fe availability. Diazotrophs are not limited by N,326

but do assimilate nitrate and ammonium when available—though given their much slower327

growth rates, they are at a competitive disadvantage relative to other taxa where in re-328

gions where N is not limiting.329

Nitrification (the oxidation of ammonium to nitrite) is simulated as a first-order330

rate process dependent on the concentration of ammonium with a rate constant of 0.06 d�1.331

The model does not explicitly simulate nitrite or N2O: nitrification in the model thus332

represents both ammonium and nitrite oxidation and nitrate is the only product; there333

are no losses to N2 via nitrification—therefore, nitrification does not result in losses of334

fixed N from the model ocean. Nitrification is light-inhibited and only occurs in MARBL335

where PAR is below 1 W m�2. The subgrid-scale treatment of light (see above) is ap-336

plied to the nitrification computation, such that nitrification is computed for each sub-337

column and the ultimate grid-cell mean is an area-weighted average across sub-columns.338

CESM simulates a diurnal light cycle, thus there is nitrification in the surface ocean at339

night.340

Denitrification is the oxidation of organic matter via nitrate. Water column den-341

itrification is simulated as a function of organic matter remineralization and local oxy-342

gen concentrations. Where oxygen declines below 10 mmol m�3, the fraction of organic343

matter oxidation accounted for by denitrification is linearly increased until oxygen reaches344

5 mmol m�3, where denitrification is assumed to account for 100% of organic matter ox-345

idation. MARBL also simulates sedimentary denitrification on the basis of an empiri-346

cal relation depending on POC flux to the seafloor (Bohlen et al., 2012). Water column347

and sedimentary denitrification are reduced where nitrate concentrations approach zero.348

Denitrification does lead to fixed N loss from the model, to balance N fixation, but the349

N2 product is not explicitly tracked. Oceanic emission of ammonia is simulated prog-350

nostically following Paulot et al. (2015).351

2.2.5 Iron cycle352

MARBL includes a representation of oceanic iron cycling that is an extension of353

the formulation described in Moore and Braucher (2008). Sources of dissolved iron to354

the ocean specified via forcing include dissolved iron inputs from sediments (⇠20 Gmol yr�1),355

hydrothermal vents (⇠5.0 Gmol yr�1), and rivers (0.37 Gmol yr�1). The sedimentary356

iron source is applied using subgrid-scale bathymetry; this results in a vertical distribu-357

tion of iron input in the water column, relative to simply applying the source at the model358

bottom. The sedimentary iron source is a temporally-static field; it is computed o✏ine359

using a parameterization that depends on POC fluxes and bottom-current velocity sim-360

ulated by CESM. The source of iron from oxic sediments is parameterized via a constant,361

low background value; this source is increased in regions of high bottom horizontal cur-362

rent speed (sediment re-suspension) according to the current velocity squared by up to363

a factor of 100. The source of iron from reducing sediments is linearly related to the sink-364

ing POC flux where the POC flux exceeds 3 g C m�2 yr�1; below this threshold, the re-365

ducing sediment source is zero. This puts a source on the shelf, and along productive366

slope/margins, but has little source in the deep ocean, where almost all the remineral-367

ization is oxic right on the sediment surface. The two iron source types were combined368
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into one Fe input field for CESM2. Atmospheric deposition of soluble iron is computed369

prognostically as a function of dust and black carbon deposition provided by the atmo-370

spheric model. Dust also contributes sources of phosphate and silicate, following Krishnamurthy371

et al. (2010). The iron cycle includes a representation of scavenging (Moore & Braucher,372

2008) and complexation by an explicit ligand tracer. The ligand tracer has sources due373

to remineralization and dissolved organic matter production.374

2.2.6 Riverine forcing375

Riverine nutrient (N, P, Si, Fe), dissolved inorganic carbon, alkalinity, and DOM376

fluxes are supplied to the CESM2 ocean model from a dataset, which includes nutrient377

loading estimates from GlobalNEWS (Mayorga et al., 2010) and the Integrated Model378

to Assess the Global Environment-Global Nutrient Model (IMAGE-GNM) (Beusen et379

al., 2016; Beusen et al., 2015). Nutrient inputs are provided for dissolved inorganic ni-380

trogen (DIN), phosphorus (DIP), Si and Fe, as well as dissolved organic nitrogen and381

phosphorus. Carbon inputs are provided in inorganic and organic forms. Organic river-382

ine inputs are partitioned into MARBL’s corresponding semi-labile and refractory or-383

ganic matter tracers; the fractions routed into the refractory tracers are 0.2, 0.1, and 0.025384

for carbon, nitrogen, and phosphorus, respectively. Riverine DIC inputs are assumed to385

be comprised of 100% bicarbonate and thus alkalinity fluxes are equal to DIC fluxes. Par-386

ticulate constituents are assumed to be removed in estuaries and therefore are not in-387

cluded in the riverine forcing supplied to the model. GlobalNEWS does not include dis-388

solved iron inputs to the oceans; for the riverine Fe source we assumed a constant river389

concentration of 10 nM in a climatological runo↵ for the current era. Riverine nutrients390

and carbon fluxes are held constant using the GlobalNEWS data with the exception of391

DIN and DIP fluxes, which are taken from IMAGE-GNM and vary from 1900 through392

2000; outside of this period, the fluxes are held constant using the closest temporal value.393

In CESM2, the handling of riverine freshwater inputs was changed relative to pre-394

vious versions of the model. In particular, rather than spreading riverine freshwater in-395

puts out over a relatively large prescribed region of the ocean surface, CESM2 routes river-396

ine freshwater input into the ocean column closest to location of the riverine input. A397

box-model framework is used to parameterize vertical estuary exchange flow and asso-398

ciated mixing of river and seawater prior to applying the input to the ocean column (Sun399

et al., 2017). This estuary box-model framework is also used in CESM2 to distribute river-400

ine biogeochemical inputs, ensuring consistent treatment of freshwater and biogeochem-401

ical riverine inputs, and also avoiding the unrealistic spreading of inputs over a large re-402

gion of the surface ocean.403

2.2.7 Benthic processes404

Riverine nutrient and carbon fluxes in CESM2 introduce material into the coupled405

system without a direct compensating sink from the land model. To avoid drift in ocean406

nutrient inventories and spurious accumulation of carbon in the atmosphere, ocean losses407

must balance riverine inputs. The marine nitrogen cycle in MARBL is open, capable of408

achieving a dynamic equilibrium as nitrogen fixation and denitrification come into bal-409

ance with the other supply terms. Carbon, phosphorus, and silica inputs, by contrast,410

are balanced with the process of burial at the seafloor.411

MARBL computes burial and denitrification losses of material at the seafloor ac-412

cording to empirical relationships. Particulate organic carbon burial is computed using413

a relationship between burial e�ciency and POC flux from Dunne et al. (2007), with an414

imposed maximum burial e�ciency of 80%. Burial of SiO2 at the seafloor is based on415

observations in Ragueneau et al. (2000). In MARBL, 4% of Si incident on the seafloor416

is buried, except where the incident flux of Si to the seafloor exceeds 2 mmol m�2 d�1;417

then, 20% of Si is buried. As described above, sedimentary denitrification depends on418

–11–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

the incident POC flux and is computed based on an empirical relationship from Bohlen419

et al. (2012). Burial of CaCO3 on the ocean floor occurs where ⌦ > ⌦crit in the model’s420

bottom layer; where ⌦ < ⌦crit, all CaCO3 reaching the model’s bottom layer is dissolved.421

All CaCO3 is assumed to be calcite, thus ignoring the distinction between the mineral422

forms calcite and aragonite, which may be important in modulating dissolution depths423

(Gangstø et al., 2008).424

In order to achieve balanced global ocean tracer inventories, we impose global co-425

e�cients that scale burial of carbon, phosphorus, and silicon linearly following applica-426

tion of the initial empirical relationships. The burial scaling factor for particulate organic427

nitrogen is the same as for particulate organic carbon. These coe�cients enable enforc-428

ing a match between globally-integrated burial and global riverine inputs, thus enforc-429

ing equilibrium in the preindustrial climate. The global burial coe�cients were tuned430

online in a spin-up configuration (see below), adjusting the coe�cient to force burial to431

match inputs on a 10-year timescale. To enable this, we compute an exponentially-weighted432

moving average of each term online in the model, thus filtering out temporal variabil-433

ity below the 10-year timescale, and adjusting the coe�cients at each time step. ⌦crit434

was also tuned in the spin-up runs, to ensure a balanced alkalinity inventory.435

2.2.8 Dissolved oxygen436

During the ocean-tracer spin-up of the CESM2 model, we found that ventilation437

of the deep North Pacific was very sluggish in the coupled model, leading to severe oxy-438

gen depletion over a large portion of the interior water column. The problem is evidenced439

by simulated natural radiocarbon age in the deep North Pacific being twice that of ob-440

servations (see Results). We were not able to alleviate the oxygen depletion by compen-441

sating for the circulation bias via tuning of MARBL parameters and it was too late in442

the CMIP6-driven development cycle to explore changes in the coupled model config-443

uration to improve the ventilation. While ventilation biases are common in coarse res-444

olution OGCMs, the North Pacific oxygen depletion in the spin up was so intense and445

widespread that we were concerned about large-scale denitrification leading to extensive446

loss of fixed nitrogen, which would perturb other aspects of the ocean biogeochemical447

simulation. Therefore, we were forced to address the problem via ad hoc means: we im-448

plemented a scale factor to reduce oxygen consumption in the North Pacific; oxygen con-449

sumption is multiplied by this scale factor, which was set to 0.3 in the deep Pacific (be-450

low 1500 m and north of 20�S) and 1.0 elsewhere; the scale factor changes linearly from451

1.0 at 40�S to 0.3 at 20�S and similarly between 750 m and 1500 m depth. This ad hoc452

scaling of oxygen consumption breaks stoichiometric relationships between oxygen and453

other biogeochemical tracers, invalidating assumptions commonly made in the analysis454

of biogeochemical simulations (e.g., computing preformed nutrients). In order to avoid455

confusion from potential users of CESM2 CMIP6 output, we opted to withhold publi-456

cation of oxygen-related fields from CESM2 CMIP6 experiments.457

2.2.9 MARBL features not enabled in CMIP6458

The CESM2-CMIP6 integrations include calcification simulated by the implicit cal-459

cification treatment described above. Recent developments have parameterized a prog-460

nostic phytoplankton calcifier in MARBL that is modeled on coccolithophore physiol-461

ogy (Krumhardt et al., 2019). The ratio of calcification to photosynthesis (rCaCO3:C) by462

the coccolithophore functional type is responsive to environmental conditions, where rCaCO3:C463

is a function of temperature, nutrients, and CO2. This enables a calcification response464

to ocean acidification, among other environmental changes (for further details see Krumhardt465

et al., 2019).466

MARBL includes a representation of carbon isotopes, which follows on the imple-467

mentation in POP by Jahn et al. (2015). The carbon isotope tracers in MARBL were468
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not enabled for the CESM2 CMIP6 integrations. An abiotic radiocarbon tracer imple-469

mented in POP was enabled for these runs, however (see below).470

As mentioned above, the number and definition of plankton functional types in MARBL471

is flexible and can be configured at runtime via an input file. Ecosystem models with ad-472

ditional resolved plankton groups may be useful for coupling with models of higher trophic473

levels, providing a framework for understanding climate-driven variations in potential474

fisheries yield, for instance. The Size-based Plankton Ecological Traits (SPECTRA) ver-475

sion of MARBL employs allometric, i.e., size-based, scaling for various aspects of organ-476

ismal physiology such as metabolic rates, resource acquisition, mortality, and predator-477

prey interactions, while maintaining important “trait-based” functions that are impor-478

tant for elemental cycles (e.g., opal production by diatom groups). The resulting MARBL-479

SPECTRA configuration has nine phytoplankton and six zooplankton PFTs represent-480

ing various planktonic taxa within the 0.5 µm to 20mm size range, allowing explicit sim-481

ulation of food resources for higher trophic levels.482

2.2.10 Ancillary tracers483

The simulated circulation of an ocean model plays a critical role in the ability of484

the ocean model to skillfully simulate biogeochemical tracers (Doney et al., 2004). In CESM2485

experiments for CMIP6, the ocean model was run with several ocean diagnostic tracers:486

abiotic radiocarbon, chlorofluorocarbons (CFCs), and sulfur hexafluoride (SF6). These487

tracers provide information about the ocean model’s circulation that is relevant to the488

simulation of biogeochemical tracers. In particular, the natural component of abiotic ra-489

diocarbon provides information about the ocean model’s circulation on multi-centennial490

and longer timescales, due to its 5730-year half-life. This information is complemented491

on decadal time-scales by the bomb-spike component of abiotic radiocarbon and the CFC492

and SF6 tracers. While these diagnostic tracers are not included in the MARBL library,493

we analyze some aspects of their simulated values to put the analysis of the MARBL trac-494

ers in the appropriate context of the simulated flow. The implementation of these diag-495

nostic tracers in CESM2 follows the protocols described in Orr et al. (2017). The abi-496

otic radiocarbon implementation is largely based on the implementation described in Jahn497

et al. (2015).498

Following Orr et al. (2017), the abiotic radiocarbon tracer is implemented as two499

abiotic tracers, DICabio and 14DICabio. Because these tracers are abiotic, they are not500

directly comparable to observations individually. We instead compare to �14C, the iso-501

topic fractional abundance of 14C compared to 12C, corrected for biological fractiona-502

tion and normalized by dividing 14C/12C by 14rstd, which is 14C/12C from a pre-bomb503

standard sample. Following Orr et al. (2017), the modeled tracer 14DICabio is normal-504

ized by dividing by 14rstd. Because it is abiotic and is not linked to biological carbon cy-505

cling, the modeled tracer 14DICabio does not require a fractionation correction; there-506

fore, given this implementation, �14C for the model is computed as507

�14C = 1000 ·
⇣
14DICabio/DICabio � 1

⌘
. (14)

2.3 Numerical experiments508

As mentioned above, the experiments described here are from the CESM2 contri-509

bution to CMIP6 (Eyring et al., 2016). We analyze 3 types of experiments: a preindus-510

trial control experiment, experiments spanning the recent historical past, and future sce-511

nario experiments. In the preindustrial control experiment, referred to as piControl, pre-512

scribed forcings used by the model repeatedly cycle through values representative of the513

year 1850. The initialization of the piControl experiment is described below. The exper-514

iments of the recent historical past, referred to as historical, were run using prescribed515

forcings for years 1850–2014. These experiments were initialized from the piControl ex-516

periment, using the model’s state at 1 January, taken from di↵erent years. We analyze517
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11 ensemble members of this type of experiment. The only di↵erence between these en-518

semble members is the year of the piControl experiment that their initial state came from.519

The future scenario experiments follow the protocols of Scenario Model Intercompari-520

son Project (ScenarioMIP) (O’Neill et al., 2016). The scenarios, referred to as Shared521

Socioeconomic Pathways (SSPs), were generated using integrated assessment models, based522

on a combination of di↵erent assumptions about societal development and target radia-523

tive forcings. We analyze 3 ensemble members of 4 di↵erent SSPs that span a range of524

anthropogenic impacts on the climate system. These experiments were initialized from525

the end of di↵erent historical experiments and were run, and used prescribed forcings,526

for years 2015-2100.527

2.3.1 Initialization of piControl528

To initialize the piControl, we applied a spin-up methodology to equilibrate bio-529

geochemical tracers, including abiotic carbon and ideal age, to the simulated circulation.530

The spin-up was conducted using forcing and physical state extracted from a twenty-one531

year segment of a previous fully-coupled CESM2 experiment. The forcing was applied532

cyclically to the ocean and sea-ice component models for spin-up, which yields a much533

lower computational cost than the fully coupled system. The objective of the spin-up534

was to find a quasi-steady-state tracer distribution; this entails minimizing the di↵er-535

ence in the tracer distributions between the beginning and end of the selected twenty-536

one year forcing period. The ocean physical state was reset at the beginning of each twenty-537

one year cycle, keeping it synchronized with the surface forcing and eliminating drift in538

temperature and salinity, for example. The spin-up was run for 1029 years. In the spin-539

up, the ⌦crit value (the threshold for CaCO3 burial; see above) was manually adjusted540

at several points during the spin-up to ensure that loss of alkalinity from burial of CaCO3541

balanced riverine input of alkalinity. The final threshold value was 0.89, which was the542

value used in all subsequent experiments. Scaling coe�cients applied to the burial of POM543

and silica at the seafloor (see above) were automatically adjusted in order to balance burial544

of carbon, phosphorus, and silicon with corresponding riverine inputs. All subsequent545

experiments used the values of the scaling factors determined in the spin-up. At several546

points during the spin-up, a Newton-Krylov based solver, based on (Lindsay, 2017), was547

used to more completely spin up a subset of the biogeochemical tracers. This Newton-548

Krylov based solver was applied to dissolved organic matter tracers (semi-labile and re-549

fractory), DIC, alkalinity, abiotic carbon tracers, and ideal age. The solver was not ap-550

plied to other biogeochemical tracers because it had not yet been successfully extended551

to them. For each of tracers where it is applied, the Newton-Krylov approach solved di-552

rectly for tracer equilibrium, assuming a fixed cyclo-stationary productivity field. The553

tracers to which the Newton-Krylov solver was applied are more equilibrated than one554

would expect from the duration of the spin-up. The globally-integrated air-sea CO2 flux555

at the end of the spin-up was ⇠0.02 Pg C yr�1. The implication of this small air-sea CO2556

flux is that riverine inputs of carbon are nearly completely balanced by sediment burial.557

3 Observational datasets558

We used several observationally-based datasets for model validation. Model fields559

were averaged over the period 1990–2014, unless noted otherwise, and averaged across560

ensemble members to assess the simulated mean-state in comparison with observations.561

Model chlorophyll fields were compared to climatological seasonal chlorophyll means de-562

rived from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite over the pe-563

riod September 1997 to December 2010, calculated using the GSM (Garver-Siegel-Maritorena564

model) algorithm (Maritorena et al., 2002; Maritorena & Siegel, 2005). We compared565

these to chlorophyll concentrations from the upper level of the ocean model (top 10 m).566

Modeled inorganic nutrient fields were compared those from the World Ocean Atlas ver-567

sion 2018 (WOA; Garcia et al., 2018). Observationally-based CFC and radiocarbon (�14C)568
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distributions were taken from the Global Ocean Data Analysis Project, version 1 (GLO-569

DAPv1) database (Key et al., 2004). The data comprising GLODAPv1 were collected570

over approximately the 1990s; thus, when comparing model output to these data, we use571

11-yr, ensemble-mean averages centered on 1995. GLODAP reports constituent concen-572

trations per mass of seawater. Since the CESM ocean component is volume conserving,573

we convert observation-based concentrations to per-volume units using a constant ref-574

erence density, ⇢ = 1026 kg m�3 (no volume correction is applied to the radiocarbon575

isotope ratio). The simulated oceanic anthropogenic CO2 (Cant) inventory at year 2007576

was compared to values derived from GLODAPv1 (Key et al., 2004; Sabine et al., 2004),577

with a correction for carbon uptake between 1994 and 2007 from Gruber et al. (2019).578

We compare 1990–2014 air-sea CO2 flux to the gridded flux product of Landschützer et579

al. (2017), which we refer to as SOM-FFN, reflecting the two-step method described in580

Landschützer et al. (2016): first a self organizing map (SOM) is used to cluster the global581

ocean into biogeochemical provinces; second, a feed forward neural-network (FFN) is used582

to estimate pCO2 from driver variables (i.e. sea surface temperature) after training us-583

ing observations from the Surface Ocean CO2 Atlas (SOCAT; Bakker et al., 2016). The584

SOM-FFN CO2 fluxes are estimated from pCO2 using the same gas exchange param-585

eterization employed by MARBL (Sweeney et al., 2007) and wind speed derived from586

the National Centers for Environmental Prediction (Kalnay et al., 1996). To evaluate587

simulated dissolved iron (dFe) distributions, we make use of a data compilation extended588

from that in Moore and Braucher (2008) and including data from Tagliabue et al. (2012)589

and the GEOTRACES Intermediate Data Product compilation (Schlitzer et al., 2018).590

We compare simulated DOM distributions to a compilation of observations from Letscher591

and Moore (2015).592

4 Results and discussion593

In this section, we present and discuss several representative diagnostics of the CESM2594

solutions submitted to CMIP6. Our objectives are not to provide a comprehensive anal-595

ysis of these solutions, but rather we aim for a broad overview, illustrating key aspects596

of the ocean biogeochemical simulation and documenting important patterns in the model597

biases. We include a brief treatment of future projections, noting that output from CESM2598

is also included in several model intercomparison papers (e.g., Séférian et al., 2020; Arora599

et al., 2020; Kwiatkowski et al., 2020).600

4.1 Mixed layer depth601

Surface mixed layer depths are a key control on the upper ocean habitat and im-602

portant mediator of water mass ventilation a↵ecting transient tracer uptake. The mixed603

layer depth simulation in CESM2 is therefore of interest in the context of understand-604

ing large-scale biogeochemical distributions and the strength of the biological pump. No-605

tably, the mixed layer depth in the model manifests as a result of interactions between606

the vertical mixing scheme (Large et al., 1994) and both parameterized (e.g., Danaba-607

soglu et al., 2010; Gent & Mcwilliams, 1990; Fox-Kemper et al., 2008) and resolved trans-608

port controlling stratification (Small et al., 2020). Figure 1 shows winter and summer609

distributions of mixed layer depth in CESM2 historical simulations compared with an610

observational estimate. To approximate the mixed layer depth, we use monthly-mean611

salinity and temperature to compute potential density; the mixed layer depth is calcu-612

lated as the depth at which potential density changes by 0.125 kg m�3 from its surface613

value. The same procedure is applied to the World Ocean Atlas observationally-based614

product (Locarnini et al., 2019; Zweng et al., 2019). The model shows broad agreement615

with the observations in terms of the large-scale distribution of mixed layer depth (Fig-616

ure 1 left two columns), but includes some important biases. Notably, high-latitude sum-617

mertime mixed layers tend to be too deep in the model (Figure 1C), including regions618

with very deep biases in the North Atlantic and Southern Ocean. The wintertime mixed619
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layer depth distributions are characterized by heterogeneous biases in the North Atlantic620

(Figure 1F), though these biases are improved relative to older model versions (i.e., CCSM3)621

that lacked a parameterization of density driven overflows representing Denmark Strait622

and Faroe Bank Channel (Danabasoglu et al., 2012). Mixed layer depths are too shal-623

low in the eastern Subpolar North Atlantic and Greenland, Iceland and Norwegian (GIN)624

Seas, but too deep in the Labrador Sea. Wintertime mixed layer depths are too shallow625

in the Subantarctic along the northern flank of the Antarctic Circumpolar Current (ACC)626

(Figure 1F). These biases are likely attributable to the representation of horizontal ad-627

vection and insu�cient transport of warm, salty subtropical waters into the ACC region628

(Small et al., 2020). The biases in the Subantarctic likely restrict Southern Ocean up-629

take of transient tracers (next section). Furthermore, the mixed layer depth simulation630

a↵ects the seasonal evolution of NPP and air-sea CO2 fluxes. For example, since iron631

is a critical control on Southern Ocean phytoplankton blooms, substantial biases in the632

mixed layer depth may result in poor simulation of iron supply, which is thought to be633

mediated largely by seasonal entrainment (Tagliabue et al., 2014).634

4.2 Ventilation tracers635

We examined the simulated distribution of three tracers: CFC-11, total radiocar-636

bon (i.e., natural plus the “bomb-spike”; �14C), and anthropogenic CO2 (Cant). CFC-637

11 and �14C provide a means to assess the simulated circulation and potential biases638

in ventilation; as noted above, these tracers are simulated in the CESM2 ocean compo-639

nent, not within MARBL. However, we include them here as circulation biases provide640

an important context for understanding biogeochemical distributions. Since CFC-11 up-641

take is concentrated in water masses with ventilation ages of up to several decades (e.g.,642

Dutay et al., 2002), biases in CFC-11 uptake are predominately informative of ventila-643

tion in thermocline waters. In order to isolate the influence of ventilation processes on644

CFC-11, we examine the partial pressure of CFC-11 (pCFC-11), thereby removing the645

influence of temperature and salinity biases on the tracer distribution. �14C, by con-646

trast, provides an indication of the fidelity of deep ocean overturning circulation on cen-647

tennial timescales (e.g., Matsumoto, 2007). Rather than examine radiocarbon-derived648

estimates of circulation age, we simply present �14C distributions directly as a quali-649

tative indication of ventilation biases.650

pCFC-11 highlights significant biases in thermocline ventilation in CESM2, with651

deficits in thermocline waters in both the Pacific and Atlantic basins (Figure 2C, F) and652

evidence of too much uptake in North Atlantic Deep Water (NADW; Figure 2C). These653

biases are largely similar to those found in CESM1 simulations (Long et al., 2013). Larger654

than observed values of �14C are evident in the North Atlantic, confirming indications655

of vigorous NADW formation evident in pCFC-11 (Figure 3C). The most dramatic as-656

pect of the 14C simulation, however, is the very large �14C deficit in the deep North Pa-657

cific (Figure 3F); this illustrates the sluggish circulation simulated by the coupled model658

in this region. As described above, the CESM2 simulation of 14C is abiotic, so does not659

represent the vertical transfer of 14C accomplished by sinking organic matter. The in-660

clusion of biology would cause the simulated deep ocean �14C to be less depleted, re-661

ducing the magnitude of the apparent bias; however, this e↵ect is expected to quite small662

(e.g., 25‰) relative to the magnitude of the bias (Jahn et al., 2015). These deep circu-663

lation biases are much worse than in previous versions of the model (i.e., CESM1). No-664

tably, testing indicates that running the CESM2 ocean component with reanalysis forc-665

ing restores the deep ocean circulation. Since changes to the physical ocean component666

between CESM1 and CESM2 were quite minimal, we thus attribute this bias to changes667

in the atmosphere component, though the specific mechanism remains under investiga-668

tion. Oddly, Heuzé (2021) determined that CESM2 was one of the best performing mod-669

els in terms of AABW and NADW formation; this study, however, was based on met-670

rics of deep convection and watermass properties; it did not include an examination of671

transient tracers.672
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4.3 Anthropogenic CO2 inventory673

Ventilation tracers are useful in the context of understanding biases in the uptake674

of Cant, since Cant uptake is largely mediated by overturning circulation. To compute675

Cant, we make use of the two parallel carbonate systems simulated by MARBL. In the676

CESM2 CMIP6 integrations, these tracer systems are subject to identical transport and677

source/sink terms; they di↵er only in their atmospheric CO2 boundary conditions: the678

primary DIC tracer is exposed to increasing CO2 according to historical or scenario forc-679

ing, while the secondary DIC tracer, “DIC ALT CO2”, is forced with a constant prein-680

dustrial (1850) value for atmospheric CO2 (284.7 ppm). We thus define anthropogenic681

CO2 as682

Cant = DIC�DIC ALT CO2

Note that this definition di↵ers subtly from subtracting a DIC field obtained from an683

1850-control integration: changes in climate impact both DIC and DIC ALT CO2, so684

the resulting Cant does not include the impact of climate on natural CO2 as it would if685

the baseline DIC field were taken from an 1850-control integration. While climate im-686

pacts on natural CO2 are significant under future scenarios with strong radiative forc-687

ing, this feedback is modest over the historical period.688

CESM2 simulates weaker Cant uptake than suggested by observational estimates689

(Figure 4). The model has Cant deficiencies of order 10 mmol m�3 evident broadly in690

thermocline waters. The total GLODAP-based observational estimate for the Cant in-691

ventory at year 2007 is 152±19 Pg C (Gruber et al., 2019; Sabine et al., 2004); the CESM2-692

simulated inventory at this time is 114 Pg C, or roughly 75% of the observations. Note693

that the GLODAP based observations to which we are comparing omit coverage in some694

oceanic regions (i.e., the Gulf of Mexico, the Arctic Ocean). The CESM2 simulated in-695

ventory for the portion of the ocean included in the gridded observational product is 106 Pg C696

at year 2007, compared with⇠137 Pg C for the observationally-based Cant estimates. A697

caveat with this comparison is that the model Cant field only includes carbon uptake since698

1850. As noted in Lindsay et al. (2014), Figure 3 of Khatiwala et al. (2009) indicates pre-699

1850 anthropogenic ocean uptake to be about 12±3 Pg C. Taking this into account re-700

duces, but does not eliminate the model’s low-uptake bias.701

4.4 Macronutrients702

A primary objective of MARBL is to represent the structure and function of the703

biological pump. The biological pump is fueled by nutrients; export of these constituents704

from the surface ocean via sinking and dissolved organic matter plays a dominant role705

in structuring nutrient distributions. Macronutrients are reasonably well-observed in the706

ocean and thus provide a good constraint on model performance. Figure 5 presents a com-707

parison of surface NO3, PO4, and SiO3 distributions from CESM2 with WOA observa-708

tions. The overall geographical patterns of these macronutrients are well represented in709

CESM2, with increased surface nutrients at the high latitudes and equatorial regions and710

low nutrient concentrations in subtropical gyre regions. However, the simulated surface711

nutrient concentrations are too high in the subtropical oligotrophic gyres and too low712

in the Subarctic North Pacific; furthermore, there are substantial biases in the South-713

ern Ocean. Simulated surface NO3 and PO4 are both too low in the Southern Ocean,714

by ⇠4–8 mmol m�3 and ⇠0.25–0.55 mmol m�3, respectively. Conversely, SiO3 concen-715

trations are too low in the Antarctic zone and too high in the Subantarctic. Surface nu-716

trients reflect the balance of net community production (NCP) and physical supply, which717

together determine the extent of nutrient utilization. Thus, negative biases in surface718

nutrients in the Southern Ocean suggest that the model may over estimate NCP and the719

simulated algal community composition includes an insu�cient contribution from diatoms—720

or the Si to N stoichiometric ratio of diatom production, which is higher under exten-721

sive Fe limitation (Moore et al., 2004), may be too low. Alternatively, the nutrient con-722

tent of water masses upwelling in the Southern Ocean may already be too low—indicative723
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of a large-scale bias in the nutrient simulation that may be related to excessive trapping724

of nutrient in the North Pacific.725

A latitude-depth view of nutrient distributions lends credence to this latter hypoth-726

esis. Figures 6–8 show zonal-mean, depth-latitude plots of macronutrients in the Atlantic727

and Pacific Ocean basins, indicating how the vertical structure of the simulated macronu-728

trients compares with observations. While the simulated nutrient distributions show over-729

all structure that is similar to the observations, several key biases indicate deficiencies730

in the CESM2 solutions. Most notably, these include NO3 depletion in the tropical ther-731

mocline (Figure 6C, F), which is driven by denitrification in overly extensive oxygen de-732

ficient zones, and excessive accumulation of macronutrients in the deep North Pacific,733

attributable to sluggish deep circulation in this region.734

The vertical structure of PO4 provides an indication of the functioning of the bi-735

ological pump without the complications of denitrification; the zonal means of simulated736

PO4 indicate excessive nutrient concentrations in the tropical thermocline, particularly737

in the Atlantic, and nutrient trapping the deep North Pacific (Figure 7). The negative738

bias in nitrate and phosphate in the Southern Ocean surface waters (Figure 5) is also739

evident in the ocean interior over much of the Southern Hemisphere water column (Fig-740

ure 7C, F). This pattern demonstrates that the whole Southern Ocean nutrient inven-741

tory is too low in the model, suggesting that too weak supply of nutrients to the surface742

ocean via upwelling in this region is partially responsible for negative surface nutrient743

biases.744

The situation is subtly di↵erent for silicate, which displays a positive surface bias745

over much of the Southern Ocean (Figure 5I)—but a dipole bias pattern in the zonal-746

mean column view (Figure 8C, F). This pattern is characterized by negative biases in747

the region associated with AABW and the deep overturning cell, but positive biases in748

upper, equatorward portion of the column associated with the upper cell and where Antarc-749

tic Intermediate Water and Subantarctic Mode water are formed. These patterns indi-750

cate that while SiO3 supply via upwelling to Southern Ocean surface waters may be too751

weak, opal production is also too weak, resulting in excessive leakage of SiO3 from the752

Southern Ocean (sensu Sarmiento et al., 2004). Sarmiento et al. (2007) demonstrated753

that the Southern Ocean e↵ectively traps silica (see also Primeau et al., 2013; Moore et754

al., 2018), a phenomena we have also demonstrated operates in POP for CaCO3 and al-755

kalinity (Krumhardt et al., 2020). In this vein, excessive silica leakage from the South-756

ern Ocean in CESM2 may help explain why upper-ocean SiO3 concentrations are too757

high at the surface over much of the rest of the global ocean, with the exception of the758

North Pacific (Figure 8).759

4.5 Nutrient limitation760

Nutrients and temperature play important roles in structuring phytoplankton pro-761

ductivity throughout the global ocean. The most limiting nutrients for each phytoplank-762

ton functional type are shown in Figure 9; these fields are computed as phytoplankton-763

biomass-weighted means of the upper-ocean limitation terms, thereby providing a pic-764

ture of resource limitation relevant to understanding vertically integrated production.765

Small phytoplankton in CESM2 are limited by N in much of the low to mid-latitudes,766

except in the South Pacific, where Fe is primarily limiting growth. Indeed Fe limits pro-767

duction of small phytoplankton and diatoms in most oceanic regions south of 15�S. These768

major patterns of phytoplankton N and Fe limitation are generally supported by obser-769

vations (e.g., Moore et al., 2013). Diatoms are limited by SiO3 in regions bordering the770

continents in the Southern Hemisphere, as well as in the North Pacific and North At-771

lantic in CESM2. Diazotrophs fix N and are therefore not limited by N availability; they772

are limited by Fe and P in the tropics and subtropics (Sañudo-Wilhelmy et al., 2001; Letscher773

& Moore, 2015); temperature limits the geographic distribution of diazotrophs to warmer774
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waters (>15�C; Figure 9C). P limitation is mainly evident in the low latitude North At-775

lantic for all three phytoplankton functional types; here increased Fe deposition from Sa-776

haran aeolian fluxes stimulate N fixation by diazotrophs making P the limiting nutri-777

ent (Wu et al., 2000; Sañudo-Wilhelmy et al., 2001).778

4.6 Surface chlorophyll779

Satellite-derived observations of chlorophyll provide a proxy for phytoplankton dis-780

tribution and biomass. Here, we compare seasonal (DJF and JJA) mean chlorophyll con-781

centrations from SeaWiFS to CESM2 chlorophyll concentrations in the surface ocean (Fig-782

ure 10). While CESM2 simulates the overall patterns of chlorophyll distribution during783

the Southern Hemisphere growing season, it is markedly too high for certain regions (Fig-784

ure 10A–C). Strong positive biases are evident in the Subantarctic region of the South-785

ern Ocean, especially in the Atlantic sector and south of Australia. Chlorophyll concen-786

trations in the eastern equatorial Pacific are also overestimated by CESM2. Despite a787

geographic pattern that is similar to the observations, Northern Hemisphere summer chloro-788

phyll concentrations are also too high in the model for the North Pacific and North At-789

lantic, according to the SeaWiFS observations (Figure 10D–F). Another prevalent bias790

apparent in the model is in the coastal regions (Figure 10). Coastal phytoplankton pro-791

duction and chlorophyll concentrations are commonly underestimated in nominal 1-degree792

(or lower) resolution GCMs (Laufkötter et al., 2015)—though it is also the case that the793

satellite observations may overestimates chlorophyll in the coastal zone (e.g., Gregg &794

Casey, 2004).795

4.7 Net primary productivity and export796

Primary production by marine phytoplankton is the ultimate constraint on the strength797

of the biological pump and also forms the ecological base of the ocean food web. Satel-798

lite observation-based estimates of globally integrated net primary production (NPP)799

typically fall within the range of 43–67 Pg C year�1 (Behrenfeld et al., 2005; Behren-800

feld & Falkowski, 1997). Globally integrated NPP in CESM2 is 48.9 Pg C yr�1 over the801

period 1990–2014 (Table 3, Figure 11), within the range of satellite-based estimates. The802

distribution of NPP in CESM2 follows a familiar pattern, with the highest rates of NPP803

in equatorial upwelling regions (Figure 11A); however, the NPP di↵erence between the804

subtropics and extra-tropic appears less pronounced than that evident in satellite-based805

estimates (e.g., Behrenfeld et al., 2005). Simulated globally-integrated particulate ex-806

port at 100 m for the same period is 7.1 Pg C yr�1 (Table 3, Figure 11), which is also807

broadly consistent with observationally-based estimates, considering uncertainty (e.g.,808

Henson et al., 2011; Siegel et al., 2014; Boyd & Trull, 2007). The distribution of partic-809

ulate export at 100 m has greater spatial variability than NPP (Figure 11B), as it re-810

flects a combination of NPP and controls on export mediated by phytoplankton com-811

munity composition. Indeed, the global mean particulate export ratio (pe-ratio = sink-812

ing export/NPP) in CESM2 is about 0.15, but varies by more than a factor of 3 (Fig-813

ure 11C). Mineral ballasting by CaCO3 and opal contributes to high pe-ratios (Armstrong814

et al., 2002; Lima et al., 2014), with the regions of high opal export, indicative of diatom-815

dominated assemblages, corresponding to the locations of high pe-ratio (Figure 12). No-816

tably, the elemental composition of exported organic matter varies in MARBL. N:P con-817

centrations are elevated below the subtropical oligotrophic gyres, which is broadly con-818

sistent with observations (e.g., Martiny et al., 2013) and inverse model results (Wang819

et al., 2019). These patterns are enabled by the variable P:C uptake ratios.820

4.8 Air-sea CO2 fluxes821

Figure 13 shows a comparison of CESM2 simulated air-sea CO2 (1990–2014), as822

well as an observationally-based flux estimate (Landschützer et al., 2017). In general,823
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the simulated flux field compares quite well with the observations (Figure 13A, B). The824

globally-integrated flux is larger in magnitude (�2.0 Pg C yr�1) than in the observational825

product (�1.4 Pg C yr�1), though this discrepancy is not significant if riverine carbon826

inputs are properly accounted for in the comparison. In nature, riverine carbon fluxes827

to the ocean induce net outgassing due to an imbalance between inputs and burial at828

the seafloor (Gruber et al., 2009); recent estimates suggest this flux is about 0.45–0.78 Pg C yr�1
829

(Resplandy et al., 2018). Recall from above, however, that the CESM2 spin-up method-830

ology aimed to achieve a balance between riverine inputs and burial of carbon at the seafloor831

and near-zero net air-sea flux in the preindustrial state. Considering this methodology832

then, a correction for riverine fluxes would suggest that the model’s simulated globally-833

integrated air-sea CO2 flux is indistinguishable from that implied by the observations.834

The model simulates outgassing in the tropics, most notably in the equatorial Pacific,835

and CO2 uptake at mid- and high-latitudes (Figure 13A, B). The seasonal cycle of zonal-836

mean CO2 flux is also well simulated—though notable di↵erences in the seasonal evo-837

lution of the fluxes are evident in the Southern Ocean poleward of 45�S (Figure 13C, D).838

This region is challenging to model, in part because the net air-sea CO2 flux manifests839

as the residual between opposing thermal and biologically-driven tendencies (e.g., Mongwe840

et al., 2018).841

4.9 Dissolved organic matter842

A fraction of plankton loss terms are routed to the DOM pool, which is subsequently843

transported by circulation, and degraded by microbial activity. DOM thus provides a844

transport pathway for the export of biogeochemical constituents to the deep ocean. In845

particular, it is thought to account for ⇠20% of total carbon export (Hansell, 2013). In-846

deed, in CESM2 DOC export across 100 m is 1.91 Pg C yr�1 during 1990–2014, which847

accounts for 21% of the total organic carbon flux across 100 m (particulate flux is 7.1 Pg C yr�1,848

Figure 11B). Figure 14 shows upper 100 m total DOM (i.e., semi-labile plus refractory)849

concentrations simulated by CESM2 as well as observations of these constituents com-850

piled by Letscher and Moore (2015). The distribution of DOM partially reflects surface851

water residence times, with high concentrations accumulating within the permanently852

stratified oligotrophic ocean and lower surface concentrations found within the equato-853

rial and Southern Ocean upwelling regions. The simulated global maxima in surface DOC854

(76–96 µM) and DON (5.5–6.5 µM) concentrations are found in the tropical to subtrop-855

ical Atlantic and Indian Ocean basins, in agreement with the observations. Simulated856

global maxima in surface DOP concentrations (0.23–0.28 µM) are found in the subtrop-857

ical Pacific Ocean and northern Indian basin, while the global minimum is found in the858

subtropical North Atlantic Ocean (<0.08 µM), also in agreement with the observations.859

Important to capturing the global minimum in surface DOP within the subtropical North860

Atlantic is the ability for phytoplankton to use semi-labile DOP as a P source for growth861

when inorganic phosphate is scarce—as is the case for the North Atlantic subtropical gyre862

(Figure 5). Figure 15 presents two-dimensional histograms, showing the relationship be-863

tween simulated and observed DOM. Very high observed DOM concentrations are likely864

to come from regions with significant riverine influence that may not be adequately cap-865

tured by the model and the supplied riverine DOM forcing. The global-mean elemen-866

tal composition of total DOM in CESM2 is 385:29:1 (C:N:P) in the upper 100 m, sam-867

pled at the same locations as the DOM observations, which have a mean elemental ra-868

tio of 735:60:1 (Letscher & Moore, 2015). This indicates that the MARBL DOM stoi-869

chiometry is P-enriched relative to the observations, while the simulated C:N stoichiom-870

etry is relative close to the observed values (MARBL C:N = 13.3; observed C:N = 12.3).871

4.10 Nitrogen cycle872

Globally-integrated nitrogen fixation over the 1990–2014 period averaged 243 Tg873

N yr�1 (Table 3, Figure 16A); this number is larger than observationally-based estimates,874
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which range from about 100–230 Tg N yr�1 (e.g., Zehr & Capone, 2021; Wang et al.,875

2019). Simulated water column and sedimentary denitrification over this period were 192876

and 71 Tg N yr�1, respectively. Burial of N at the sea floor and surface emissions of am-877

monia account for additional losses from the model, while atmospheric deposition and878

riverine inputs provide additional sources. Collectively, these terms lead to an N cycle879

imbalance of about 10 Tg N yr�1 (Table 3). Unfortunately, the CESM2 simulation of880

dissolved oxygen is inadequate (see above) strongly influencing simulated water-column881

denitrification; therefore, CESM2 cannot be reliably used to study changes to N cycle882

processes with climate.883

4.11 Iron cycle884

Figure 17 illustrates the spatial distribution of the dominant terms in the global885

ocean iron budget as simulated in CESM2. Iron is supplied to the ocean via prognos-886

tic atmospheric deposition (Figure 17A), with a pattern reflecting proximity to conti-887

nental dust sources. The dominant source of iron to the ocean is from marine sediments888

(Figure 17B) with additional contributions from hydrothermal vents (Figure 17C). River-889

ine input of iron is small, accounting for only 0.37 Gmol yr�1. Iron is removed from the890

ocean via burial at the seafloor (Figure 17D). The sources and sinks of dissolved iron in891

the ocean are highly uncertain and model intercomparison activities have demonstrated892

that it is possible to produce realistic dissolved iron concentration fields with very dif-893

ferent inputs and loss terms (Tagliabue et al., 2016). Despite this caveat, there is use-894

ful information in a comparison of simulated dissolved iron concentrations to observa-895

tions (Figures 18 and 19).896

CESM2 captures the dominant structure of dissolved iron reasonably well, with el-897

evated surface concentrations in the tropical Atlantic and much lower concentrations in898

the Pacific. Surface concentration of dissolved iron in the North Pacific appear to be too899

high in the model, which might be attributable to overly di↵usive flow and unrealistic900

transport of sedimentary sources o↵shore. Indeed, we have found that iron supply in the901

North Pacific changes dramatically when integrating the model at high resolution (Harrison902

et al., 2018). Figure 19 shows global histograms of the model and observations; these plots903

indicate that CESM2 does a good job simulating the range of iron concentrations ob-904

served in the ocean, though does not have su�cient representation of waters with very905

low concentrations in the upper ocean. This bias is exacerbated at depth; below 500 m,906

the observations indicate that iron concentrations should be approximately normally-907

distributed with a median concentration of about 0.6 nM—but CESM2 simulates some-908

thing closer to a uniform distribution (Figure 19C), which is likely tied to scavenging rates909

and ligand dynamics.910

4.12 Transient simulations911

Here we include a brief discussion of future scenario integrations conducted with912

CESM2. Space limitations preclude a comprehensive analysis, so we present only a few913

key metrics. Figure 20A shows the prescribed atmospheric CO2 forcing for each of the914

future scenario integrations and Figure 20B illustrates the associated change in sea sur-915

face temperature (SST). The scenarios range from SSP1-2.6—under which CESM2 projects916

about 1.7�C of SST warming at 2100 relative to preindustrial—to SSP5-8.5, under which917

CESM2 projects SST warming of about 4.6�C. CESM2 has an equilibrium climate sen-918

sitivity (ECS, the change in surface temperature for a doubling of atmospheric CO2 above919

preindustrial at equilibrium) of 5.2�C and—more relevant to the simulations at hand—920

a transient climate sensitivity (TCS, the surface temperature warming around the time921

of CO2 doubling in a 1% per year CO2 increase simulation) of 2.0�C. The CMIP6 multi-922

model mean for these quantities is 3.7±1.1 (standard deviation) for ECS and 2.0±0.4923

for TSC (Meehl et al., 2020) and, indeed, CESM2 simulates transient warming close to924

the multi-model mean (Brunner et al., 2020). The transient behavior of globally-integrated925
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air-sea CO2 flux is shown in Figure 20C as a function of time and Figure 20D as a func-926

tion of atmospheric CO2. Importantly, for the two high-CO2 scenarios (SSP3-7.0 and927

SSP5-8.5), the ocean CO2 uptake saturates (and under SSP5-8.5 even begins to decline),928

in spite of continually increasing atmospheric CO2. This behavior is indicative of feed-929

back; in particular, as the ocean carbon inventory increases, so does the Revelle Factor,930

limiting additional uptake (e.g., Schwinger et al., 2014). Furthermore, climate warming931

increases buoyancy stratification in the upper ocean, thereby reducing vertical exchange932

and the transfer of excess carbon into the ocean interior. Air-sea CO2 flux in the two933

lower CO2 scenarios (SSP1-2.6 and SSP2-4.5) shows somewhat distinct behavior, as these934

scenarios both include a reduction in the atmospheric CO2 growth rate—in SSP1-2.6,935

there is actually a negative trend in atmospheric CO2 beyond year 2070 (Figure 20A).936

As the atmospheric CO2 forcing is relaxed, ocean CO2 uptake declines; notably, in SSP1-937

2.6, this decline means that air-sea CO2 uptake is weaker for the same atmospheric CO2938

mixing ratio than in the historical period (Figure 20D). This phenomenon has impor-939

tant implications for managing climate mitigation; CO2 previously absorbed by the ocean940

drives hysteresis, meaning that the ocean sink will decline in e�ciency as emissions-reductions941

slow the atmospheric growth rate.942

The CESM2 transient integrations indicate contrasting projections for globally in-943

tegrated NPP and export (Figure 21). NPP is simulated to increase over the historical944

period and continue increasing in the future, particularly under the high emission sce-945

nario SSP5-8.5. However, CESM2 projects a reduction in globally integrated POC flux946

at 100 m for all future scenarios (Figure 21B). These global changes reflect spatially het-947

erogeneous patterns. The North Atlantic is projected to undergo strong reductions in948

NPP and export production, while NPP is projected to increase over much of the rest949

of the ocean (except in the western tropical Pacific and Indian basins) (Figure 22). Crit-950

ically, shifts in algal community composition are a significant driver of changes in the951

pe-ratio. Globally, there is a decline in the pe-ratio under all warming scenarios, as well952

as a shift in algal community composition leading to diminished diatom prevalence rel-953

ative to small phytoplankton. These changes are also spatially heterogeneous, however,954

as diatoms decline over most of the ocean except, most notably, in the Southern Ocean,955

where their relative prevalence increases dramatically (diatom fractions also increase in956

the equatorial Pacific) (Figure 22C, D). These patterns are broadly consistent with re-957

sults from CMIP5, in which models capable of transitioning production from large phy-958

toplankton (diatoms) to small phytoplankton projected only weak reductions in NPP,959

but significant changes in export (Fu et al., 2016; Bopp et al., 2013). As noted in Laufkötter960

et al. (2015), model di↵erences in NPP reflect di↵erent choices in treatment of temper-961

ature sensitivity and model nutrient dynamics, linked to the sensitivity of nutrient sup-962

ply to stratification. Most CMIP5 models projected decreasing globally integrated NPP963

ranging from �1% to �15% under RCP8.5 (Bopp et al., 2013); CMIP6 models do not964

show as much of a decline in NPP (Kwiatkowski et al., 2020).965

5 Conclusion966

We have presented a technical description of MARBL, which is the ocean biogeo-967

chemistry component for the CESM2. MARBL is a state-of-the-art global ocean biogeo-968

chemistry model, with a prognostic representation of the coupled cycles of nitrogen, phos-969

phorus, silicon, iron, carbon and oxygen. The model is built on a plankton functional970

type paradigm, and supports flexible ecosystem configuration. In addition to document-971

ing MARBL, we have presented and discussed diagnostics to evaluate the ocean biogeo-972

chemistry simulations in the fully-coupled CESM2 integrations submitted to CMIP6. Our973

analysis highlights challenges associated with the development and application of ocean974

biogeochemical models in the context of coarse resolution OGCMs. The CESM2 solu-975

tions su↵er from weak thermocline ventilation, which produces overly extensive oxygen976

minimum zones and weakens uptake of transient tracers. Deep ocean circulation in CESM2977
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is also sluggish—so much so, in fact, that we had to artificially reduce oxygen consump-978

tion in the North Pacific to prevent widespread anoxia in the model. Unfortunately, the979

severity of this bias required several hundred years of integration to become clear, mak-980

ing it a challenging issue to address in the context of model development. While biases981

in circulation impose limits on the fidelity of model solutions, in general MARBL cap-982

tures large-scale biogeochemical distributions reasonably well, and provides a platform983

for researching interactions between climate, nutrient and carbon cycling in the ocean.984

MARBL has been explicitly designed to facilitate coupling with multiple OGCMs,985

an e↵ort motivated in part by interest in engaging a broad research community. This986

capacity is being exercised currently: we presented solutions from MARBL integrated987

in POP2, and we have implemented MARBL in MOM6, the ocean component for CESM988

version 3; the Department of Energy has implemented MARBL in MPAS-O, the ocean989

component for the Energy Exascale Earth System Model (E3SM) (Burrows et al., 2020);990

e↵orts are underway to implement MARBL in the Regional Oceanographic Model (ROMS)991

(Shchepetkin & McWilliams, 2005), enabling high-resolution regional configurations; and992

finally, MARBL has been coupled to the Ocean Circulation Inverse Model (OCIM) (DeVries993

& Primeau, 2011; DeVries, 2014) leveraging an interface layer suitable for Matlab and994

Python applications. Future goals include establishing a one-dimensional test-bed frame-995

work, enabling more comprehensive parameter exploration and an educational resource.996

Our goals explicitly include building a diverse, inclusive community of researchers involved997

in the development and application of MARBL across a range of use-cases. Managing998

such a development process imposes some challenges, but also has the potential to yield999

significant benefits derived from synergies across diverse applications.1000

As mentioned above, the ecosystem configuration in MARBL is flexible, and im-1001

provements in the simulated phytoplankton and zooplankton diversity is currently an1002

area of active development. Part of the motivation for this work is to improve the ca-1003

pacity for CESM to address critical questions related to the impacts of climate variabil-1004

ity and change on marine ecosystems. Another area of interest involves climate inter-1005

vention strategies, including the e�cacy and potential impacts associated with ocean car-1006

bon dioxide removal (CDR) strategies.1007

In summary, we aim to continue to develop MARBL as a community resource and1008

cutting-edge research tool. Work continues to improve MARBL, building toward a com-1009

prehensive treatment of ocean biogeochemical cycles, capable of robust assessments of1010

climate impacts and the e↵ect of human manipulations.1011
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Ragueneau, O., Tréguer, P., Leynaert, A., Anderson, R., Brzezinski, M., DeMas-1422

ter, D., . . . et al. (2000, Dec). A review of the Si cycle in the modern1423

ocean: recent progress and missing gaps in the application of biogenic opal1424

as a paleoproductivity proxy. Global and Planetary Change, 26 (4), 317–1425

365. Retrieved from http://dx.doi.org/10.1016/S0921-8181(00)00052-7 doi:1426

10.1016/s0921-8181(00)00052-71427

Randerson, J. T., Lindsay, K., Munoz, E., Fu, W., Moore, J. K., Ho↵man, F. M., . . .1428

Doney, S. C. (2015). Multicentury changes in ocean and land contributions1429

to the climate-carbon feedback. Global Biogeochem. Cycles, 29 , 744-759. doi:1430

10.1002/2014GB0050791431
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Figure 1. Climatological mixed layer depth (A,D) simulated by CESM2 over 1990–2014 com-

pared with (B,F) observationally-based estimates of mixed layer depth from WOA2013. The

right column shows model biases (C,F). Mixed layer depth was computed using a ��✓ = 0.125

criterion (Monterey & Levitus, 1997). The top row shows summertime distributions, which corre-

spond to June–August means in the Northern Hemisphere and December–February means in the

Southern Hemisphere (A-C). These seasons are reversed for each hemisphere in the bottom row,

which shows winter (D-F).

Figure 2. CESM-simulated zonal-mean partial pressure of CFC-11 (pCFC-11) for 1990–2000

(A,D) compared with observations from GLODAPv1 (B,E) (Key et al., 2004). The right column

shows model biases (C,F). The top row is the distributions for the Atlantic Ocean (A-C) and the

bottom row is the Pacific Ocean distributions (D-F).
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Figure 3. CESM-simulated zonal-mean radiocarbon (14C) distributions for 1990–2000 (A,D)

compared with observations from GLODAPv1 (B,E) (Key et al., 2004). The right column shows

model biases (C,F). The top row is the distributions for the Atlantic Ocean (A-C) and the bot-

tom row is the Pacific Ocean distributions (D-F).

Figure 4. CESM-simulated zonal-mean anthropogenic carbon inventory (Cant) for 2007 (A,D)

compared with observations from GLODAPv1 (B, E) (Key et al., 2004) and adjusted for uptake

between 1994–2007 (Gruber et al., 2019). The right column shows model biases (C,F). The top

row is the distributions for the Atlantic Ocean (A-C) and the bottom row is the Pacific Ocean

distributions (D-F).
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Figure 5. CESM simulated annual mean surface nitrate (A), phosphate (D), and silicate

concentrations (G) for 1990–2014 compared with observations from the World Ocean Atlas, 2018

(B,E,H) (Garcia et al., 2018). Note non-linear color scales. The right column shows model biases

(C,F,I).

Figure 6. CESM-simulated annual mean of zonal-mean nitrate (NO3) distributions for 1990–

2014 compared with the World Ocean Atlas, 2018 (Garcia et al., 2018) (B,E). The right column

shows model biases (C,F). The top row is the distributions for the Atlantic Ocean (A-C) and the

bottom row is the Pacific Ocean distributions (D-F).
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Figure 7. CESM simulated annual mean, zonal-mean phosphate for 1990–2014 compared with

World Ocean Atlas, 2018 (Garcia et al., 2018) (B,E). The right column shows model biases (C,F).

The top row is the distributions for the Atlantic Ocean (A-C) and the bottom row is the Pacific

Ocean distributions (D-F).

Figure 8. CESM simulated annual mean, zonal-mean silicate for 1990–2014 compared with

observations from the World Ocean Atlas, 2018 (Garcia et al., 2018) (B,E). The right column

shows model biases (C,F). The top row is the distributions for the Atlantic Ocean (A-C) and the

bottom row is the Pacific Ocean distributions (D-F).
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Figure 9. The factor most limiting phytoplankton growth for annual means over the period

1990–2014. Limitation terms (with the exception of temperature) are computed as biomass-

weighted vertical averages. The temperature term for diazotrophs is approximated by applying

the temperature threshold for growth (15�C) to annual-mean sea surface temperature.

Figure 10. A comparison of SeaWiFS satellite derived chlorophyll concentration to CESM-

simulated surface chlorophyll (top 10 m). The top row shows December-January-February (DJF)

means, while the bottom row shows June-July-August (JJA) means. SeaWiFS observations are a

mean over the period 1997 to 2010, while model means computed over the period 1990 to 2014.

Figure 11. Net primary production (NPP) and organic matter export in CESM2 over the

period 1990–2014. (A) NPP and (B) particulate organic matter (POC) export at 100 m in mol

m�2 yr�1, with globally integrated values indicated in the title of each panel. (C) The export ra-

tio (i.e., pe-ratio = sinking export/NPP) and (D) the N:P ratio of exported biomass, with global

mean values indicated in title of each panel.
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Figure 12. Mineral fluxes in CESM2 over the period 1990–2014. (A) CaCO3 export at 100 m;

(B) opal export at 100 m. Globally-integrated fluxes are indicated in the title above each panel.

Figure 13. Air-sea CO2 flux. (A) Simulated annual-mean air-sea CO2 flux from CESM2 over

the period 1990–2014. (B) Observationally-based estimate of air-sea CO2 (Landschützer et al.,

2017) based on the method of Landschützer et al. (2016).
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Figure 14. Simulated (left) and observed (right) concentrations of dissolved organic matter

(µM) in the upper 100 m. (A, B) dissolved organic carbon; (C, D) dissolved organic nitrogen; (E,

F) dissolved organic phosphorus. The observations are from Letscher and Moore (2015).

Figure 15. Comparison of simulated dissolved organic matter concentrations with obser-

vations over the upper 1000 m of the water column. Two-dimensional histograms of simulated

versus observed concentrations (µM) for (A) dissolved organic carbon; (B) dissolved organic ni-

trogen; (C) dissolved organic phosphorus. Colors show the number of model-observation pairs

in each bin; the black diagonal line shows a 1:1 relationship; inset text indicates mean bias, cor-

relation, and root mean squared error (RMSE). The observations are from Letscher and Moore

(2015).
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Figure 16. Annual mean (A) nitrogen fixation and (B) water column denitrification simulated

by CESM2 for the period 1990–2014. Global integrals are reported in the figure titles.

Figure 17. Spatial distribution of dominant terms in the CESM2 global iron budget. (A)

Atmospheric deposition; (B) total sedimentary input, include oxic and reducing sedimentary

sources; (C) geothermal input; (D) losses to sediments via burial. The title string of each panel

reports the global integral. Note that the atmospheric deposition term includes a subsurface con-

tribution from iron released when sinking dust is remineralized. This contribution accounts for

5.5 Gmol yr�1. Riverine inputs are not shown; these account for 0.37 Gmol yr�1.
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Figure 18. Dissolved iron concentrations in (left panels) CESM2 simulations over 1990–2014

and (right panels) observations from Schlitzer et al. (2018) with additional observations com-

piled by Tagliabue et al. (2012) and Moore and Braucher (2008). The rows show di↵erent depth

ranges: (A, B) above 100 m, (C, D) between 500 m and 100 m and (E, F) below 500 m.

Figure 19. Histograms of dissolved iron concentrations in CESM2 simulations over 1990–2014

and observations. The model results have been sampled at the locations of the observations. The

rows show di↵erent depth ranges: (A) above 100 m, (B) between 500 m and 100 m and (C) below

500 m.
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Figure 20. Time series of ensemble-mean (A) prescribed atmospheric CO2, (B) CESM2

simulated global mean sea surface temperature, (C) globally-integrated air-sea flux. (D) Globally-

integrated air-sea CO2 flux as a function of atmospheric CO2.
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Figure 21. Globally-integrated time series of simulated (A) net primary productivity (B)

particulate organic carbon (POC) export at 100 m, (C) particulate export ratio (export/NPP),

and (D) the fraction of NPP accomplished by diatoms.

Figure 22. Change between the historical (1990–2014) and end of 21st century (2086–2100)

under SSP5-8.5 for (A) net primary productivity (B) particulate organic carbon (POC) export at

100 m, (C) particulate export ratio (sinking export/NPP), and (D) the fraction of NPP accom-

plished by diatoms.
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