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Abstract

Inversion of seismic data using information from horizontal wells is often is hampered by cumulative well- location errors. These

errors can be significant and propagate to the well-log measurements in the borehole. To achieve a proper data integration and

arrive at correct uncertainty estimates, we formulate the problem in a fully probabilistic framework and present a numerical

approach for improving subsurface imaging using uncertain well-log data and their uncertain locations, as well as uncertain

seismic data. The result is improved model error quantification in the seismic inversion process.
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ABSTRACT  

Inversion of seismic data using information from horizontal wells is often is hampered by cumulative well-
location errors. These errors can be significant and propagate to the well-log measurements in the borehole. 
To achieve a proper data integration and arrive at correct uncertainty estimates, we formulate the problem in 
a fully probabilistic framework and present a numerical approach for improving subsurface imaging using 
uncertain well-log data and their uncertain locations, as well as uncertain seismic data. The result is improved 
model error quantification in the seismic inversion process.  
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computational modelling, applied geophysics.  

 

INTRODUCTION 

Quantifying uncertainties in subsurface imaging 
generated from theoretical models, geological 
analogs, or field measurements, possibly in areas of 
difficult access, offers great challenges. Geophysical 
error quantification methods are well-known and 
described in, e.g., Tarantola (2005), but in 
application of these methods, measurement location 
data is mostly considered to be free from errors. In 
most cases the assumption of having precise location 
of measured data is enough to create a convenient 
and approximate model, but in certain cases where 
we need to rely on remote interpretations of indirect 
measurements and at different scales, errors in the 
location coordinates of the acquired data may 
become significant. Hence, depending on the 
problem, location errors may appear as hidden 
measurement errors, having consequences for our 
interpretations, ranging from mild to severe.  

Obtaining precise locations data is in many cases 
difficult and, in some cases, impossible. This can be 
seen in a wide range of different applications where 
physical access is difficult, such as drilling 

operations, satellites positioning and planetary 
exploration.  

Uncertainty quantification in connection with 
imaging of the subsurface has long been a topic of 
study due to its importance in how accurate and 
reliable our models can be. Computational methods 
for probabilistic seismic inversion using linearized 
methods (Buland and Omre, 2003; Hansen et al, 
2006) or Markov chain Monte Carlo (MCMC) 
methods (Mosegaard and Tarantola, 1995; 
Sambridge and Mosegaard, 2002) have been used, 
such as in studies carried out by Dehan 
Zhu and Richard Gibson (2018) and Georgia K. 
Stuart, Susan E. Minkoff, and Felipe Pereira (2019). 
In such studies, there is a need of keeping several 
parameters of the problem fixed to reduce the 
computation cost. Location parameters are often 
amongst the fixed numbers, and, as we shall see, this 
may have important consequences for the outcome 
of the analysis. 

In a study carried out by Winkler (2017), the 
uncertainties in wellbore locations were 
incorporated and he formulated a probabilistic 
inverse problem using Bayesian networks. Other 



 

2 

studies also developed methods of assessing the 
uncertainties in resistivity well-logs and trajectory of 
the wells such as Kullawan et al. (2014). In Eidsvik 
and Hokstad (2006), seismic data were used in the 
form of VSP travel times to estimate the well 
positions, the earth model and the seismic velocities. 

Unfortunately, joint uncertainty analysis of seismic 
data, wellbore data and position data is still a poorly 
developed field. Following the numerical approach 
presented by Fernandes and Mosegaard (2021) 
where the uncertainty in well locations were 
cumulatively propagated throughout the trajectory 
of the well, we present an integrated seismic 
inversion formulation. In this fully probabilistic 
study, the approach of Tarantola and Valette (1982) 
and Tarantola (2005) is used in a case where 
positions of the physical data are also accounted for 
as data. The model parameters to be determined are 
subsurface acoustic impedances and well trajectory 
coordinates at which seismic data are constrained to 
well-log data. 

In our formulation, we consider errors in the seismic 
data, well data and wellbore locations. The 
cumulated errors in the positions on the well trace 
are considered 3-dimensional, i.e., have three spatial 
coordinates – depth and 2D horizontal location. The 
challenge in this method is to correctly integrate 
uncertainties of the seismic data and all other 
(dependent) sources of data. Mislocation of a well 
can interfere with the seismic inversion and 
introduces errors in subsequent subsurface 
interpretations. In our study, simulations of the 
variability of subsurface structure were generated, 
from which uncertainty of the model could be 
calculated.  

This paper presents a complete approach for seismic 
inversion following up from the study of Fernandes 
and Mosegaard (2021) on uncertain spatial location 
data. Using a Monte Carlo formulation to compute 
model realizations and to assess their variability 
(uncertainty) we aim at providing an improved basis 
for more realistic interpretations of geological 
structures.  

 

 

THEORETICAL FORMULATION 

Our mathematical formulation is rooted in a 
probabilistic approach (Bayes, 1763) and based on 
the formalism of Tarantola and Valette (1982), 
adapted to the combined geosteering and seismic 
inverse problem. For unknown elastic- and well-
position parameters 𝐱 the solution to the inverse 
problem is given by the posterior probability 
distribution (we ignore normalization constants here 
and in the following): 
 

𝜎(𝐱) = 𝜌!(𝐱)𝐿"(𝐱) 
 
where 𝜌!(𝐱) is the prior probability distribution of 
the unknowns 𝐱, and 𝐿#(𝐱) is a likelihood function 
measuring the fit between the combination of 
observed seismic- and well-position data 𝐛$%& and 
the corresponding computed data 𝐛(𝐱). Our forward 
relation is:  
 

)𝐝𝐜, ≡ 𝐛 = 𝑔!(𝐱) ≡ 𝑔',)(𝐦, 𝐫) 	= 	 3
𝑔'(𝐦)
𝑔)(𝐫)

4

= 3
𝐝(𝐦)
𝐜(𝐫) 4 = 	)

𝐝(𝐦)
𝐫 , 

 
where 𝐝(𝐦) is the seismic data, c is the observed 
well location coordinates (positions), 𝐦 is the 
physical subsurface parameters (in our case acoustic 
impedances), and r are the true well positions. 𝑔',) 
is the function that maps true parameters into 
observed data.  
  
Our likelihood function can be expressed (Tarantola 
and Valette, 1982): 
 

𝐿#,*(𝐦, 𝐫) = 𝜌#,*(𝑔',)(𝐦, 𝐫))	. 
 
where 𝜌#,* is the joint prior/noise distribution of our 
seismic data and well position data. Since the noise 
on the seismic data and the well-position data are 
statistically independent, we have 
 

𝜌#,*(𝐝, 𝐜) = 𝜌#(𝐝)𝜌*(𝐜) 
 
and this gives us the following expression for the 
joint posterior: 
 

𝜎',)(𝐦, 𝐫) = 𝜌',)(𝐦, 𝐫)𝐿#,*(𝐦, 𝐫)
= 𝜌',)(𝐦, 𝐫)𝐿#(𝐦)𝐿*(𝐫)	. 
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Considering that the prior on the subsurface 
parameters are only available conditioned on the 
well position, namely as 𝜌'|)(𝐦|𝐫), we write 
𝜌',)(𝐦, 𝐫) = 𝜌'|)(𝐦|𝐫)𝜌)(𝐫), and get: 
 

𝜎',)(𝐦, 𝐫) = 𝐿#(𝐦)𝐿*(𝐫)𝜌'|)(𝐦|𝐫)𝜌)(𝐫)	. 
 

 

The Subsurface Prior 

Our conditional prior on the model parameters 
𝜌'|)(𝐦|𝐫) is given as follows: We use Cartesian 
coordinates (𝑥, 𝑦, 𝑧) to describe positions in the 
subsurface, and our acoustic impedance is 
represented by a positive real function 𝑚(𝑥, 𝑦, 𝑧) 
over the space. We now chose a family of 
orthonormal base functions (kernels) 𝜑,(𝑥, 𝑦, 𝑧),  
𝜑-(𝑥, 𝑦, 𝑧), ... and parameters 𝑚,, 𝑚., 𝑚-, . .. such 
that 𝑚(𝑥, 𝑦, 𝑧) can be approximated as 
 

 𝑚(𝑥, 𝑦, 𝑧) ≈ 	=𝑚/

0

/1,

𝜑/(𝑥, 𝑦, 𝑧)	.  

 
for sufficiently large 𝑀. The coefficients 𝑚/ are our 
model parameters, the components of 𝐦. We now 
define 𝜌'|)(𝐦|𝐫) as a Gaussian over the 𝐦-space 
with zero mean and covariance 𝑪2, conditioned on 
the linear subspace 
 

 

𝒲 = A𝐦 B=𝑚/

0

/1,

𝜑/(𝐫3)

=𝑚(𝐫3)			for			𝑘

= 1, . . . , 𝐾I 

(1) 

 
where 𝐫3 is the position of the 𝑘'th the well point. 
This means that realizations of 𝜌'|)(𝐦|𝐫) are 
weighted sums of our kernels, all fitting the given 
values at the well points. Details of, how to compute 
realizations of 𝜌'|)(𝐦|𝐫), can be found in Appendix 
1. 
 
 

The Well Location Prior 
 
In this study we assume that the prior information 
about the well positions 𝜌)(𝐫) is uniform (constant), 

and hence that all information about the well trace is 
obtained from drilling data and their estimated 
position uncertainties. All this information is given 
by 𝐿*(𝐫). This leads to 
 

𝜎',)(𝐦, 𝐫) = 𝐿#(𝐦)𝐿*(𝐫)𝜌'|)(𝐦|𝐫)	. 
 
 

The Seismic Likelihood 
 
The Seismic Likelihood Function is given by: 
 

𝐿#(𝐦) = 𝜌#(𝑔'(𝐦)) 
 
and in this study, we assume that the seismic noise 
is Gaussian, leading to: 
 

𝐿#(𝐦) = 𝐾 ∙ exp 3−
1
2
	(𝐝4"5

− 𝑔'(𝐦))6𝐂/7,(𝐝4"5 − 𝑔'(𝐦))4	 
 
where 𝐂/ is the covariance matrix of the seismic 
noise, and 𝐾 is a normalization constant. 
 
 

The Well Location Likelihood 
 
Following Fernandes and Mosegaard (2021), if the 
well position measurements are 𝐜 = (𝐜, 	… , 𝐜8), 
where 𝐜9 is the location of the 𝑖'th measurement 
starting from the surface, the uncertainty of 𝐜 is 
 

𝜌*(𝐜) =S𝜌*(𝐜9:,|𝐜9)
87,

91,

 

 
expressing the accumulation of uncertainty, since 
the position and uncertainty of point 𝑖 + 1 depends 
on position and uncertainty of the point 𝑖.   
 
The well-position likelihood function is then 
 

𝐿*(𝐫) =S𝜌*(𝐡9:,(𝐫9))
87,

91,

 

 
where 𝐫9 and 𝐫9:, are connected through 𝐫9:, =
𝐡9:,(𝐫9). 
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NUMERICAL METHOD 
 
We follow the extended Metropolis sampling 
strategy outlined in Mosegaard and Tarantola 
(1995). A flow diagram of the algorithm is shown in 
Figure 1. The characteristic feature of this method is 
that an algorithm sampling the prior (when run 
independently) is used to randomly propose 
perturbations of the current model 𝐱 = (𝐦, 𝐫). 
Accepting the proposed models using a likelihood-
ratio acceptance probability will then ensure correct 
(asymptotic) sampling the posterior distribution.  
 

 
 

Figure 1 - Flow diagram of the general MCMC algorithm 
used in this study. 

 
The challenges in our implementation come from the 
interdependencies between the well data, the well 
location measurements, and the seismic data. As 
explained above, well location measurements at one 
point during the drilling are always conditioned on 
the (uncertain) location of the previous, shallower 
point. The seismic data, on the other hand, depend 
on the (unknown) subsurface parameters. In the 
well, the subsurface parameters are known with a 
higher precision than in the surroundings, but the 
location of the well points are uncertain. 
 
To satisfy all these interrelated, soft constraints, we 
proceed in the following way (see Figure 2): 
 
In each iteration, choose between perturbing the 
location of a single well point 𝐫(97,) ⟶ 𝐫∗ (with 
probability 𝛼), or perturbing the subsurface model 
𝐦97, ⟶𝐦∗ (with probability 1 − 𝛼). 
 
If a well point is chosen for perturbation: 
 
1. Perturb the well trace 𝐫(97,) ⟶ 𝐫∗ by changing 

the location of a random well point using one 
step of a random walk in the (𝑥, 𝑦, 𝑧)-space. In 

this case we use a spatially isotropic Gaussian 
perturbation, centered at the well point. This 
walk will, if unimpeded, sample the constant 
prior 𝜌)(𝐫). 

 
2. Compute the acceptance probability 
 

𝑃>** = minY1, 	
𝑃(𝐧│𝐫∗)𝑃(𝐫∗|𝐩)

𝑃]𝐧^𝐫(97,)_𝑃(𝐫(97,)|𝐩)
` 

 
where 𝐩 is the location of the previous point, and 𝐧 
is the location of the next point (see Figure 2). 
 
3. Generate a random number 𝑢 ∈ [0,1] 

 
4. If 𝑢 < 𝑃>**:  
 

a. Accept the perturbed well point 
location:  𝐫(9) = 𝐫∗ 

b. Adjust the subsurface model parameters 
𝐦 → 𝐦+ ∆𝐦 to fit the impedance in 
the new well point location. The 
adjustment is a linear combination of 
the kernel functions and is designed to 
have minimal norm ‖∆𝐦‖. See 
Appendix 1 for details. 

 
5. Otherwise reject 𝐫∗and set 𝐫(9) = 𝐫(97,). 
 

 
 

Figure 2 - Flow diagram of random perturbations of 
unknown parameters in our algorithm. 𝒙 = (𝒎, 𝒓) is the 
joint set of unknowns, where m and 𝒓 are the subsurface 

parameters and the well location parameters, respectively. 
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If a subsurface parameter (not coinciding with a well 
point) is chosen for perturbation: 
 
1. Perturb the model 𝐦(97,) ⟶𝐦∗ by changing a 

random model parameter with a Gaussian 
random number with zero mean and variance 
𝜎'4#. . 
 

2. Compute the resulting change in the impedance 
model, under the constraint that it remains 
unchanged at all the well points. 

 
3. Compute the acceptance probability 
 

𝑃>** = min 31,
𝐿#(𝐦∗)

𝐿#(𝐦(97,))4
 

 
 
4. Generate random number 𝑢 ∈ [0,1] 

 
5. If 𝑢 < 𝑃>**: Accept the perturbed model:  

𝐦(9) = 𝐦∗ 
 
6. Otherwise reject 𝐦∗and repeat 𝐦(97,):  𝐦(9) =

𝐦(97,). 
 

RESULTS 

We use an acoustic impedance model of size 8 𝑘𝑚 × 
8 𝑘𝑚 geographic area, with a maximum well depth 
of 2 km (Figure 1). The acoustic impedance model 
considered in this case was taken from the North Sea 
F3 Demo 2016 training v6 dataset, Offshore 
Netherlands (https://terranubis.com/ datainfo/F3- 
Demo-2016).  

  

 
Figure 3 – Acoustic impedance model. 

 

From our impedance volume we estimate 3D 
kernel/base functions to represent the statistical 
variability of the impedance in space. We assume 
that the impedance is a spatially homogeneous 
Gaussian process, leading to kernel/covariance 
functions that are everywhere the same. Under this 
assumption, the impedance can be viewed as a 
convolution of 3D white noise with the kernel, 
allowing a (zero phase) kernel (Figure 4) to be 
estimated from its 3D wavenumber spectrum. 

  

 
Figure 4 - Kernel on the x-depth plane (up), on the y-depth 

plane (middle) and on the x-y plane (bottom). 

 

Synthetic seismic data were computed by 
convolving the reflectivity with a 40 Hz Ricker 
wavelet within the range of the area of study (Figure 
5) . For the well-log, we simulated 50 points along a 
well trajectory where geological data are being 
collected during the drilling operations. Errors in the 
wellbore locations are considered to be cumulative 
and each increment introduces a Gaussian error.  
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Figure 5 - 3D Seismic data volume (top) and seismic profile 

(bottom). 

 

 
 

Samples from the posterior distribution can be seen 
on Figure 6 alongside with the initial acoustic 
impedance model and the mean well trajectory. The 
variability of the impedance model and the well trace 
reflects their uncertainties in a way that is consistent 
with all a priori assumptions and uncertainties on 
location data and seismic data. These variabilities 
generate synthetic seismic data that all fit the 
(simulated) observed data 'within their error bars'. 

 

 

 

 

 

  

Figure 4 - Initial acoustic impedance model (top left) and 3 posterior realizations of the acoustic impedance using 
seismic data and uncertain well locations as constraints. 
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DISCUSSION 

Collecting and measuring data at locations that are 
difficult to access presents challenges to accuracy of 
the data. This paper presented a method to quantify 
the total errors in locations and measurements, 
incorporating them into seismic inversion, with the 
aim of giving a more reliable model of subsurface 
parameters and of the well trajectory.  

Any time additional uncertainties are added to the 
solution of an inverse problem, the resulting 
solutions are more poorly resolved. This is also the 
case in this study. On the other hand, assuming that 
the borehole data were error-free would result in 
smaller apparent uncertainties in the inversion result, 
and this would introduce spurious artefacts: 
Assuming that well data are too precise (in location 
and rock property measurements) puts too much 
weight on these data, compared to the seismic data. 
As a result, actual (neglected) errors in borehole data 
will give rise to unreal geological structure and 
properties. In the method proposed in this paper we 
aim at a more proper evaluation of uncertainties, 
giving a correct weighting of all data. 

Knowing that the measurements themselves can 
vary not only from errors inherently in the data 
collection processes but from the location accuracy, 
can change the way we deal with the problem. As a 
perspective, the growing position errors can be 
tackled from earlier stages, even on the fly, and 
interpretations made at more uncertain locations can 
be considered with more care.    

 

CONCLUSION 

Seismic inversion with well-calibration was 
expanded to a more realistic and complete case by 
including uncertain borehole measurements and 
locations into the seismic inversion. This error  
quantification allowed us to provide a more reliable 
estimate of the uncertainties inherent in seismic 
inversion assisted with data from horizontal wells.  

 

 

APPENDIX 1 

Assume that the subsurface model 𝑚(x, y, z), with 
parameters m = (𝑚,, 𝑚., . . . , 𝑚0), is fixed in 𝐾 
well point positions 𝐫 = (𝐫, 	… , 𝐫𝑲), and that we 
wish to perturb 𝑚(x, y, z) with the amount 𝛿𝑚 at a 
point 𝐫8:,, not coinciding with any of the points 
𝐫, 	… , 𝐫8. If the perturbed model is 𝑚′(x, y, z), its 
parameters 𝐦′ = (𝑚,

@ , 𝑚.
@ , . . . , 𝑚0

@ ) must satisfy 

=(𝑚/
@ −𝑚/)

0

/1,

𝜑/(𝐫A:,) = 𝛿𝑚 

and 

=(𝑚/
@ −𝑚/)

0

/1,

𝜑/(𝐫B) = 0			for			𝑘 = 1,… , 𝐾	, 

Defining a (𝐾 + 1) ×𝑀 matrix F with components 
𝐹9C = 𝜑C(𝐫𝒊), the above equation can be expressed: 

𝐅∆𝐦 = 𝐚 

where ∆𝐦 = 𝐦′ −𝐦,  and where: 

𝐚 = t
0
⋮
0
𝛿𝑚

v 

is a vector with 𝐾 + 1 components. The system of 
equations (2) is, in general, underdetermined and has 
infinitely many solutions, but the least-squares 
solution for ∆𝐦 is: 

 

∆𝐦EF = 𝐅6(𝐅𝐅6)7,𝐚		. 

 

Knowing 𝐦 and ∆𝐦EF we can compute 𝐦′ = 𝐦+
∆𝐦𝐋𝐒 . 

The above procedure can be used, both when 
perturbing a point that is not a well point, but also 
when a well point location is perturbed. In the latter 
case, the original position of the perturbed point is 
erased from 𝐫 = (𝐫, 	… , 𝐫8), which is then reduced 
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to 𝐾 − 1 components, and at the new position of the 
perturbed point there is a change 𝛅𝐦 in the model. 
In this point, the original model value is replaced by 
the value carried with the perturbed well point, and 
parameters of the surrounding model is updated to 
preserve the variability given by the kernel/cova-
riance functions.  
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